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Abstract. We introduce a simple algorithm to improve exist-
ing density surfaces to ensure that the resulting surfaces are
as close to neutral as possible. This means the slopes at any
point on the surfaces are close to neutral tangent planes – the
directions along which layered stirring and mixing occurs –
minimizing the fictitious diapycnal diffusivity. Inverse tech-
niques and layered models have been used for decades to un-
derstand ocean circulation. The most-used density surfaces
are potential density or neutral density surfaces. Both these
density surfaces and all others produce a fictitious diapycnal
diffusivity to some degree due to the helical nature of neutral
trajectories – with the magnitude of this artificial diffusivity
in some cases being larger than the values measured in the
ocean. Here we show how this error can be reduced by up to
four orders of magnitude and therefore becomes insignificant
compared to measured values, thus providing surfaces which
would produce more accurate results when used for inverse
techniques.

1 Introduction

Transport in the ocean does not occur along surfaces of con-
stant in situ density and several approaches have been used to
find a density variable whose isosurfaces accurately describe
the direction along which flow in the ocean occurs. Using
inappropriate density surfaces leads to a fictitious diapycnal
diffusivity, Df , sometimes orders of magnitude larger than
the measured diapycnal diffusivity in the ocean.Df is an
error resulting from mixing along a well-defined surface in-
stead of along neutral tangent planes. This fictitious diapyc-
nal diffusivity does not represent a real physical process.
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Scalar properties in the ocean get stirred (and subsequently
mixed) efficiently by mesoscale eddies and two-dimensional
turbulence along neutral tangent planes (McDougall, 1987).
These are defined such that when water parcels are moved
small distances along these planes, they experience no buoy-
ant restoring forces. It is impossible to link these neutral
tangent planes to form a surface, therefore “neutral surfaces”
will always be mathematically ill-defined (McDougall, 1987;
McDougall and Jackett, 1988). If we were to follow a neutral
trajectory around an ocean basin (linking up neutral tangent
planes) and arrive back at the initial latitude/longitude one
normally arrives at a different depth than where one started.
This shows that the definition of a neutral surface is path-
dependent, an effect caused by the nonlinearity of the equa-
tion of state of seawater (because the ratioα2/β2 is a func-
tion of pressure; see AppendixA for a more detailed explana-
tion). Therefore it is not possible to find a “perfect” surface
to describe flow in the ocean. There will always be errors as-
sociated with density surfaces due to path-dependency – but
how large is this unavoidable error?

Efforts to construct density variables minimizingDf

include approximately neutral surfaces (Jackett and Mc-
Dougall, 1997; Jackett et al., 2009) and orthobaric density
surfaces (de Szoeke et al., 2000). These algorithms label
a three-dimensional hydrography with a density variable.
We can then find surfaces in this hydrography on which
the density variable is constant and use this surface for in-
verse techniques or for plotting variables such as tempera-
ture, salinity and nutrients to understand the evolution of wa-
ter masses. Compared to these density-labelling algorithms
the technique described in this work takes one density surface
– which can be a surface of constant potential density, neu-
tral density or any other density variable – and improves it to
ensure it is as close to the neutral tangent planes as possible
thus minimizing the fictitious diapycnal diffusivity. This al-
gorithm is ideal for creating optimized approximately neutral
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surfaces to use as water mass density boundaries in inverse
models. The improvement due to these optimized approxi-
mately neutral surfaces might not be significant in large box
inverse models of non-synoptic hydrographic sections com-
pared to the other assumptions made (i.e. steady state, etc.)
but we expect that these surfaces will significantly decrease
the error of inverse models using synoptic sections for pro-
cess studies that particularly target the determination of mix-
ing.

2 Basic properties of density surfaces

Many different density surfaces have been used in the past
for inverse techniques, layered ocean models or other appli-
cations describing ocean circulation along isopycnals. These
different density surfaces all differ in the extent to which they
achieve the three desirable but mutually inconsistent proper-
ties (McDougall and Jackett, 2005b):

– being as neutral as possible

– being as quasi-material as possible

– possessing a geostrophic streamfunction (commonly
called a Montgomery potential),

where quasi-material means that flow through a surface only
arises due to mixing processes.

In this work we will mainly focus on the first point, com-
paring how “neutral” different density variables are. “Neu-
tral” here describes the direction along which a parcel can
travel without experiencing buoyant restoring forces. The
γ n-variable (Jackett and McDougall, 1997) and the γ i-
variable (Jackett et al., 2009) for example were constructed
to produce a surface which is as neutral as possible by min-
imizing the slope difference between these respective sur-
faces and the neutral tangent planes, but ignoring the last
two points mentioned above.Eden and Willebrand(1999)
took a different approach and tried to construct a density vari-
able which is a compromise between neutrality and two other
properties, (a) the horizontal gradient of the neutral density
should agree with the gradient of in situ density and (b) the
vertical gradient of the neutral density should be proportional
to the static stablility of the water column.

These requirements are quite different to the properties
used byMcDougall and Jackett(2005b). We note that the
integrating factorb (McDougall and Jackett, 1988), defined
by

γz = ρb(β2Sz − α22z), (1)

varies in the ocean whereas the extra requirements ofEden
and Willebrand(1999) would only be strictly true if the inte-
grating factorb were equal to one everywhere in the ocean.
ρ in this equation is in situ density,β2 is the saline contrac-
tion coefficient,α2 the thermal expansion coefficient andSz

and2z are the vertical gradients of salinity and conservative
temperature.

McDougall(1988) shows thatb is given by

b ≈ exp[−g2ρT 2
b

∫
a

N−2(∇a2 − 2p∇ap) · dl], (2)

whereN2 is the buoyancy frequency and∇a is the gradi-
ent along an approximately neutral surface.T 2

b is the ther-
mobaric parameter given by

T 2
b = β2(

α2

β2
)p. (3)

This equation was actually derived for spatial gradients
along a neutral tangent plane and here it is written in terms of
gradients in an approximately neutral surface. It was also de-
rived ignoring the dependence of the saline contraction coef-
ficient on pressure (in comparison toα2

p ). For both these rea-
sons we use an approximately equal sign in Eq. (2). Choos-
ing the appropriate density variable will always depend on
ones application – a surface which satisfies all three proper-
ties does not exist due to the nature of the equation of state.
It is therefore very important to know the advantages of each
density variable and the errors associated with them. One
density variable might do a good job for one application but
introduce substantial errors for another.

To quantify the quality (in the sense of being close to neu-
tral) of a density surface we use the fictitious diapycnal dif-
fusivity of density caused by mixing laterally along a density
surface with a slope different to that of the neutral tangent
plane.Df is given by

Df
= K · s2, (4)

whereK is a lateral diffusivity (taken to be 1000 m2 s−1 in
the following calculations) ands is the slope difference be-
tween the density surface used and the neutral tangent plane,

s = ∇nz − ∇az, (5)

where∇n is the gradient along a neutral tangent plane and
∇a is the gradient along any approximate surface (whether it
be a potential density surface, an approximately neutral sur-
face or any other surface). The fictitious diapycnal diffusiv-
ity described here is the same asDfictitious in McDougall and
Jackett, 2005b. A derivation ofDf can be found in Appendix
B.

It has been shown that the mean diapycnal diffusivity in
the ocean is roughly 10−5 m2 s−1, even though it can be
larger above rough topography (Polzin et al., 1997). If Df

for a specific density surface is comparable or larger than
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the effects of the nonlinear equation of state, it is only pos-
sible to define an approximately neutral surface. Therefore
to properly define diapycnal transport we have to distinguish
between flow across a mathematically well-defined approx-
imately neutral surface and the actual isopycnal/diapycnal
transport. In the latter ’isopycnal’ means along a neutral he-
lix (the trajectory we would get if we connect neutral tangent
planes following fluid flow) and ’diapycnal’ means across
this neutral helix.

The vertical velocityea through an approximately neutral
surface,γa, can be written as

ea = e + ehel, (6)

wheree is the diapycnal transport due to cabbeling, ther-
mobaricity, double diffusion and small-scale turbulent mix-
ing, andehel is the vertical velocity through the approxi-
mately neutral surface due to the helical shape of neutral
trajectories (see Klocker and McDougall (2009) for an es-
timate ofehel). The diapycnal velocityehel transports mass,
salinity, conservative temperature and all other tracers.This
diapycnal transport,ehel, exists without requiring the dissi-
pation of kinetic energy. It can be written as

ehel = V · s, (7)

whereV is the horizontal velocity(u, v).
The diapycnal transportea can also be written in terms of

the material derivative ofγa,

ea =
Dγa

Dt

γa
z

, (8)

as is illustrated in Fig.1, whereγa is the variable which is
constant in the approximately neutral surface.

(ui + vj + wk)

(ui + vj)

ea

e

ehel
w

ntp

ga

Fig. 1: This figure shows the differences betweene, ehel, ea

andw. The lateral velocity (ui+vj) is directed horizontally.
The three surfaces shown are the approximately neutral sur-
face (γa), the neutral tangent plane (ntp) and the top-most is
the lateral velocity plusw, wherew includes all components
leading to a flow which differs from a purely horizontal flow
(the tilt of an approximately neutral surface, mixing effects
and a diapycnal velocity caused by the ill-defined nature of
neutral surfaces,ehel).

The property of the ocean’s hydrography which stops us
from forming mathematically well-defined neutral surfaces,

neutral helicity, can be written as (McDougall and Jackett,
1988):

Hn = βΘT Θ

b ∇p · ∇S ×∇Θ =
N2

g
T Θ

b ∇np ×∇nΘ · k.

(9)

From this equation we can see that neutral helicity is a
consequence of the thermobaric parameter (Eqn.(3)), there-
fore a consequence of the equation of state of seawater being
nonlinear in the sense that the ration of the thermal expansion
coefficient to the saline contraction coefficient is a function
of pressure.

The first part of Eqn.(9) means that for neutral helicity
to be zero the line of intersection of theS and Θ planes,
∇S × ∇Θ, must lie in the isobaric surface, the second part
requires the epieutral gradients of pressure and temperature
to be parallel. Both of these requirements are close to be-
ing met in the real ocean, but the amount by which neutral
helicity is non-zero may be important for some effects.

To improve existing surfaces we construct an algorithm
with the aim of reducing the residual fictitious diapycnal dif-
fusivity so that it is only due to neutral helicity and not due
to any other effects.

