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Abstract. We introduce a simple algorithm to improve exist-  Scalar properties in the ocean get stirred (and subsequently
ing density surfaces to ensure that the resulting surfaces amaixed) efficiently by mesoscale eddies and two-dimensional
as close to neutral as possible. This means the slopes at atyrbulence along neutral tangent plankkDougall 1987).

point on the surfaces are close to neutral tangent planes — thEhese are defined such that when water parcels are moved
directions along which layered stirring and mixing occurs —small distances along these planes, they experience no buoy-
minimizing the fictitious diapycnal diffusivity. Inverse tech- ant restoring forces. It is impossible to link these neutral
nigues and layered models have been used for decades to utangent planes to form a surface, therefore “neutral surfaces”
derstand ocean circulation. The most-used density surfacesill always be mathematically ill-defined/{cDougall 1987

are potential density or neutral density surfaces. Both thesdlcDougall and Jacketi989. If we were to follow a neutral
density surfaces and all others produce a fictitious diapycnatrajectory around an ocean basin (linking up neutral tangent
diffusivity to some degree due to the helical nature of neutralplanes) and arrive back at the initial latitude/longitude one
trajectories — with the magnitude of this artificial diffusivity normally arrives at a different depth than where one started.
in some cases being larger than the values measured in thEhis shows that the definition of a neutral surface is path-
ocean. Here we show how this error can be reduced by up tdependent, an effect caused by the nonlinearity of the equa-
four orders of magnitude and therefore becomes insignificantion of state of seawater (because the raffy 8© is a func-
compared to measured values, thus providing surfaces whiction of pressure; see Appendifor a more detailed explana-
would produce more accurate results when used for inverséon). Therefore it is not possible to find a “perfect” surface
techniques. to describe flow in the ocean. There will always be errors as-
sociated with density surfaces due to path-dependency — but
how large is this unavoidable error?

1 Introduction Efforts to construct density variables minimizing/
include approximately neutral surface3a¢kett and Mc-
Transport in the ocean does not occur along surfaces of corBougall 1997 Jackett et a).2009 and orthobaric density
stant in situ density and several approaches have been useddarfaces de Szoeke et al2000. These algorithms label
find a density variable whose isosurfaces accurately describa three-dimensional hydrography with a density variable.
the direction along which flow in the ocean occurs. UsingWe can then find surfaces in this hydrography on which
inappropriate density surfaces leads to a fictitious diapycnathe density variable is constant and use this surface for in-
diffusivity, D/, sometimes orders of magnitude larger than verse techniques or for plotting variables such as tempera-
the measured diapycnal diffusivity in the oceah/ is an  ture, salinity and nutrients to understand the evolution of wa-
error resulting from mixing along a well-defined surface in- ter masses. Compared to these density-labelling algorithms
stead of along neutral tangent planes. This fictitious diapycthe technique described in this work takes one density surface
nal diffusivity does not represent a real physical process. — which can be a surface of constant potential density, neu-
tral density or any other density variable — and improves it to
ensure it is as close to the neutral tangent planes as possible

Correspondence toA. Klocker thus minimizing the fictitious diapycnal diffusivity. This al-
BY (andreas.klocker@csiro.au) gorithm is ideal for creating optimized approximately neutral
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156 A. Klocker et al.: Optimized approximately neutral surfaces

surfaces to use as water mass density boundaries in invergnd®, are the vertical gradients of salinity and conservative

models. The improvement due to these optimized approxitemperature.

mately neutral surfaces might not be significant in large box McDougall (1988 shows thab is given by

inverse models of non-synoptic hydrographic sections com-

pared to the other assumptions made (i.e. steady state, etc.)

but we expect that these surfaces will significantly decrease ~ exp[—g2pT,° / N72(V,0 — ©,V,p) -dl], )

the error of inverse models using synoptic sections for pro- g

cess studies that particularly target the determination of mix-

ing. whereN? is the buoyancy frequency ang, is the gradi-
ent along an approximately neutral surfadg‘“? is the ther-