We take one of the existing density surfaces as the initial
condition and use a least-squares approach to minimize the
area integral ofǫ2, whereǫ is similar to the slope errors but
is also dependent on vertical stratification:

ǫ = βΘ∇aS−αΘ∇aΘ =
N2

g
(∇nz−∇az) =

N2

g
s, (10)

with N2 being the buoyancy frequency andg the gravita-
tional acceleration. In the neutral tangent planeǫ = 0.

An important relationship in the neutral framework is that
between neutral helicity in an approximately neutral surface
and the two-dimensional curl ofǫ, ∇a×ǫ. According to the-
ory (Eqns. (38) and (39) in McDougall and Jackett (1988))
they should be related as can be seen from the following
equation

−δzN2g−1 =
δρl

ρl
= b−1

δγ

γ
≈ −

∮

A

ǫ · dl =

−

∫∫

A

∇a × ǫ · k dxdy

≈

∫∫

A

T Θ

b ∇ap ×∇aΘ · k dxdy

≈ T Θ

b

∮
pdΘ ≈

∫∫

A

gN−2Hn dxdy.

(11)

Hereδz is the depth change of a neutral trajectory after
completing a closed loop around the ocean (i.e. the neu-
tral trajectory finishes at the same horizontal position as it

Fig. 1. This figure shows the differences betweene, ehel, ea and
w. The lateral velocity (ui+vj ) is directed horizontally. The three
surfaces shown are the approximately neutral surface (γ a), the neu-
tral tangent plane (ntp) and the top-most is the lateral velocity plus
w, wherew includes all components leading to a flow which differs
from a purely horizontal flow (the tilt of an approximately neutral
surface, mixing effects and a diapycnal velocity caused by the ill-
defined nature of neutral surfaces,ehel).

10−5 m2 s−1 over a significant area, then using this surface
to describe the flow in the ocean would introduce significant
mixing that is purely due to the error of the definition of the
density surface used.

When describing ocean flow the terms “isopycnal” and
“diapycnal” are used to describe flow along and through
“density” surfaces, respectively. But since it is impossible to
construct a mathematically well-defined neutral surface due
to the effects of the nonlinear equation of state, it is only pos-
sible to define an approximately neutral surface. Therefore
to properly define diapycnal transport we have to distinguish
between flow across a mathematically well-defined approx-
imately neutral surface and the actual isopycnal/diapycnal
transport. In the latter “isopycnal” means along a neutral he-
lix (the trajectory we would get if we connect neutral tangent
planes following fluid flow) and “diapycnal” means across
this neutral helix.

The vertical velocityea through an approximately neutral
surface,γ a , can be written as

ea
= e + ehel, (6)

wheree is the diapycnal transport due to cabbeling, thermo-
baricity, double diffusion and small-scale turbulent mixing,
and ehel is the vertical velocity through the approximately
neutral surface due to the helical shape of neutral trajecto-
ries (seeKlocker and McDougall(2009) for an estimate of
ehel). The diapycnal velocityehel transports mass, salinity,
conservative temperature and all other tracers. This diapyc-
nal transport,ehel, exists without requiring the dissipation of
kinetic energy. It can be written as

ehel
= V · s, (7)

whereV is the horizontal velocity(u, v).
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Fig. 2: The blue surface shows the initial approximately neutral surface (γa-surface) on which the density pertubation field,
Φ′, is calculated. This density pertubation field is convertedinto a depth change,δz, which is then applied to the initial surface
to get the new apaproximately neutral surface (the blue surface).
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Fig. 3: The grid used by the algorithm explained in this pa-
per. The red points are the tracer grid points and the slopes
errors/pressure gradient errors are calculated on the green
points.

we can use a direct inversion,

Φ′ = (AT · A)−1(AT · ǫinit).‘ (15)

Alternatively we could solve Eqn.(14) using an iterative
technique, e.g., the LSQR algorithm of Paige and Saunders
(1982), as implemented in Matlab (2007). For the larger data
sets the iterative technique is the computationally more effi-
cient approach.

We now have aΦ′-field which we need to convert into a
depth change,δz, to find the depth of the optimized approxi-
mately neutral surface. From McDougall and Jackett (1988)
we know that

−
N2

g
δz =

δρl

ρl
= Φ′. (16)

We thus have to calculateN2 on the surface to find the
depth of the new optimized approximately neutral surface2.

Due to the algorithm working on an horizontally extensive
two-dimensional surface the first guess of the depth change,
δz, will not be the final solution. We thus linearly interpolate
S andΘ onto the new surface and calculate new lateral den-
sity gradient errors. We then treat these new density gradient
errors as we did theǫinit-field before to get a more accurate
optimized approximately neutral surface. If we repeat these
steps often enough|ǫ|2 will converge. Once it has converged
the surface will be as close to neutral as possible, with the
residual fictitious diapycnal diffusivity being due only tothe
path-dependency caused by neutral helicity. We will call this
surface theω-surface.

On all density surfaces we will have regions where the sur-
face outcrops or hits the bottom topography. Due to this we
will end up with several regions on a density surface which
do not communicate with each other. A typical example is
a marginal sea with narrow connections to the open ocean.
In the algorithm described above we deal with this problem
of independent regions by writing a set of equations as in
Eqn.(14) for each seperate region. Similar to before we con-
strain the average pertubation density of each region,Φ′, to
be zero.

When optimizing approximately neutral surfaces with the
method above we sometimes get a result where|ǫ|2 does not
converge. This is because of the algorithm overestimating the
depth change,δz, due to the algorithm not knowing about the
stratification above and below the surface optimized. This
can then lead to a growing|ǫ|2 due to the algorithm trying to
overcorrect at these casts. If this happens we have to dampen
the depth change; this means we only use a certain percent-
age of the depth change estimated by the algorithm to calcu-
late the optimized surface. Another way of minimizing the
possibility of this problem is to discard the data in the mixed
layer - a region in which other processes than neutral physics

2We use(N2 +3 ∗ 10−6) instead ofN2 to ensure that the algo-
rithm is stable whenN2 is close to zero.

Fig. 2. The blue surface shows the initial approximately neutral
surface (γ a-surface) on which the density pertubation field,8′, is
calculated. This density pertubation field is converted into a depth
change,δz, which is then applied to the initial surface to get the new
apaproximately neutral surface (the blue surface).

The diapycnal transportea can also be written in terms of
the material derivative ofγ a ,

ea
=

Dγ a

Dt

γ a
z

, (8)

as is illustrated in Fig.1, whereγ a is the variable which is
constant in the approximately neutral surface.

The property of the ocean’s hydrography which stops us
from forming mathematically well-defined neutral surfaces,
neutral helicity, can be written as (McDougall and Jackett,
1988):

H n
= β2T 2

b ∇p · ∇S × ∇2 =
N2

g
T 2

b ∇np × ∇n2 · k.

(9)

From this equation we can see that neutral helicity is a
consequence of the thermobaric parameter (Eq.3), therefore
a consequence of the equation of state of seawater being non-
linear in the sense that the ratio of the thermal expansion co-
efficient to the saline contraction coefficient is a function of
pressure.

The first part of Eq. (9) means that for neutral helicity to be
zero the line of intersection of theS and2 planes,∇S×∇2,
must lie in the isobaric surface, the second part requires the
epineutral gradients of pressure and temperature to be par-
allel. Both of these requirements are close to being met in
the real ocean, but the amount by which neutral helicity is
non-zero may be important for some effects.

To improve existing surfaces we construct an algorithm
with the aim of reducing the residual fictitious diapycnal dif-
fusivity so that it is only due to neutral helicity and not due
to any other effects.

We take one of the existing density surfaces as the initial
condition and use a least-squares approach to minimize the
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we can use a direct inversion,

Φ′ = (AT · A)−1(AT · ǫinit).‘ (15)

Alternatively we could solve Eqn.(14) using an iterative
technique, e.g., the LSQR algorithm of Paige and Saunders
(1982), as implemented in Matlab (2007). For the larger data
sets the iterative technique is the computationally more effi-
cient approach.

We now have aΦ′-field which we need to convert into a
depth change,δz, to find the depth of the optimized approxi-
mately neutral surface. From McDougall and Jackett (1988)
we know that

−
N2

g
δz =

δρl

ρl
= Φ′. (16)

We thus have to calculateN2 on the surface to find the
depth of the new optimized approximately neutral surface2.

Due to the algorithm working on an horizontally extensive
two-dimensional surface the first guess of the depth change,
δz, will not be the final solution. We thus linearly interpolate
S andΘ onto the new surface and calculate new lateral den-
sity gradient errors. We then treat these new density gradient
errors as we did theǫinit-field before to get a more accurate
optimized approximately neutral surface. If we repeat these
steps often enough|ǫ|2 will converge. Once it has converged
the surface will be as close to neutral as possible, with the
residual fictitious diapycnal diffusivity being due only tothe
path-dependency caused by neutral helicity. We will call this
surface theω-surface.

On all density surfaces we will have regions where the sur-
face outcrops or hits the bottom topography. Due to this we
will end up with several regions on a density surface which
do not communicate with each other. A typical example is
a marginal sea with narrow connections to the open ocean.
In the algorithm described above we deal with this problem
of independent regions by writing a set of equations as in
Eqn.(14) for each seperate region. Similar to before we con-
strain the average pertubation density of each region,Φ′, to
be zero.

When optimizing approximately neutral surfaces with the
method above we sometimes get a result where|ǫ|2 does not
converge. This is because of the algorithm overestimating the
depth change,δz, due to the algorithm not knowing about the
stratification above and below the surface optimized. This
can then lead to a growing|ǫ|2 due to the algorithm trying to
overcorrect at these casts. If this happens we have to dampen
the depth change; this means we only use a certain percent-
age of the depth change estimated by the algorithm to calcu-
late the optimized surface. Another way of minimizing the
possibility of this problem is to discard the data in the mixed
layer - a region in which other processes than neutral physics

2We use(N2 +3 ∗ 10−6) instead ofN2 to ensure that the algo-
rithm is stable whenN2 is close to zero.

Fig. 3. The grid used by the algorithm explained in this paper. The
red points are the tracer grid points and the slopes errors/pressure
gradient errors are calculated on the green points.

area integral ofε2, whereε is similar to the slope errors but
is also dependent on vertical stratification:

ε = β2
∇aS − α2

∇a2 =
N2

g
(∇nz − ∇az) =

N2

g
s, (10)

with N2 being the buoyancy frequency andg the gravita-
tional acceleration. In the neutral tangent planeε=0.

An important relationship in the neutral framework is that
between neutral helicity in an approximately neutral surface
and the two-dimensional curl ofε, ∇a×ε. According to the-
ory (Eqs. 38 and 39 inMcDougall and Jackett, 1988) they
should be related as can be seen from the following equation

−δzN2g−1
=

δρl

ρl
= b−1δγ

γ
≈ −

∮
A

ε · dl

= −

∫∫
A

∇a × ε · k dxdy

≈

∫∫
A

T 2
b ∇ap × ∇a2 · k dxdy

≈ T 2
b

∮
pd2 ≈

∫∫
A

gN−2H n dxdy.

(11)

Here δz is the depth change of a neutral trajectory after
completing a closed loop around the ocean (i.e. the neu-
tral trajectory finishes at the same horizontal position as it

started from but at a different depth).ρl is the locally ref-
erenced potential density. The step from−δ z N2 g−1 to
−

∮
A

ε· dl has been derived inMcDougall and Jackett(1988),
and

∫∫
A

∇a×ε·k dxdy follows from
∮
A

ε· dl using Stokes‘
theorem (see AppendixC for a proof of Stokes‘ theorem
for the two-dimensional curl). −∇a×ε·k is not exactly

equal toT 2
b ∇ap×∇a2·k because the small term

β2
p

β2 ∇ap×ε

has been ignored (
β2

p

β2 is only about 10% of
α2

p

α2 and |ε| is

much less than|α2
∇a2|, see AppendixD). To the extent

that ∇ap and ∇a2 are good approximations of∇np and
∇n2, Eq. (9) demonstrates the approximate equivalence of
T 2

b ∇ap×∇a2k and gN−2 H n in Eq. (11).
By considering a variety of areas,A, the equality of the

various area integrals implies that the integrands−∇a×ε·k,
T 2

b ∇ap×∇a2·k and gN−2 H n are approximately equal.
Since neutral helicity is a property of the ocean‘s hydrog-
raphy and we also know that−∇a×ε·k is effectively equal
to neutral helicity, we therefore know that−∇a×ε·k is also
set by the ocean‘s hydrography.

To check this relationship between gN−2 H n and−∇a×ε ·

k we choose an approximately neutral surface in the North
Atlantic which is close to the depth of the Mediterranean
outflow (γ n

=27.25 kg m−3). We choose this depth because
one would think that this warm and salty water would cause
the ocean to have increased values of neutral helicity in this
region due to high temperature gradients crossing pressure
gradients (see Eq.11), making it an interesting region for
our calculations of the mean diapycnal advection caused by
these larger values of neutral helicity.

The data we use here and in all the following examples are
model output from a standard MOM4 run with a resolution
of 1◦

×2◦. The only change to the standard run is the use
of conservative temperature (McDougall, 2003), 2, instead
of potential temperature. This change is not relevant to the
results.

3 Improvement of approximate density surfaces

Our aim is to minimize the difference between the neutral
tangent planes and the approximately neutral surfaces, that
is, essentially to minimize the area integral of the density gra-
dient errorε. Since the curl ofε, ∇a×ε, is given by the hy-
drography, we choose to minimizeε by adding a pertubation
density field,8′ (where8=lnρl , ρl being the locally refer-
enced potential density), so thatε is minimized while∇a×ε

is unaffected by the presence of8′. In this way a new den-
sity surface can be formed by taking into account the pertu-
bation density,8′. As described below, the new height of the
density surface is adjusted by converting the density change
from the density pertubation field into a depth change (using
Eq.16). This can be seen in Fig.2 in which the blue surface
is the initial approximately neutral surface (γ a-surface) on
which the density pertubation field,8′, is calculated and the
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green surface is the new surface after the density pertubation
field in the initial approximately neutral surface is imposed,

ε = ε init
+ ∇a8

′, (12)

whereε is the smallest possible density gradient error (i.e.
the residual density gradient error is due to neutral helicity)
and ε init is the initial density gradient error field. A more
detailed description of the theory behind this algorithm and
numerical testcases can be found in AppendixD.

Now we apply the idea of minimizingε, without changing
its curl, ∇a×ε, to construct an algorithm which optimizes
existing density surfaces to be as neutral as possible with the
residual error only being due to neutral helicity. As an initial
condition we can use any density variable that labels a three-
dimensional data set. We then choose a surface on which this
density variable is constant and linearly interpolateS and2

onto that surface. With these variables we can then calculate
the density gradient errorε=β2

∇aS −α2
∇a2

1 From every
grid point we want to calculate an x-component,ε init

ew , and a
y-component,ε init

ns , of the initial density gradient errorε init ,
which we will then use as initial conditions in the algorithm.
From a numerical perspective this will look like

ε init
ew = β2(Seast

−Swest)−α2(2east
−2west)

ε init
ns = β2(Snorth

−Ssouth)−α2(2north
−2south), (13)

where the thermal expansion coefficientα2 and the saline
contraction coefficientβ2 are averaged onto the points in
between the tracer grid points (the green points in Fig.3; the
red point are the tracer points).

We now construct a matrixA with the number of rows be-
ing the number of equations and the number of columns be-
ing the number of grid points. This matrix is a sparse matrix;
for the ε init

ew equations it will have a “1” for the eastern grid
point and a “−1” for the western grid point – all the other
entries are “0” in each row. The same is true for theε init

ns -
equations. We also constrain the average pertubation density,
8′, to be zero. This would show up in the matrix A as a row
filled with ones and in the vectorε init as zero. Now we have a
sparse matrixA, a vectorε init (which has as many entries as
the matrixA has rows) and we want to find the pertubation

1The first part of Eq. (10) (seeMcDougall and Jackett(1988)
for a derivation) uses gradients in an approximate surfaces without
the need of any information along the neutral tangent plane, which
makes it much more efficient to computeε, therefore we will use
this definition ofε in all further calculations. Calculatingε via the
second part of Eq. (10) would require multiple calls of the equa-
tion of state and therefore become computationally more expensive.
Note that we have adopted the opposite sign convention forε com-
pared withMcDougall and Jackett(1988).
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Fig. 4: (a) Pressure, (b) conservative temperature and (c)
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Fig. 5: log10(D
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surface.

the previous figure and Figs.7(a) and (c) show a lighter and
a denser surface. One can see thatDf decreases by a few
orders of magnitude when using theω-surface compared to
theγn-surface. The large improvement is possible because
the model output we are using had water masses that devi-
ated significantly from observed ocean properties. When ap-
plied to atlas data the fictitious diapycnal diffusivity in an
ω-surface is perhaps just one to two orders of magnitude less
than in aγn-surface.

The improvement made by the algorithm can be seen by
plotting γn on anω-surface (Fig.8).γn values have a range
from 27.61 to 27.65 on theω-surface which is a substantial
density change.

Another way of seeing the improvement is by plotting
T Θ

b ∇ap × ∇aΘ · k ≈ gN−2Hn vs. −∇a × ǫ · k for the
γn and theω-surfaces (see Figs.9 (a) and (b) forγn andω
respectively). For theω-surface one can see a very good
agreement betweengN−2Hn and−∇a × ǫ · k, as all the
points of the surface almost end up on the line.

Fig. 4. (a)Pressure,(b) conservative temperature and(c) gN−2Hn

on theω-surface.

density8′ for which |ε|2 is minimized. To solve this set of
equations,

minimize|A8′
− ε init

|
2, (14)

we can use a direct inversion,

8′
= (AT

· A)−1(AT
· ε init).‘ (15)
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ω-surface is perhaps just one to two orders of magnitude less
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density change.

Another way of seeing the improvement is by plotting
T Θ

b ∇ap × ∇aΘ · k ≈ gN−2Hn vs. −∇a × ǫ · k for the
γn and theω-surfaces (see Figs.9 (a) and (b) forγn andω
respectively). For theω-surface one can see a very good
agreement betweengN−2Hn and−∇a × ǫ · k, as all the
points of the surface almost end up on the line.

Fig. 5. log10(D
f ) on the(a) γ n-surface and the(b) ω-surface.

Alternatively we could solve Eq. (14) using an iterative
technique, e.g., the LSQR algorithm ofPaige and Saunders
(1982), as implemented inMatlab(2007). For the larger data
sets the iterative technique is the computationally more effi-
cient approach.

We now have a8′-field which we need to convert into a
depth change,δz, to find the depth of the optimized approxi-
mately neutral surface. FromMcDougall and Jackett(1988)
we know that

−
N2

g
δz =

δρl

ρl
= 8′. (16)

We thus have to calculateN2 on the surface to find the
depth of the new optimized approximately neutral surface2.

Due to the algorithm working on an horizontally extensive
two-dimensional surface the first guess of the depth change,

2We use(N2
+3 ∗ 10−6) instead ofN2 to ensure that the algo-

rithm is stable whenN2 is close to zero.
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Fig. 6: log10(D
f ) on the (a)γn-surface and the (b)ω-surface

calculated using WOCE climatology data.

Even though the change between our initial condition and
the ω-surface are quite large in terms of the fictitious di-
apycnal diffusivity, the correlation betweengN−2Hn and
−∇a×ǫ·k or the variations ofγn on theω-surface or the ac-
tual changes of temperature and pressure between the initial
condition and theω-surface are reasonably small.

4 How ’neutral’ are existing density variables?

To show the differences between different density variables
we use a density surface in the North Atlantic with an aver-
age depth of about 600 dbar. We concentrate on the North
Atlantic instead of the global ocean because it is easier to
see differences on a smaller scale and neutral physics are in-
teresting in the North Atlantic due to the Mediterranean out-
flow producing increased values of neutral helicity. Showing
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Fig. 7: Frequency plot oflog10(D
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and theω-surface (black) with an average pressure of (a)
1000 dbar, (b)1400 dbar (the surface used throughout the
text) and (c) 1800 dbar. The black vertical line shows a fici-
titious diapycnal diffusivity of10−5m2s−2; values right of
this line are larger than the mean value for the diapycnal dif-
fusivity measured in the ocean.

Fig. 6. log10(D
f ) on the(a) γ n-surface and the(b) ω-surface cal-

culated using WOCE climatology data.

δz, will not be the final solution. We thus linearly interpolate
S and2 onto the new surface and calculate new lateral den-
sity gradient errors. We then treat these new density gradient
errors as we did theε init-field before to get a more accurate
optimized approximately neutral surface. If we repeat these
steps often enough|ε|2 will converge. Once it has converged
the surface will be as close to neutral as possible, with the
residual fictitious diapycnal diffusivity being due only to the
path-dependency caused by neutral helicity. We will call this
surface theω-surface.