. . . mobaric parameter given b
2 Basic properties of density surfaces P g y

Many different density surfaces have been used in the past o®
for inverse techniques, layered ocean models or other appliZy’ = :8@)(’3_(9)[7- 3
cations describing ocean circulation along isopycnals. These
different density surfaces all differ in the extent to whichthey  This equation was actually derived for spatial gradients
achieve the three desirable but mutually inconsistent properalong a neutral tangent plane and here it is written in terms of
ties (McDougall and Jacket2005h): gradients in an approximately neutral surface. It was also de-
rived ignoring the dependence of the saline contraction coef-
ficient on pressure (in comparisondﬁ). For both these rea-
— being as quasi-material as possible sons we use an approximately equal sign in ). Choos-
, ) ) ing the appropriate density variable will always depend on
~ possessing a geostrophic .streamfunct|on (commonlyones application — a surface which satisfies all three proper-
called a Montgomery potential), ties does not exist due to the nature of the equation of state.
where quasi-material means that flow through a surface onlyt is therefore very important to know the advantages of each
arises due to mixing processes. density variable and the errors associated with them. One
In this work we will mainly focus on the first point, com- density variable might do a good job for one application but
paring how “neutral” different density variables are. “Neu- introduce substantial errors for another.
tral” here describes the direction along which a parcel can To quantify the quality (in the sense of being close to neu-
travel without experiencing buoyant restoring forces. Thetral) of a density surface we use the fictitious diapycnal dif-
y"-variable (ackett and McDougall1997) and the yi- fusivity of density caused by mixing laterally along a density
variable (ackett et a).2009 for example were constructed surface with a slope different to that of the neutral tangent
to produce a surface which is as neutral as possible by minplane.D/ is given by
imizing the slope difference between these respective sur-
faces and the neutral tangent planes, but ignoring the last f )
two points mentioned aboveEden and Willebrand1999 DY =K -5, (4)
took a different approach and tried to construct a density vari- . e o 1.
able which is a compromise between neutrality and two other whereK_ is alateral _d|ffu5|V|ty _(taken to be 1(_)002m Hin
properties, (a) the horizontal gradient of the neutral densitythe following ca_lculat|ons) and is the slope diference be-
should agree with the gradient of in situ density and (b) thetween the density surface used and the neutral tangent plane,
vertical gradient of the neutral density should be proportional
to the static stablility of the water column.

— being as neutral as possible

. . . . §=V,z—-V 5
These requirements are quite different to the properuess n< ats ©)
used byMcDougall and Jackei2005h). We note thatthe  \ynerev, is the gradient along a neutral tangent plane and
integrating factow (McDougall and Jacketl 988, defined v _ s the gradient along any approximate surface (whether it
by be a potential density surface, an approximately neutral sur-
face or any other surface). The fictitious diapycnal diffusiv-
v. = ph(B°S. — a®0.), (1) ity described here s the same BEIOUS in McDougall and

Jackett2005h A derivation of D/ can be found in Appendix
varies in the ocean whereas the extrarequiremerisien  B.
and Willebrand1999 would only be strictly true if the inte- It has been shown that the mean diapycnal diffusivity in
grating factorb were equal to one everywhere in the ocean.the ocean is roughly T8 m?s™1, even though it can be
p in this equation is in situ densitg® is the saline contrac- larger above rough topographRdlzin et al, 1997). If D/
tion coefficienta® the thermal expansion coefficient asid  for a specific density surface is comparable or larger than
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Fig. 1. This figure shows the differences be_twegnehe', e“and g 2 The blue surface shows the initial approximately neutral
w. The lateral velocity i +v j) is directed horizontally. The three ¢ rface {%-surface) on which the density pertubation field, is
surfaces shown are the approximately neutral surfat} the neu-  c5iculated. This density pertubation field is converted into a depth
tral tangent plane (ntp) and the top-most is the lateral velocity pluschanges:, which is then applied to the initial surface to get the new
w, wherew includes all components leading to a flow which differs apaproximately neutral surface (the blue surface).