On all density surfaces we will have regions where the sur-
face outcrops or hits the bottom topography. Due to this we
will end up with several regions on a density surface which
do not communicate with each other. A typical example is
a marginal sea with narrow connections to the open ocean.
In the algorithm described above we deal with this problem
of independent regions by writing a set of equations as in
Eq. (14) for each seperate region. Similar to before we con-
strain the average pertubation density of each region,8′, to
be zero.
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When optimizing approximately neutral surfaces with the
method above we sometimes get a result where|ε|2 does not
converge. This is because of the algorithm overestimating the
depth change,δz, due to the algorithm not knowing about the
stratification above and below the surface optimized. This
can then lead to a growing|ε|2 due to the algorithm trying
to overcorrect at these casts. If this happens we have to
dampen the depth change; this means we only use a certain
percentage of the depth change estimated by the algorithm to
calculate the optimized surface. Another way of minimizing
the possibility of this problem is to discard the data in the
mixed layer – a region in which other processes than neutral
physics are dominant. On all the following surfaces we will
discard data shallower than 200 dbar.

A similar approach as above can be used to minimize for
the slope error,s, instead of the density gradient error,ε.
This would be more consistent with the aim of minimizing
the fictitious diapycnal diffusivity but on the other hand the
minimisation of the density gradient error is easier to under-
stand when compared to the theoretical ideas in AppendixD.
Both approaches give very similar resutls.

McDougall and Jackett (1988) contains an algorithm that
similarly modifies existing approximate neutral surfaces by
minimizing the size of the square of the density gradient er-
rors,ε, at each spatial location, in this case weighted byN−2.
This was achieved using a multi-dimensional Newton tech-
nique, one dimension for each data point on the approximate
surface, with one additional dimension for a Lagrangian-
multiplier equation constraining the mean pressure perturba-
tion to be zero. The computational method described above
is a two-dimensional analogue of a new sparse matrix inver-
sion technique that labels three-dimensional oceanographic
data with a new neutral density variableγ i (Jackett et al.,
2009). The optimization methods described in this paper and
in McDougall and Jackett(1988) andJackett et al.(2009) all
have as their goal the minimization of (weighted) sums of
squaresε·ε, the differences between the three methods being
in the simplicity of the equations that are actually used.Mc-
Dougall and Jackett(1988) used the set of linear equations
to minimize ε·ε while assuming given values of the verti-
cal gradients of salinity and potential temperature. The solu-
tion technique proceeded iteratively until convergence with
revised values of the vertical gradients of salinity and poten-
tial temperature being made after each iteration if required.
By contrast, the method of the present paper finds values of a
logarithmic density perturbation,8′, such that the resulting
ε·ε is minimized on the original surface in space. We then
use this perturbation logarithmic density to estimate the pres-
sure perturbation, as described by Eq. (16) above. This new
surface is then iterated through the same process again until
convergence is achieved. This description shows that the two
methods are quite similar. We have found the present method
to have good convergence properties and the code has been
extended to include stations where the surface in question
is not simply connected. As will be shown later, the de-
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condition and theω-surface are reasonably small.

4 How ’neutral’ are existing density variables?

To show the differences between different density variables
we use a density surface in the North Atlantic with an aver-
age depth of about 600 dbar. We concentrate on the North
Atlantic instead of the global ocean because it is easier to
see differences on a smaller scale and neutral physics are in-
teresting in the North Atlantic due to the Mediterranean out-
flow producing increased values of neutral helicity. Showing
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Fig. 7: Frequency plot oflog10(D
f ) for theγn-surface (red)

and theω-surface (black) with an average pressure of (a)
1000 dbar, (b)1400 dbar (the surface used throughout the
text) and (c) 1800 dbar. The black vertical line shows a fici-
titious diapycnal diffusivity of10−5m2s−2; values right of
this line are larger than the mean value for the diapycnal dif-
fusivity measured in the ocean.

Fig. 7. Frequency plot of log10(D
f ) for theγ n-surface (red) and

theω-surface (black) with an average pressure of(a) 1000 dbar,(b)
1400 dbar (the surface used throughout the text) and(c) 1800 dbar.
The black vertical line shows a ficititious diapycnal diffusivity of
10−5 m2 s−2; values right of this line are larger than the mean value
for the diapycnal diffusivity measured in the ocean.

velopment of the optimization technique for a single surface
leads to significant improvements in the accuracies achieved
by the two-dimensional surfaces when compared with iso-
surfaces of three-dimensional variables (e.g. the code devel-
oped byJackett and McDougall(1997) to calculateγ n), all
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in terms of their abilities in approximating neutral tangent
planes. The technique described here can be seen as a La-
grangian method, calculating the change of pressure of a sur-
face, whereas in techniques used to label a three-dimensional
data set can be seen as an Eulerian method where density is
calculated at every point in x/y/z-space.

To illustrate the improvements of the optimized approxi-
mately neutral surface, theω-surface, we choose a surface
with an average pressure of about 1400 dbar. Pressure and
conservative temperature on this surface are shown in Fig.4a
and b. The surface chosen here is just an arbitrary example
of a density surface covering the global ocean and the results
are very similar for surfaces that are denser or lighter than
the surface shown. Neutral helicity on the same surface is
shown in Fig.4c. The regions of elevated values of neutral
helicity are mainly concentrated in the Southern Ocean (es-
pecially in the regions of high eddy activity) and in the North
Atlantic (close to where the surface outcrops and close to the
Mediterranean outflow). This is where we would expect high
values of neutral helicity due to strong gradients of pressure
and temperature.

Comparing Fig.5a and b one can see the improvement
achieved by using the algorithm introduced in this paper
compared with theγ n-surface (which was used as initial con-
dition). Shown is the fictitious diapycnal diffusivity,Df ,
plotted as log10Df where the colour scale was chosen to
make the comparison of both surfaces possible. Both the
North Atlantic and the Southern Ocean have regions with
a fictitious diapycnal diffusivity larger than 10−5 m2 s−1 on
theγ n-surface and therefore exceeding the values measured
in most regions in the ocean. These are the regions where
most density variables produce large errors with the other
regions of the global ocean usually being less problematic.
Most other regions have fictitious diapycnal diffusivities of
approximately 10−7 m2 s−1. This has been reduced by a
few orders of magnitude in theω-surface, pushing all the
fictitious diapycnal diffusivities significantly below the val-
ues measured in the ocean with the remaining errors located
close to the outcropping regions. On theω-surface there are
no fictitious diapycnal diffusivities larger than 10−5 m2 s−1

with most regions having values smaller than 10−10m2 s−1

which is insignificant compared to the values measured in
the ocean. The higher slope errors close to the outcropping
regions are caused by high values of∇ap (and∇a2) causing
high values of neutral helicity (compare Figs.4c and5b).

Similar results can be seen in Fig.6 for data calculated
from the WOCE climatology (Gouretski and Koltermann,
2004), comparingDf on aγ n-surface and anω-surface with
an average pressure of about 1400 dbar. As in the model out-
put the new algorithm leads to an improvement (a reduction)
in Df , even though it is not as large as in the example using
model output due to the code used to calculateγ n (Jackett
and McDougall, 1997) being dependent on a reference data
set which is based on a Levitus climatology (Levitus, 1982),
which is closer to the climatology used here than the model
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Fig. 8: γn on theω-surface for model output from a MOM4
model run.
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Fig. 9: T Θ

b ∇ap×∇aΘ · k ≈ gN−2Hn vs.−∇a × ǫ · k for
(a) aγn and (b) anω-surface. The rms error of the difference
between theory and the plotted data decreases by a factor of
6.

only the North Atlantic also gives us the opportunity to use
the density variableγEW of Eden and Willebrand (1999), a
density variable fitted only to the North Atlantic. The results
shown below are very similar for depth ranges different to the
average pressure of the density surfaces of about 600 dbar.

The density surfaces which we compare are the new and
the old neutral density variables (γi (Jackett et al., 2009) and
γn (Jackett and McDougall, 1997) respectively), aγ-variable
approximated with a rational function of salinity and conser-
vative temperature (γrf , (McDougall and Jackett, 2005b)),
a γ-variable approximated with a function fitted to data of
the North Atlantic (γEW , (Eden and Willebrand, 1999)) po-
tential density with reference pressures of 0, 600, 1000 and
2000 dbar (σ0, σ600, σ1000 and σ2000), orthobaric density
(ρν , (de Szoeke et al., 2000)), modified steric anomaly sur-
faces and the optimized approximately neutral density sur-
face, theω-surface, of this paper. Note that the algorithm pro-
ducingω-surfaces improves exisiting density surfaces (i.e.
it works in two dimensions), whereas all other density vari-
ables mentioned above label a three-dimensional hydrogra-
phy with density.

4.1 Different approximations to neutral surfaces

Five different approximations to neutral surfaces have been
discussed to date. All of them exceptγEW are constructed to
minimizes2 or ǫ2 (i.e. minimize the slope difference or den-
sity gradient errors between the approximately neutral den-
sity surface and the neutral tangent plane).

The first γ-variable,γn, is dependent on a pre-labelled
dataset and therefore the quality of a surface calculated with
this technique is highly dependent on the proximity of the
dataset to be labelled to the reference dataset (which is the
Levitus climatology (Levitus, 1982)). Therefore if this code
is used for model output simulating a different ocean (a paleo
ocean or future climate) or if the model drifts from its initial
state, theγn variable may be less neutral than a well chosen
potential density surface. This problem has been adressed
with a new method of constructing approximate neutral sur-
faces,γi, which uses the oldγn variable as an initial condi-
tion and an iterative inversion method to improve the sur-
faces. This new variable is computationally more expen-
sive but significantly improves the accuracy of the surfaces.
The thirdγ-variable,γrf , is a rational function approximat-
ing neutral density surfaces dependent only on S andΘ. In
contrast toγi andγn, γrf is independent of pressure, lat-
itude and longitude. Not being dependent on latitude and
longitude means that it ignores the hemispheric changes in
water-mass characteristics, therefore making it less neutral
than the other neutral density variables (at least when used
for a global density surface). The advantage ofγrf is that
it is faster and easier to compute making it better for use by
the ocean modelling community.γEW is a neutral density
variable constructed for use in the North Atlantic. Compared
to the other approximate surfaces its main aim is not only to

Fig. 8. γ n on theω-surface for model output from a MOM4 model
run.

output. Another difference between the model output and the
climatology is the patchiness of the fictitious diapycnal dif-
fusivity in the climatology. This is due to the averaging of
observational data done to construct climatologies.