from a purely horizontal flow (the tilt of an approximately neutral

surface, mixing effects and a diapycnal velocity caused by the ill-

defined nature of neutral surface8¢"). . L
) The diapycnal transpoet’ can also be written in terms of

the material derivative gf“,

10°m?s~1 over a significant area, then using this surface
to describe the flow in the ocean would introduce significant

D a
mixing that is purely due to the error of the definition of the o — D @)
density surface used. 124 ’

When describing ocean flow the terms “isopycnal” and
“diapycnal” are used to describe flow along and through asisillustrated in Figl, wherey“ is the variable which is
“density” surfaces, respectively. But since it is impossible to constant in the approximately neutral surface.
construct a mathematically well-defined neutral surface due The property of the ocean’s hydrography which stops us
to the effects of the nonlinear equation of state, it is only pos-from forming mathematically well-defined neutral surfaces,
sible to define an approximately neutral surface. Thereforeneutral helicity, can be written asi¢Dougall and Jackett
to properly define diapycnal transport we have to distinguish198g):
between flow across a mathematically well-defined approx-
imately neutral surface and the actual isopycnal/diapycnal
transport. In the latter “isopycnal” means along a neutral he- N2
lix (the trajectory we would get if we connect neutral tangent H" = °T,°Vp - VS x VO = — T2V, p x V,0 - k.
planes following fluid flow) and “diapycnal” means across 8

this neutral helix. 9)
The vertical velocitye” through an approximately neutral ) ) S
surface,?, can be written as From this equation we can see that neutral helicity is a

consequence of the thermobaric parameter 8ggherefore

a consequence of the equation of state of seawater being non-
% = e+ el (6) linearin the sense that the ratio of the thermal expansion co-

efficient to the saline contraction coefficient is a function of

wheree is the diapycnal transport due to cabbeling, thermo-Pressure.

baricity, double diffusion and small-scale turbulent mixing, ~ The first part of Eq.§) means that for neutral helicity to be

and ¢M® is the vertical velocity through the approximately zero the line of intersection of thand® planesVSx Ve,

neutral surface due to the helical shape of neutral trajectomust lie in the isobaric surface, the second part requires the

ries (seeKlocker and McDougal(2009 for an estimate of ~ epineutral gradients of pressure and temperature to be par-

e"eh. The diapycnal velocity"®! transports mass, salinity, allel. Both of these requirements are close to being met in

conservative temperature and all other tracers. This diapycthe real ocean, but the amount by which neutral helicity is

nal transporte"®, exists without requiring the dissipation of non-zero may be important for some effects.

kinetic energy. It can be written as To improve existing surfaces we construct an algorithm
with the aim of reducing the residual fictitious diapycnal dif-
fusivity so that it is only due to neutral helicity and not due

el =v ., (7)  toany other effects.
We take one of the existing density surfaces as the initial
whereV is the horizontal velocityu, v). condition and use a least-squares approach to minimize the
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started from but at a different depthp! is the locally ref-
erenced potential density. The step frord z N2g~ 1 to
— ¢, €-dl has been derived iMicDougall and Jacke(1988,
and [, V. xe-k dxdy follows from §, e- dl using Stokes*
theorem (see Appendig for a proof of Stokes' theorem
for the two-dimensional curl). —V,xe-k is not exactly

0
equal to7,° V, px V,0-k because the small teré% V.pXe

(] )
has been ignored%% is only about 10% on—g and |e| is

much less thanae®V,0|, see AppendiXD). To the extent
that V,p and V,® are good approximations d¥,p and
V,0, Eq. @) demonstrates the approximate equivalence of
T,°V,pxV,0k and gN"2 H" in Eq. (11).

By considering a variety of aread, the equality of the
various area integrals implies that the integrandg, xe-k,
T,°V.pxV,0-k and gN2 H" are approximately equal.
Since neutral helicity is a property of the ocean's hydrog-
raphy and we also know thatV, xe-k is effectively equal
to neutral helicity, we therefore know thatv, xe-k is also
set by the ocean's hydrography.

To check this relationship between gRH" and—V,, xe -

Fig. 3. The grid used by the algorithm explained in this paper. The k we choose an approximately neutral surface in the North
red points are the tracer grid points and the slopes errors/pressurgtlantic which is close to the depth of the Mediterranean

gradient errors are calculated on the green points.

area integral o€?, wheree is similar to the slope errarbut
is also dependent on vertical stratification:

: : N2 N2
€=Bv,8 —a°V,0 = —(V,z — Vy2) = —s, (10)
8 8
with N2 being the buoyancy frequency apdhe gravita-
tional acceleration. In the neutral tangent plaa®.
An important relationship in the neutral framework is that

between neutral helicity in an approximately neutral surface

and the two-dimensional curl ef V, xe. According to the-
ory (Egs. 38 and 39 iMcDougall and Jackettl988 they

should be related as can be seen from the following equatior

Sl
L

z_lfvax

~ // Tb(")Vap X V.0 -k dxdy
A

~ T,?%pd@ ~ f/ gN?H" dxdy.
A

18y

_— A —

14

_5zN2g 1l =

%e-dl

A
€-kdxdy
(11)

outflow (y"=27.25 kg nT3). We choose this depth because
one would think that this warm and salty water would cause
the ocean to have increased values of neutral helicity in this
region due to high temperature gradients crossing pressure
gradients (see EdL1), making it an interesting region for
our calculations of the mean diapycnal advection caused by
these larger values of neutral helicity.

The data we use here and in all the following examples are
model output from a standard MOM4 run with a resolution
of 1°x2°. The only change to the standard run is the use
of conservative temperatur&¢Dougall 2003, ©, instead
of potential temperature. This change is not relevant to the
results.

Improvement of approximate density surfaces

Our aim is to minimize the difference between the neutral
tangent planes and the approximately neutral surfaces, that
is, essentially to minimize the area integral of the density gra-
dient errore. Since the curl ok, V, xe, is given by the hy-
drography, we choose to minimizeby adding a pertubation
density field,®" (whered=Inp!, p! being the locally refer-
enced potential density), so thats minimized whileV, x e

is unaffected by the presence ®f. In this way a new den-
sity surface can be formed by taking into account the pertu-
bation density®’. As described below, the new height of the
density surface is adjusted by converting the density change
from the density pertubation field into a depth change (using

Heredz is the depth change of a neutral trajectory after Eq. 16). This can be seen in Fig.in which the blue surface
completing a closed loop around the ocean (i.e. the neuis the initial approximately neutral surface“-surface) on
tral trajectory finishes at the same horizontal position as itwhich the density pertubation field/, is calculated and the

Ocean Sci., 5, 155872 2009
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green surface is the new surface after the density pertubation
field in the initial approximately neutral surface is imposed,

e=€e" 4V, P, (12)

wheree is the smallest possible density gradient error (i.e.
the residual density gradient error is due to neutral helicity)
and e is the initial density gradient error field. A more
detailed description of the theory behind this algorithm and
numerical testcases can be found in Apperialix

Now we apply the idea of minimizing, without changing
its curl, V,xe, to construct an algorithm which optimizes
existing density surfaces to be as neutral as possible with the
residual error only being due to neutral helicity. As an initial
condition we can use any density variable that labels a three-
dimensional data set. We then choose a surface on which this
density variable is constant and linearly interpolstand ®
onto that surface. With these variables we can then calculate
the density gradient erree=°V, S — «®Vv,0* From every
grid point we want to calculate an x-componeﬁj},, and a
y-component"t, of the initial density gradient erras™,
which we will then use as initial conditions in the algorithm.
From a numerical perspective this will look like

ew

init ,3® (Snorth_ Ssoutr) —ot® (®north_ ®souﬂ)’ (13)

Einit — ﬂ()(Seast_Swest) PHC) (®east_®west)
Ens =

where the thermal expansion coefficiesit and the saline
contraction coefficieng® are averaged onto the points in
between the tracer grid points (the green points in Eithe
red point are the tracer points).