The improvement of theγ n-surface can also be seen by
looking at the fictitious diapycnal diffusivity,Df , on a fre-
quency plot (see Fig.7). Fig. 7b shows the surface used in
the previous figure and Fig.7a and c show a lighter and a
denser surface. One can see thatDf decreases by a few
orders of magnitude when using theω-surface compared to
theγ n-surface. The large improvement is possible because
the model output we are using had water masses that devi-
ated significantly from observed ocean properties. When ap-
plied to atlas data the fictitious diapycnal diffusivity in an
ω-surface is perhaps just one to two orders of magnitude less
than in aγ n-surface.

The improvement made by the algorithm can be seen by
plottingγ n on anω-surface (Fig.8). γ n values have a range
from 27.61 to 27.65 on theω-surface which is a substantial
density change.

Another way of seeing the improvement is by plotting
T 2

b ∇ap×∇a2·k≈gN−2H n vs.−∇a×ε·k for theγ n and the
ω-surfaces (see Fig.9a and b forγ n andω, respectively). For
the ω-surface one can see a very good agreement between
gN−2 H n and−∇a×ε·k, as all the points of the surface al-
most end up on the line.

Even though the change between our initial condition and
the ω-surface are quite large in terms of the fictitious di-
apycnal diffusivity, the correlation between gN−2 H n and
−∇a×ε·k or the variations ofγ n on theω-surface or the ac-
tual changes of temperature and pressure between the initial
condition and theω-surface are reasonably small.
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4 How “neutral” are existing density variables?

To show the differences between different density variables
we use a density surface in the North Atlantic with an aver-
age depth of about 600 dbar. We concentrate on the North At-
lantic instead of the global ocean because it is easier to see
differences on a smaller scale and neutral physics are inter-
esting in the North Atlantic due to the Mediterranean out-
flow producing increased values of neutral helicity. Showing
only the North Atlantic also gives us the opportunity to use
the density variableγ EW of Eden and Willebrand(1999), a
density variable fitted only to the North Atlantic. The results
shown below are very similar for depth ranges different to the
average pressure of the density surfaces of about 600 dbar.

The density surfaces which we compare are the new and
the old neutral density variables (γ i (Jackett et al., 2009)
andγ n (Jackett and McDougall, 1997), respectively), aγ -
variable approximated with a rational function of salinity
and conservative temperature (γ rf , McDougall and Jack-
ett, 2005b), a γ -variable approximated with a function fit-
ted to data of the North Atlantic (γ EW , Eden and Wille-
brand, 1999), potential density with reference pressures of
0, 600, 1000 and 2000 dbar (σ0, σ600, σ1000 andσ2000), or-
thobaric density (ρν , de Szoeke et al., 2000), modified steric
anomaly surfaces and the optimized approximately neutral
density surface, theω-surface, of this paper. Note that the
algorithm producingω-surfaces improves exisiting density
surfaces (i.e. it works in two dimensions), whereas all other
density variables mentioned above label a three-dimensional
hydrography with density.

4.1 Different approximations to neutral surfaces

Five different approximations to neutral surfaces have been
discussed to date. All of them exceptγ EW are constructed to
minimizes2 or ε2 (i.e. minimize the slope difference or den-
sity gradient errors between the approximately neutral den-
sity surface and the neutral tangent plane).

The first γ -variable,γ n, is dependent on a pre-labelled
dataset and therefore the quality of a surface calculated with
this technique is highly dependent on the proximity of the
dataset to be labelled to the reference dataset (which is the
Levitus climatology (Levitus, 1982)). Therefore if this code
is used for model output simulating a different ocean (a paleo
ocean or future climate) or if the model drifts from its initial
state, theγ n variable may be less neutral than a well chosen
potential density surface. This problem has been adressed
with a new method of constructing approximate neutral sur-
faces,γ i , which uses the oldγ n variable as an initial condi-
tion and an iterative inversion method to improve the sur-
faces. This new variable is computationally more expen-
sive but significantly improves the accuracy of the surfaces.
The thirdγ -variable,γ rf , is a rational function approximat-
ing neutral density surfaces dependent only on S and2. In
contrast toγ i andγ n, γ rf is independent of pressure, lat-
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Fig. 8: γn on theω-surface for model output from a MOM4
model run.
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Fig. 9: T Θ

b ∇ap×∇aΘ · k ≈ gN−2Hn vs.−∇a × ǫ · k for
(a) aγn and (b) anω-surface. The rms error of the difference
between theory and the plotted data decreases by a factor of
6.

only the North Atlantic also gives us the opportunity to use
the density variableγEW of Eden and Willebrand (1999), a
density variable fitted only to the North Atlantic. The results
shown below are very similar for depth ranges different to the
average pressure of the density surfaces of about 600 dbar.

The density surfaces which we compare are the new and
the old neutral density variables (γi (Jackett et al., 2009) and
γn (Jackett and McDougall, 1997) respectively), aγ-variable
approximated with a rational function of salinity and conser-
vative temperature (γrf , (McDougall and Jackett, 2005b)),
a γ-variable approximated with a function fitted to data of
the North Atlantic (γEW , (Eden and Willebrand, 1999)) po-
tential density with reference pressures of 0, 600, 1000 and
2000 dbar (σ0, σ600, σ1000 and σ2000), orthobaric density
(ρν , (de Szoeke et al., 2000)), modified steric anomaly sur-
faces and the optimized approximately neutral density sur-
face, theω-surface, of this paper. Note that the algorithm pro-
ducingω-surfaces improves exisiting density surfaces (i.e.
it works in two dimensions), whereas all other density vari-
ables mentioned above label a three-dimensional hydrogra-
phy with density.

4.1 Different approximations to neutral surfaces

Five different approximations to neutral surfaces have been
discussed to date. All of them exceptγEW are constructed to
minimizes2 or ǫ2 (i.e. minimize the slope difference or den-
sity gradient errors between the approximately neutral den-
sity surface and the neutral tangent plane).

The first γ-variable,γn, is dependent on a pre-labelled
dataset and therefore the quality of a surface calculated with
this technique is highly dependent on the proximity of the
dataset to be labelled to the reference dataset (which is the
Levitus climatology (Levitus, 1982)). Therefore if this code
is used for model output simulating a different ocean (a paleo
ocean or future climate) or if the model drifts from its initial
state, theγn variable may be less neutral than a well chosen
potential density surface. This problem has been adressed
with a new method of constructing approximate neutral sur-
faces,γi, which uses the oldγn variable as an initial condi-
tion and an iterative inversion method to improve the sur-
faces. This new variable is computationally more expen-
sive but significantly improves the accuracy of the surfaces.
The thirdγ-variable,γrf , is a rational function approximat-
ing neutral density surfaces dependent only on S andΘ. In
contrast toγi andγn, γrf is independent of pressure, lat-
itude and longitude. Not being dependent on latitude and
longitude means that it ignores the hemispheric changes in
water-mass characteristics, therefore making it less neutral
than the other neutral density variables (at least when used
for a global density surface). The advantage ofγrf is that
it is faster and easier to compute making it better for use by
the ocean modelling community.γEW is a neutral density
variable constructed for use in the North Atlantic. Compared
to the other approximate surfaces its main aim is not only to

Fig. 9. T 2
b

∇ap×∇a2·k≈gN−2Hn vs.−∇a×ε·k for (a) aγ n and
(b) an ω-surface. The rms error of the difference between theory
and the plotted data decreases by a factor of 6.

itude and longitude. Not being dependent on latitude and
longitude means that it ignores the hemispheric changes in
water-mass characteristics, therefore making it less neutral
than the other neutral density variables (at least when used
for a global density surface). The advantage ofγ rf is that
it is faster and easier to compute making it better for use by
the ocean modelling community.γ EW is a neutral density
variable constructed for use in the North Atlantic. Compared
to the other approximate surfaces its main aim is not only
to have the approximately neutral surface as neutral as pos-
sible but also to approximately satisfy the points mentioned
in Sect. 3, i.e. trying to make the horizontal gradient of the
neutral density agree with the gradient of the in situ density
and trying to make the vertical gradient of the neutral den-
sity proportional to the static stablility of the water column.
Compared to the otherγ variables,ω (as described in this
paper) only improves a single surface rather than producing
a continuum of surfaces in a three-dimensional dataset.

The γ i-surface (Fig.10a) , which is the most accurate
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Fig. 10. log10(D
f ) for (a) γ i , (b) γ n, (c) γ rf , (d) γ EW and(e) ω. The surface chosen for these plots has an average pressure of approx.

600 dbar. The same colour scale is used in each plot.

method to date of achieving the neutral property in three-
dimensional hydrography, shows the smallest values ofDf

compared to all the other density variables in this analysis
(apart from individualω-surfaces constructed by the algo-
rithm described in this paper). The main regions of increased
fictitious diapycnal diffusivity are the Mediterranean outflow,
the outcropping regions in the north and the Gulf stream re-
gion. We would expect increased values of slope error on a
good approximate neutral surface in regions where we have
increased values of neutral helicity, which is proportional to
∇ap×∇a2. Such large values of neutral helicity are likely
to occur in regions of either a strong pressure gradient on
the surface, a strong temperature gradient or both. To have
zero neutral helicity on a surface the pressure gradient and
the temperature gradient have to be exactly aligned, or one

of the two needs to be zero. The highest values ofDf oc-
cur near Spain where there are strong pressure gradients and
temperature gradients that do not align. Further off the coast
of Spain there is a strong temperature gradient but the pres-
sure gradient is quite small (the density surface is relatively
flat) and thereforeDf reduces drastically. The other two re-
gions of highDf are mainly due to a very strong pressure
gradient, near the outcropping of the density surface.

Looking at theγ n-surface (Fig.10b) we can see a very
similar pattern to theγ i-surface and slightly increased val-
ues of fictitious diapycnal diffusivity. These increased values
are due to the offset of the model output from the reference
data set used by theγ n-code as explained byMcDougall and
Jackett(2005b). This is the major problem of this density
variable which has been adressed with the newγ i-variable

Ocean Sci., 5, 155–172, 2009 www.ocean-sci.net/5/155/2009/



A. Klocker et al.: Optimized approximately neutral surfaces 165

Fig. 11. log10(D
f ) for (a) σ0, (b) σ600, (c) σ1000 and (d) σ2000. The surface chosen for these plots has an average pressure of approx.