We now construct a matriX with the number of rows be-
ing the number of equations and the number of columns be-
ing the number of grid points. This matrix is a sparse matrix;
for the ¢Mt equations it will have a “1” for the eastern grid
point and a “1" for the western grid point — all the other
entries are “0” in each row. The same is true for #{§-
equations. We also constrain the average pertubation density,
@', to be zero. This would show up in the matrix A as a row

Latitude

Latitude

Latitude

1800
1600
1400
1200
-1000
-800
600

400

50 100 150 200 250 300 350 {4
Longitude

(a) Pressure

50 100 150 200 250 300
Longitude

(b) Conservative temperature

50 100 150 200 250 300 350 [m-Z]
Longitude

(C) gN—ZHn

filled with ones and in the vectet"" as zero. Now we have a Fig. 4. (a)Pressure(b) conservative temperature afej gN —2H"

sparse matri¥, a vectore™t (which has as many entries as on thew-surface.

the matrixA has rows) and we want to find the pertubation

1The first part of Eq. 10) (seeMcDougall and Jackeit1988
for a derivation) uses gradients in an approximate surfaces withou
the need of any information along the neutral tangent plane, which
makes it much more efficient to computetherefore we will use
this definition ofe in all further calculations. Calculatingvia the
second part of Eq.10) would require multiple calls of the equa-
tion of state and therefore become computationally more expensive.
Note that we have adopted the opposite sign conventioa ¢om-
pared withMcDougall and Jacke(t1988.

www.ocean-sci.net/5/155/2009/

minimizg A®" — ¢

init |2

bl

we can use a direct inversion,

CD/ — (AT . A)*l(AT . Ginit).x

(14)

(15)

159

density®’ for which || is minimized. To solve this set of
gquations,
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Latitude
Latitude

-1 I
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Longitude

Longitude
(@) logio (DY) on they™-surface

(@) logio(D?) on they™-surface

Latitude

Latitude

- - - : - : : 11 0 50 100 150 200 250 300 350
0 50 100 150 200 250 300 350 Longitude

Longitude 7
01 (Df) " . (b) logi0 (D7) on thew-surface
0g10 on thew-surface

_ Fig. 6. log;o(D/) on the(a) y"-surface and thé) w-surface cal-
Fig. 5.l0g19(D7) on the(a) y"-surface and théb) w-surface. culated using WOCE climatology data.

Alternatively we could solve Eq.1¢) using an iterative sz, will not be the final solution. We thus linearly interpolate
technique, e.g., the LSQR algorithm Béige and Saunders ¢ and® onto the new surface and calculate new lateral den-
(1983, as implemented iMatlab(2007). For the larger data  sity gradient errors. We then treat these new density gradient
sets the iterative technique is the computationally more effi-errors as we did the™-field before to get a more accurate
cient approach. optimized approximately neutral surface. If we repeat these

We now have ab’-field which we need to convert into a steps often enougja|2 will converge. Once it has converged
depth changejz, to find the depth of the optimized approxi- the surface will be as close to neutral as possible, with the
mately neutral surface. FroMcDougall and Jacke{l988  residual fictitious diapycnal diffusivity being due only to the
we know that path-dependency caused by neutral helicity. We will call this

surface thev-surface.

N2 5p! On all density surfaces we will have regions where the sur-
——bz=—7F = P (16) face outcrops or hits the bottom topography. Due to this we

8 p will end up with several regions on a density surface which
do not communicate with each other. A typical example is
a marginal sea with narrow connections to the open ocean.
In the algorithm described above we deal with this problem
of independent regions by writing a set of equations as in
eEq. (L4) for each seperate region. Similar to before we con-

2\We use(N2+3 % 10-%) instead ofN? to ensure that the algo- ~ Strain the average pertubation density of each regidnto
rithm is stable whemv2 is close to zero. be zero.