600 dbar. The colours chosen for these plots are the same as for those of Fig.10.

(Jackett et al., 2009). The main improvements ofγ i com-
pared withγ n are in the Southern Ocean (not shown here)
and the North Atlantic.

γ rf (Fig. 10c) gives a very small fictitious diapycnal dif-
fusivity over most of the North Atlantic with the larger errors
located at a concentrated region where the surface outcrops.
This is likely due to a change in the outcropping region from
the hydrography which has been used to construct this vari-
able.

γ EW (Fig. 10d) is theγ -variable with the largest ficti-
tious diapycnal diffusivity. The order of magnitude of this
diffusivity is comparable with that of a potential density sur-
face with a reference pressure which is not well chosen. The
reason for this is that instead of trying to minimize onlys2

as with the otherγ -variables, the aim of this function was
to also minimize the other two mutually inconsistent points
mentioned in Sect. 3.

ω (Fig. 10e) shows the smallest fictitious diapycnal dif-
fusivity, with the highest values close to Spain. This two-
dimensional approach decreases this diffusivity by about two
orders of magnitude, pushingDf far below the values mea-
sured in the ocean. The errors close to Spain are likely due
to the crossland mixing scheme used in MOM4 to distribute
the Mediterranean outflow into the North Atlantic.

4.2 Potential density

Potential density is a widely used density variable. At its
reference pressure a potential density surface coincides with
the neutral tangent plane but as soon as a potential density
surface departs from its reference pressure, the slope of this
surface increasingly differs from the slope of the neutral tan-
gent plane. This can be seen by looking at the normal to the
potential density surface,

β2(pr)∇S − α2(pr)∇2, (17)

and the normal to a neutral tangent plane,

β2(p)∇S − α2(p)∇2, (18)

realising that these two expressions are equal only at the
reference pressurepr .

It can also be shown that the variations of potential density
(referenced topr ) along a neutral tangent plane are given
by (Jackett and McDougall, 1997; McDougall and Jackett,
2005b)

1

σ2

∇nσ2 = β2(pr)[
α2

β2
(p) −

α2

β2
(pr)]∇n2

≈ T 2
b [p − pr ]∇n2.

(19)
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The fictitious diapycnal diffusivity on potential density
surfaces referenced to 0, 600, 1000 and 2000 dbar are shown
in Fig. 11. These potential density surfaces show a large fic-
titious diapycnal diffusivity in the east where the warm wa-
ter of the Mediterranean enters and at the northern outcrop
where cold surface waters are reached.

The fictitious diapycnal diffusivity in these figures is also
due to the offset of the pressure on these surfaces from the
reference pressure (Eq.19). Theσ600-surface is the closest
we can get to the approximate neutral surface due to the ref-
erence pressure being optimally chosen, with larger errors in
the other potential density surfaces (proportional to the dis-
tance of the reference pressure to the average pressure of that
surface).

4.3 Modified steric anomaly surfaces

A similar variable to potential density that has not been used
much recently is steric anomaly (also called specific volume
anomaly). Here we define a modified steric anomaly variable
as

δ(S, 2, p) =
1

ρ(S, 2, p)
−

1

ρ(Sr , 2r , p)
, (20)

whereSr and2r are fixed values of salinity and conserva-
tive temperature. This differs from the normal definition of
steric anomaly by simply replacing 35 psu with some other
fixed salinity and replacing in situ temperature of 0°C with
a different reference temperature. It is important to note that
once the reference parcel is decided on, the second part of
the equation is a function only of pressure.

It can be shown that the variation of modified steric
anomaly along a neutral tangent plane is given by

ρ∇nδ = −[κ −
ρ

ρr

κr ]∇np ≈ T 2
b [2 − 2r ]∇np, (21)

whereκ is the adiabatic and isohaline compressibility of
seawater andρr andκr are the density and compressibility at
(Sr , 2r , p) (whereSr and2r have been optimally chosen to
minimize the spatial variation ofδ).

The fictitious diapycnal diffusivity on the modified steric
anomaly surface (Fig.12a) shows the largest values close to
large pressure gradients on the surface, which is a logical
consquence of Eq. (21). The largest error is west of Spain
close to where the crossland mixing scheme of MOM4 dis-
tributes the Mediterranean outflow into the North Atlantic.
This region of large error can be seen in the fictitious di-
apycnal diffusivity of most surfaces but it is largest in the
modified steric anomaly surface. The other region of large
Df is along the highest∇ap – the region where the sur-
face outcrops in the northern North Atlantic. One big ad-
vantage of using steric anomaly surfaces is the existence
of a geostrophic streamfunction, the Montgomery potential
(Montgomery, 1937).

4.4 Orthobaric density

Orthobaric density (de Szoeke et al., 2000), ρν , has recently
been introduced as a density variable that is a function of
pressure and in situ density that has the property that as long
as water mass variations occur in a monotonic way with pres-
sure along the neutral directions, it can be made quite neutral
for a single ocean basin (McDougall and Jackett, 2005a). If
used for the global ocean it is not possible to tune this vari-
able so that it is a good approximation to neutrality. This
is due to the inability of the variable to accurately accom-
modate differences between water masses at fixed values of
pressure and in situ density such as occur between the North-
ern and Southern Hemisphere portions of the World Ocean
(McDougall and Jackett, 2005a).

The fictitious diapycnal diffusivity forρν is shown in
Fig. 12c. Most of the large values forDf are concentrated at
regions of highest∇ρν p. This can be seen by looking at the
change of orthobaric density along a neutral tangent plane
(Eq. 14 ofMcDougall and Jackett, 2005a):

∇nρν = −8−1ρT 2
b [2 − 20(p, ρ)]∇np, (22)

where20 is a reference conservative temperature and8 is
an integrating factor, both a function of pressure and in situ
density .ρν shows some of the largest errors inDf of all the
surfaces analysed.

4.5 Further comparisons

Above we have seen two-dimensional maps of the fictitious
diapycnal diffusivities on the previously described approxi-
mate density surfaces in the North Atlantic, giving us a view
as to how good these surfaces are in representing isopycnal
flow in the ocean. To further facilitate this intercomparison
we now look at frequency distributions ofDf . These dis-
tributions forγ n, σ0 andω, plotted on a log10-scale, can be
seen in Fig.13 . Fig. 14 shows the 95th-percentiles of the
fictitious diapycnal diffusivities for all density surfaces pre-
viously considered. That is, the vertical axis shows the value
of the fictitious diapycnal diffusivity of density that is ex-
ceeded by 5% of the data.

It is clear from Fig.13 that there is a substantial decrease
of fictitious diapycnal diffusivity going fromσ0 to γ n to ω.
The surfaces on which these frequency distributions are cal-
culated are the same as the density surfaces shown previ-
ously, all with an average pressure of 600 dbar. It is known
that σ0 is not the potential density surface with an ideally
chosen reference pressure; by choosing a better reference
pressure the fictitious diapycnal diffusivity would decrease,
but still be larger than for the other surfaces shown. Theγ n-
surface is dependent on a reference dataset which limits its
neutrality since the model output drifted from the reference
data set.
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Fig. 12. log10(D
f ) for (a) δ and(b) ρν . The colours chosen for these plots are the same as for those of Fig.10and Fig.11.
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Fig. 12: log10(D
f ) for (a) δ and (b)ρν . The colours chosen

for these plots are the same as for those of Fig.10 and Fig.11.

4.4 Orthobaric density

Orthobaric density (de Szoeke et al., 2000),ρν , has recently
been introduced as a density variable that is a function of
pressure and in-situ density that has the property that as long
as water mass variations occur in a monotonic way with pres-
sure along the neutral directions, it can be made quite neutral
for a single ocean basin (McDougall and Jackett, 2005a). If
used for the global ocean it is not possible to tune this vari-
able so that it is a good approximation to neutrality. This
is due to the inability of the variable to accurately accom-
modate differences between water masses at fixed values of
pressure and in-situ density such as occur between the North-
ern and Southern Hemisphere portions of the World Ocean
(McDougall and Jackett, 2005a).

The fictitious diapycnal diffusivity forρν is shown in
Fig.12(c). Most of the large values forDf are concentrated
at regions of highest∇ρν

p. This can be seen by looking at

the change of orthobaric density along a neutral tangent plane
(Eqn.(14) of McDougall and Jackett (2005a)):

∇nρν = −Φ−1ρT Θ

b [Θ − Θ0(p, ρ)]∇np, (22)

whereΘ0 is a reference conservative temperature andΦ is
an integrating factor, both a function of pressure and in-situ
density .ρν shows some of the largest errors inDf of all the
surfaces analysed.

4.5 Further comparisons

Above we have seen two-dimensional maps of the fictitious
diapycnal diffusivities on the previously described approxi-
mate density surfaces in the North Atlantic, giving us a view
as to how good these surfaces are in representing isopycnal
flow in the ocean. To further facilitate this intercomparison
we now look at frequency distributions ofDf . These dis-
tributions forγn, σ0 andω, plotted on alog10-scale, can be
seen in Fig.13 . Fig.14 shows the95th-percentiles of the fic-
titious diapycnal diffusivities for all density surfaces previ-
ously considered. That is, the vertical axis shows the valueof
the fictitious diapycnal diffusivity of density that is exceeded
by 5% of the data.
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f ) of γn (green),σ0 (red) andω (black).

The black vertical line shows a ficititious diapycnal diffusiv-
ity of 10−5m2s−2; values right of this line are larger than
the mean value for the diapycnal diffusivity measured in the
ocean. These values for the fictitious diapycnal diffusivity
are for one actual surface (with an average pressure of 600
dbar).

It is clear from Fig.13 that there is a substantial decrease of
fictitious diapycnal diffusivity going fromσ0 to γn to ω. The
surfaces on which these frequency distributions are calcu-
lated are the same as the density surfaces shown previously,
all with an average pressure of 600 dbar. It is known that
σ0 is not the potential density surface with an ideally chosen
reference pressure; by choosing a better reference pressure
the fictitious diapycnal diffusivity would decrease, but still

Fig. 13. log10(D
f ) of γ n (green), σ0 (red) and ω (black).

The black vertical line shows a ficititious diapycnal diffusivity of
10−5 m2 s−2; values right of this line are larger than the mean
value for the diapycnal diffusivity measured in the ocean. These
values for the fictitious diapycnal diffusivity are for one actual sur-
face (with an average pressure of 600 dbar).

In Fig. 14 one can see that for the North Atlantic the
σ2000 andρν-surfaces have fictitious diapycnal diffusivities
exceeding 10−5 m2 s−1 over more than 5% of their area. The
decrease in fictitious diapycnal diffusivities fromρν-surfaces
to potential density surfaces to approximate neutral density
surfaces shows the considerable improvement that can be
achieved by using more accurate density variables for inverse
models or other applications of density surfaces describing
isopycnal flow.

5 Conclusions

We have developed a new method for finding an individual
approximately neutral surface through a three-dimensional
hydrographic data set (either observational data or model
output). The degree of non-neutrality along such anω-
surface has been minimized and the fictitious diapycnal dif-
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fusivity in the North Atlantic is shown for all the density sur-
faces considered. One can see that for the North Atlantic
theσ2000 andρν-surfaces have fictitious diapycnal diffusivi-
ties exceeding10−5m2s−1 over more than5% of their area.
These values for the fictitious diapycnal diffusivity are for
one actual surface (with an average pressure of 600 dbar).

be larger than for the other surfaces shown. Theγn-surface
is dependent on a reference dataset which limits its neutrality
since the model output drifted from the reference data set.

In Fig.14 one can see that for the North Atlantic theσ2000

and ρν -surfaces have fictitious diapycnal diffusivities ex-
ceeding10−5m2s−1 over more than5% of their area. The
decrease in fictitious diapycnal diffusivities fromρν-surfaces
to potential density surfaces to approximate neutral density
surfaces shows the considerable improvement that can be
achieved by using more accurate density variables for inverse
models or other applications of density surfaces describing
isopycnal flow.

5 Conclusions

We have developed a new method for finding an individual
approximately neutral surface through a three-dimensional
hydrographic data set (either observational data or model
output). The degree of non-neutrality along such anω-
surface has been minimized and the fictitious diapycnal dif-
fusivity associated with theseω-surfaces is the least that has
been found to date using other surfaces.

These surfaces are ideal to use as water mass density
boundaries in inverse models. The improved neutrality of
these surfaces might not be significant for large box inverse
models of non-synoptic hydrographic sections but will def-
initely improve inverse models using synoptic sections for
process studies that particularly target the determination of
mixing.

The small deviation of theseω-surfaces from exact neu-
trality is shown to be limited by the neutral helicity that is
inherent in the hydrographic data.

The algorithm for forming theseω-surfcaes is described
and the extent of the non-neutrality of many other density
surfaces is compared with theseω-surfaces. MATLAB soft-
ware to form these surfaces is available at http://www.csiro.
au/TEOS-10.

Fig. 14. The 95th-percentiles of the fictitious diapycnal diffu-
sivity in the North Atlantic is shown for all the density surfaces
considered. One can see that for the North Atlantic theσ2000
and ρν -surfaces have fictitious diapycnal diffusivities exceeding
10−5 m2 s−1 over more than 5% of their area. These values for
the fictitious diapycnal diffusivity are for one actual surface (with
an average pressure of 600 dbar).

fusivity associated with theseω-surfaces is the least that has
been found to date using other surfaces.

These surfaces are ideal to use as water mass density
boundaries in inverse models. The improved neutrality of
these surfaces might not be significant for large box inverse
models of non-synoptic hydrographic sections but will def-
initely improve inverse models using synoptic sections for
process studies that particularly target the determination of
mixing.

The small deviation of theseω-surfaces from exact neu-
trality is shown to be limited by the neutral helicity that is
inherent in the hydrographic data.

The algorithm for forming theseω-surfcaes is described
and the extent of the non-neutrality of many other den-
sity surfaces is compared with theseω-surfaces. MAT-
LAB software to form these surfaces is available at
http://www.TEOS-10.org.
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Appendix A

Path-dependency caused by the nonlinear equation of state

This is to show that path-dependency is caused by the ratio
α2

β2 being a function of pressure. We start with writing the
change of potential density,σ , along a neutral tangent plane
as:

∇nσ

ρ
= ˜β2∇nS − α̃2∇n2

= ˜β2(
α2

β2
−

α̃2

˜β2
)∇n2

= ˜β2[
α2

β2
(S, 2, p) −

α2

β2
(S, 2, pr)]∇n2,

(A1)

where α̃2 and ˜β2 are the thermal expansion coefficient
and the saline contraction coefficient at a reference pressure,
pr , and∇n is the gradient along a neutral tangent plane.

So if α2

β2 is a function ofS and2, but not of pressure, then

(α2

β2 −
˜α2

˜β2
)=0 and ∇nσ

ρ
=0; therefore the path-dependency

would be zero. That is, path-dependency is due to the ra-
tio of α2

β2 being a function of pressure, consistent with the

definition of the thermobaric parameter,T 2
b =β2(α2

β2 )p.

Appendix B

Fictitious diapycnal diffusivity

Veronis(1975) has shown that mixing along a horizontal di-
rection instead of mixing along an isopycnal produces a ficti-
tious diapycnal flux of density. This fictitious diapycnal dif-
fusivity is given by

Df
= K · s2, (B1)

whereK is a lateral diffusivity ands is the slope error
(Eq.5) between a surface of constant pressure and the neutral
tangent plane (see Fig.B1a).

The resultB1 can be understood by taking the horizontal
flux of density,

horizontal flux of density= −K∇zρ
l, (B2)

which is the lateral diffusivity multiplied by the change of
locally referenced potential density on a geopotential. If we
then multiply this horizontal flux of density with the slope
difference between the geopotential and the neutral tangent
plane we get:

flux through ntp= −Ks · ∇zρ
l, (B3)
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Fig. B1: (a) The slope differences between a geopotential and an isopycnal surface and (b) the slope difference,s, between
an arbitrary surface and a neutral tangent plane (ntp).

So the left-hand side of Eqn.(C3) is

∇× ǫ · ma = ∇a × ǫ · ma + ma ∂

∂z
|x,y × ǫ · ma

= ∇a × ǫ · k + ma × ǫz · ma

= ∇a × ǫ · k.

(C5)

The first part of the right-hand side simplifies to∇a×ǫ ·k
because∇a × ǫ is an exactly vertical vector. Therefore our
result C1 is proven.

Appendix D

Equation 11 in detail

Here we derive a close connection between neutral helicity
and∇a × ǫ.

Using the definition ofǫ (Eqn.(10)) we get

∇a × ǫ = βΘ

Θ∇aΘ ×∇aS − αΘ

s ∇aS ×∇aΘ

+βΘ

p ∇ap ×∇aS − αΘ

p ∇ap ×∇aΘ
(D1)

The first two terms on the right-hand side add up to zero
becauseαΘ

S = −βΘ

Θ
and therefore∇a × ǫ becomes (using

T Θ

b = αΘ
p − αΘ

βΘ βΘ
p )

∇a × ǫ = − T Θ

b ∇ap ×∇aΘ + βp∇ap ×∇aS

−
αΘ

βΘ
βΘ

p ∇ap ×∇aΘ.
(D2)

If we now use∇aS = αΘ

βΘ ∇aΘ + 1

βΘ ǫ from Eqn.(10) we
get

∇a × ǫ = −Tb∇ap ×∇aΘ +
βΘ

p

βΘ
∇ap × ǫ. (D3)

The second term is small and will therefore be ignored

from here on. (
βΘ

p

βΘ is only about 10% of
αΘ

p

αΘ and|ǫ| is much

less than|αΘ∇aΘ|).

For a good approximately neutral surface we expect
∇ap ≈ ∇np and∇aΘ ≈ ∇nΘ so thatT Θ

b ∇ap × ∇aΘ ·
k ≈ T Θ

b ∇np × ∇nΘ · k = gN−2Hn (from Eqn.(9)) so
that Eqn.(D3) establishes the desired approximate relation
−∇a × ǫ ≈ gN−2Hn.

Now we continue our derivation of Eqn.(11) to result in
T Θ

b

∮
A

pdΘ:

∫∫

A

T Θ

b ∇ap ×∇aΘ · k dxdy

≈ T Θ

b

∫∫

A

∇a × (p∇aΘ) · k dxdy

= T Θ

b

∮
p∇aΘ · dl

= T Θ

b

∮

A

pdΘ

(D4)

From the first to the second line we use Stokes’ theorem.
The only approximation in Eqn.(D4) is the assumption that
T Θ

b is constant so it can be taken outside the integral.

Appendix E

Theoretical thoughts about the algorithm and numerical
testcases

Here we explore the theoretical ideas on the relationship be-
tween neutral helicity and the density gradient errorsǫ which
led to the development of the algorithm used to optimize ap-
proximately neutral surfaces.

We know that the path-dependent uncertainty does not oc-
cur on a single ocean section because we can link up all the
neutral tangent planes on a section without any slope errors.
Therefore we take a N-S section of the ocean and repeat it
to the east and west so that there are no zonal gradients.
This gives us an initial three-dimensional data set from which
’perfect’ neutral surfaces with neutral helicity being zero ev-
erywhere can be found. Having found a neutral surface from
this artificial data set we can perturb a single point on this
surface in a way that the perturbed bottle talks neutrally to
the original water parcel, but neutral helicity is introduced.

Fig. B1. (a) The slope differences between a geopotential and
an isopycnal surface and(b) the slope difference,s, between an
arbitrary surface and a neutral tangent plane (ntp).

where ntp is the neutral tangent plane.
If we then divide byρl

z and use the following relation for
the slope differences,

s = −
∇pρl

ρl
z

, (B4)

we arrive at Eq. (B1). The above derivation is for the ficti-
tious diapycnal diffusivity caused by mixing along a geopo-
tential instead of an isopycnal surface.

This approach can be used in a similar way to describe
the fictitious diapycnal diffusivity which occurs when using
a surface which has a different slope to the neutral tangent
plane (see Fig.B1b). In this case we have to substitute∇zρ

l

with ∇sρ
l , where∇s is the gradient along the density surface

used. This then gives us the fictitious diapycnal diffusivity
which arises when mixing laterally along a density surface
which has a different slope to the neutral tangent plane.

It is important to note that this fictitious diapycnal diffusiv-
ity is a density diffusivity and does not apply to2 or S – just
to ρl . This is because for example∇z2 could be zero. The
fictitious diapycnal diffusion ofS and2 can even be nega-
tive. These unequal diffusivities ofS and2 are reminiscent
of double-diffusive convection. Formulae for the fictitious
diapycnal diffusivity of2 andS can be derived by a similar
process to the above.