We thus have to calculaty? on the surface to find the
depth of the new optimized approximately neutral suface

Due to the algorithm working on an horizontally extensive
two-dimensional surface the first guess of the depth chang

Ocean Sci., 5, 155872 2009 www.ocean-sci.net/5/155/2009/



A. Klocker et al.: Optimized approximately neutral surfaces 161

When optimizing approximately neutral surfaces with the

method above we sometimes get a result whefedoes not o0 —
converge. This is because of the algorithm overestimating the 00 A —
depth changez, due to the algorithm not knowing about the ” A
stratification above and below the surface optimized. This 0.04-

can then lead to a growing|? due to the algorithm trying I v \

frequency
o
o

to overcorrect at these casts. If this happens we have to
dampen the depth change; this means we only use a certair

"\ |

o
Q

percentage of the depth change estimated by the algorithm to X \

calculate the optimized surface. Another way of minimizing 0.01 7 \

the possibility of this problem is to discard the data in the \ “‘*\
mixed layer — a region in which other processes than neutral R VT ooy © 8 4 2

physics are dominant. On all the following surfaces we will

discard data shallower than 200 dbar (@)log,, (D7) on a surface with an average pressure of 1000 ¢

A similar approach as above can be used to minimize for 0.05-
the slope errors, instead of the density gradient errer, 0.045 \ :i
This would be more consistent with the aim of minimizing 0.04- ”
the fictitious diapycnal diffusivity but on the other hand the 0.03 /|
minimisation of the density gradient error is easier to under- 3 oo A ]
stand when compared to the theoretical ideas in Appebdix go.oz ’ \ i \
Both approaches give very similar resutls. £ oo | \’\.. \
McDougall and Jackett (1988) contains an algorithm that 0.01 / W \-
similarly modifies existing approximate neutral surfaces by 0.01 / / W\\’
minimizing the size of the square of the density gradient er- 0.00 // /J \ ‘\\
rors, e, at each spatial location, in this case weightedVby?. S
This was achieved using a multi-dimensional Newton tech- log; {0)

nigue, one dimension for each data point on the approximate (p) 1og,,(D”) on a surface with an average pressure of 1400 c
surface, with one additional dimension for a Lagrangian-

multiplier equation constraining the mean pressure perturba- %% \ =

tion to be zero. The computational method described above 0.07 —o

is a two-dimensional analogue of a new sparse matrix inver- 0.0 \

sion technique that labels three-dimensional oceanographic ood \

data with a new neutral density variablé (Jackett et a). g ' \

2009. The optimization methods described in this paper and ;50-04’ f\ I \/

in McDougall and Jackett1988 andJackett et al(2009 all | ~ o0 . v

have as their goal the minimization of (weighted) sums of 00 N\

squareg -¢, the differences between the three methods being / "‘7\\\ \

in the simplicity of the equations that are actually uséid- 00% /

Dougall and Jacke({1988§ used the set of linear equations 95 _16/‘_/14 _12?5’%5 B e o
10"

to minimize €-¢ while assuming given values of the verti-
cal gradients of salinity and potential temperature. The solu- (c)log,,(D’) on a surface with an average pressure of 1800 ¢
tion technique proceeded iteratively until convergence with

r_evised values of th_e vertical gradients Of salihity ‘tind po_ten-Fig_ 7. Frequency plot of logy(D/) for the y"-surface (red) and

tial temperature being made after each |terat!on if requwedthew_surface (black) with an average pressuré)fL000 dbar(b)

By contrast, the method of the present paper finds values of 84qq gbar (the surface used throughout the text)(@hti800 dbar.
logarithmic density perturbatior®’, such that the resulting  The black vertical line shows a ficititious diapycnal diffusivity of
€-€ is minimized on the original surface in space. We then 10->m?s~2; values right of this line are larger than the mean value
use this perturbation logarithmic density to estimate the presfor the diapycnal diffusivity measured in the ocean.

sure perturbation, as described by ELf)(above. This new

surface is then iterated through the same process again until

convergence is achieved. This description shows that the tweelopment of the optimization technique for a single surface
methods are quite similar. We have found the present methotkads to significant improvements in the accuracies achieved
to have good convergence properties and the code has bedéy the two-dimensional surfaces when compared with iso-
extended to include stations where the surface in questiosurfaces of three-dimensional variables (e.g. the code devel-
is not simply connected. As will be shown later, the de- oped byJackett and McDouga(lLl997 to calculatey™), all

www.ocean-sci.net/5/155/2009/ Ocean Sci., 5, 152-2009
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in terms of their abilities in approximating neutral tangent
planes. The technique described here can be seen as a Li
grangian method, calculating the change of pressure of a sur
face, whereas in techniques used to label a three-dimensione
data set can be seen as an Eulerian method where density |
calculated at every point in x/y/z-space.