Appendix C

A proof of Stokes‘ theorem for two-dimensional curls

Here we prove the validity of Stokes’ theorem for two-
dimensional curls, specifically

∮
A

ε · dl =

∫∫
A

∇a × ε · kdxdy. (C1)

Heredl is a two-dimensional line element in the surface
A. Stokes’ theorem for a full three-dimensional curl tells us
that for any vectorε

∮
A

ε · dr =

∫∫
A

∇ × ε · dA, (C2)
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where the line integral is in a surface A and the area ele-
ment is normal to A,dA=madxdy. So if we can show

∇ × ε · ma
= ∇a × ε · k (C3)

the result will be proven (note thatma
=k−∇az andε is

two dimensional so thatε·dl=ε·dr).
From McDougall and Jackett(1988) Eqs. (4) and (5) we

have

∇ = ∇a + ma ∂

∂z
|x,y (C4)

So the left-hand side of Eq. (C3) is

∇ × ε · ma
= ∇a × ε · ma

+ ma ∂

∂z
|x,y × ε · ma

= ∇a × ε · k + ma
× εz · ma

= ∇a × ε · k.

(C5)

The first part of the right-hand side simplifies to∇a×ε·k

because∇a×ε is an exactly vertical vector. Therefore our
resultC1 is proven.

Appendix D

Equation 11 in detail

Here we derive a close connection between neutral helicity
and∇a×ε.

Using the definition ofε (Eq.10) we get

∇a × ε = β2
2∇a2×∇aS−α2

s ∇aS×∇a2

+β2
p ∇ap×∇aS−α2

p ∇ap×∇a2
(D1)

The first two terms on the right-hand side add up to
zero becauseα2

S =−β2
2 and therefore∇a×ε becomes (using

T 2
b =α2

p −
α2

β2 β2
p )

∇a × ε = − T 2
b ∇ap × ∇a2 + β2

p ∇ap × ∇aS

−
α2

β2
β2

p ∇ap × ∇a2.
(D2)

If we now use∇aS=
α2

β2 ∇a2+
1

β2 ε from Eq. (10) we get

∇a × ε = −Tb∇ap × ∇a2 +
β2

p

β2
∇ap × ε. (D3)

The second term is small and will therefore be ignored

from here on. (
β2

p

β2 is only about 10% of
α2

p

α2 and|ε| is much

less than|α2
∇a2|).

For a good approximately neutral surface
we expect ∇ap≈∇np and ∇a2≈∇n2 so that
T 2

b ∇ap×∇a2·k≈T 2
b ∇np×∇n2·k=gN−2 H n (from

Eq. 9) so that Eq. (D3) establishes the desired approximate
relation−∇a×ε≈gN−2 H n.

Now we continue our derivation of Eq. (11) to result in
T 2

b

∮
A

pd2:

∫∫
A

T 2
b ∇ap × ∇a2 · k dxdy

≈ T 2
b

∫∫
A

∇a × (p∇a2) · k dxdy

= T 2
b

∮
p∇a2 · dl

= T 2
b

∮
A

pd2

(D4)

From the first to the second line we use Stokes’ theorem.
The only approximation in Eq. (D4) is the assumption that
T 2

b is constant so it can be taken outside the integral.

Appendix E

Theoretical thoughts about the algorithm and numerical
testcases

Here we explore the theoretical ideas on the relationship be-
tween neutral helicity and the density gradient errorsε which
led to the development of the algorithm used to optimize ap-
proximately neutral surfaces.

We know that the path-dependent uncertainty does not oc-
cur on a single ocean section because we can link up all the
neutral tangent planes on a section without any slope errors.
Therefore we take a N-S section of the ocean and repeat it
to the east and west so that there are no zonal gradients.
This gives us an initial three-dimensional data set from which
“perfect” neutral surfaces with neutral helicity being zero ev-
erywhere can be found. Having found a neutral surface from
this artificial data set we can perturb a single point on this
surface in a way that the perturbed bottle talks neutrally to
the original water parcel, but neutral helicity is introduced.

An even simpler way to think of this numerical test case
is to imagine a region of the ocean where the pressure and
conservative temperature gradients on a particular approxi-
mately neutral surface are aligned so that∇ap and∇a2 are
parallel everywhere. Now we consider a circular pertuba-
tion of 2 in the presence of the backgound pressure gradient
as shown in Fig. E1a. This pertubation-2-field produces a
dipole of neutral helicity as shown in Fig. E1b. An isolated
anomaly of2 or S, as shown in Fig.D, could for example
occur as a result of diapycnal mixing.
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(a) (b)

Fig. E1: (a) A circular pertubation ofΘ is shown in the presence of a background pressure gradient (the pressure gradient is
not shown; it increases linearly along the y-axis). (b) The resulting dipole of neutral helicity.
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Fig. E2: (a) Nine grid points of an initially helicity-free ocean are shown in which we perturb a single point (see text fora
description) and (b) the same points in ap − Θ-diagram.
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increases linearly along the y-axis).(b) The resulting dipole of neutral helicity.
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Fig. E1: (a) A circular pertubation ofΘ is shown in the presence of a background pressure gradient (the pressure gradient is
not shown; it increases linearly along the y-axis). (b) The resulting dipole of neutral helicity.
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description) and (b) the same points in ap − Θ-diagram.
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Fig. E2. (a)Nine grid points of an initially helicity-free ocean are
shown in which we perturb a single point (see text for a description)
and(b) the same points in ap − 2-diagram.

In our test problem we have constructed a localized helic-
ity dipole from a single anomalous point using a N-S section
repeated to the east and west as described earlier. Fig. E2a
shows nine grid points out of this helicity-free field. Now we
make bottle a in Fig. E2 warmer and saltier. It still continues
to talk neutrally to bottles d and h that are at the same pres-
sure as bottle a and have the same salinity and temperature
as the undisturbed bottle a. The same bottles are shown in a
p −2 diagram in Fig. E2b. All the data here are on the same
approximately neutral surface. FromMcDougall and Jack-
ett (1988), Eq. (38), we know that the pitch of a neutral he-
lix δz is approximately equal to−δzN2 g−1

≈T 2
b

∫∫
A

p d2

(this follows from Eq.11 above). If we go around the two
left-hand boxes of Fig. E2a in an anti-clockwise direction,
as shown by the arrows (correspondingly going around the
loops in thep − 2 diagram in Fig. E2b also in an anti-
clockwise direction), we can see that the neutral helicity in
both loops is of the same sign due to the triangular areas in
Fig. E2b being the same. This is also true for the two right-
hand boxes of Fig. E2a, just with opposite sign.

In this case all the links are exactly neutral except for the

links from a to b (as well as b to a) and from f to a (as
well as a to f). On these links the neutral tangent planes
do not coincide with the approximate neutral surface. The
amount of this non-neutrality can be quantified by looking at
the p−2-diagram in Fig. E2b, with the area in thep−2-
diagram being proportional to

∮
ε·dl, since (from Eq.11)

−
∮
A

ε·dl≈T 2
b

∮
A
p d2.

Notice that the area of the two triangles in Fig. E2b a-c-
d and a-d-e are equal, hence

∫
A

ε·dl is the same on the link
f-a as along a-b. Fig. E2 has illustrated how a water-mass
contrast at one point can create a localized pair of non-zero
ε vectors. We now illustrate how the technique of adding a
8′(x, y) field can redistribute thisε error in space to mini-
mize|ε|2.

To do this we use the same algorithm as described in
Sect. 3 but with an idealized field of density gradient errors,
ε, as initial condition instead of anε-field calculated from a
density surface in a three-dimensional hydrography. The test
case is made up of a 53×53 point grid. From every point we
write an equation in the east-west direction and one in the
north-south direction.

For our first test case we build a block (a square region
of our grid, as seen in Fig. E3a and b) of north-south den-
sity gradient errors of strength 12 in arbitrary dimensionless
units. These values ofε init imply that

β2(Seast
− Swest) − α2(2east

− 2west) = 0

β2(Snorth
− Ssouth) − α2(2north

− 2south) = 12 (E1)

for the grid points within the white block and

β2(Seast
− Swest) − α2(2east

− 2west) = 0

β2(Snorth
− Ssouth) − α2(2north

− 2south) = 0 (E2)

for all others.
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(a) (left) A block of density gradient errors with every error in the square block initially pointing
from the south to the north having strength 12 in dimensionless units (the block is marked by a
white surrounding), color is theΦ′-field, the arrows show the finalǫ vectors; (right)∇a × ǫnew

of the resultingǫ-field.

(b) (left) A block of density gradient errors with every error on the left side (the left block
surrounded by a white line) having arbitrary strength 12 in dimensionless units and every error
on the right side (the right block surrounded by a white line)-12, color is theΦ′-field, the arrows
show the finalǫ vectors; (right)∇a × ǫnew of the same field.

Fig. E3: Solutions for the simplified density gradient errors as described in the text.
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Science, 276, 93–96, 1997.

Veronis, G.: The role of models in tracer studies, in: Numerical
Models of Ocean Circultation, pp. 133–146, National Academy
of Science, 1975.

Fig. E3. Solutions for the simplified density gradient errors as described in the text.

If we now minimizeε2, we come to the solution seen in
Fig. E3a (right), colour being the perturbed8-field, 8′, and
the vectors showingεnew, the new field of density gradient
errors with minimizedε2. Fig. E3a (left) shows∇a×ε. We
find the curl at the right side of our block of density gradient
errors has opposite sign to the curl at the left side. Accord-
ing to Eq. (11) we know that∇a×εnew is also approximately
proportional to neutral helicity. This then resembles the neu-
tral helicity dipole as seen in Fig. E1b, with both poles of this
dipole moved apart more and with density gradient errors go-
ing around the neutral helicity poles.

To further look at the way the least-square inversion
changes the density gradient errors we construct another test
case. Fig. E3b shows a block of density gradient errors in
which the left half of the box has initial density gradient er-
rors of strength 12 and the right half has the same strength
but opposite sign. As in the previous example we can see that
∇a×εnew has high values along the right and left side of our
blocks of imposed density errors, which corresponds to neu-
tral helicity in the real ocean. The main change to the previ-
ous example is the border between the block of density errors
with strength 12 and the block of density errors of strength
−12, which gives us a∇a×εnew twice the strength of the
other borders. The final density gradient vectorsε mainly
circulate inside this region between the maximum/minimum

values of∇a×εnew. Theεnew vectors are spread beyond the
initial white box and rotate around the strips of positive and
negative helicity.
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