To illustrate the improvements of the optimized approxi-
mately neutral surface, the-surface, we choose a surface
with an average pressure of about 1400 dbar. Pressure an
conservative temperature on this surface are shown ifg&ig.
and b. The surface chosen here is just an arbitrary example
of a density surface covering the global ocean and the results
are very similar for surfaces that are denser or lighter than
the surface shown. Neutral helicity on the same surface is
shown in Fig.4c. The regions of elevated values of neutral
helicity are mainly concentrated in the Southern Ocean (es-
pecially in the regions of high eddy activity) and in the North
Atlantic (close to where the surface outcrops and close to thé'9- 8- ¥" on thew-surface for model output from a MOM4 model
Mediterranean outflow). This is where we would expect high ™"
values of neutral helicity due to strong gradients of pressure
and temperature.

Comparing Fig.5a and b one can see the improvement oytput. Another difference between the model output and the
achieved by using the algorithm introduced in this paperclimatology is the patchiness of the fictitious diapycnal dif-
compared with the"-surface (which was used as initial con- fysivity in the climatology. This is due to the averaging of

dition). Shown is the fictitious diapycnal diffusivity)/,  observational data done to construct climatologies.
plotted as log, D/ where the colour scale was chosen to

make the comparison of both surfaces possible. Both the The improvemgnt of they”-surfac_e can aIsz be seen by
North Atlantic and the Southern Ocean have regions with!00King at the fictitious diapycnal diffusivityp’, on a fre-
a fictitious diapycnal diffusivity larger than 18m?s~1 on
the y"-surface and therefore exceeding the values measur

in most regions in the ocean. These are the regions wher

most density variables produce large errors with the othefPrders of magnitude when using thesurface compared to

regions of the global ocean usually being less problematicth€»"-surface. The large improvement is possible because

Most other regions have fictitious diapycnal diffusivities of (e model output we are using had water masses that devi-
approximately 107 m?s-!. This has been reduced by a ated significantly from observed ocean properties. When ap-
few orders of magnitude in the-surface, pushing all the plied to at_las data the fictitious diapycnal diffusivity in an

fictitious diapycnal diffusivities significantly below the val- w-surface is perhaps just one to two orders of magnitude less

ues measured in the ocean with the remaining errors locateljian in ay"-surface.

close to the outcropping regions. On thesurface there are The improvement made by the algorithm can be seen by

no fictitious diapycnal diffusivities larger than 1dm?s—1 plotting y” on anw-surface (Fig8). y”" values have a range

with most regions having values smaller thanitn?s1 from 27.61 to 27.65 on the-surface which is a substantial

which is insignificant compared to the values measured indensity change.

the ocean. The higher slope errors close to the outcropping

regions are caused by high valuesgfp (andVv,®) causing

high values of neutral helicity (compare Figs.and5b).
Similar results can be seen in Fi§.for data calculated

from the WOCE climatology Gouretski and Koltermann

2004, comparingD/ on ay"-surface and am-surface with

an average pressure of about 1400 dbar. As in the model ou

put the new algorithm leads to an improvement (a reduction) Even though the change between our initial condition and

in DY, even though it is not as large as in the example usinghe w-surface are quite large in terms of the fictitious di-

model output due to the code used to calculate(Jackett — apycnal diffusivity, the correlation between gRIH” and

and McDougall 1997) being dependent on a reference data —V, x€-k or the variations of”* on thew-surface or the ac-

set which is based on a Levitus climatolodyeyitus, 1982, tual changes of temperature and pressure between the initial

which is closer to the climatology used here than the modelkondition and the»-surface are reasonably small.

-27.635

Latitude

27.615

27.61

0 100 200 300
Longitude

Another way of seeing the improvement is by plotting
TPV, pxV,0-k~gN~2H" vs. -V, xe-k for they" and the
w-surfaces (see Fi®a and b fory” andw, respectively). For

the w-surface one can see a very good agreement between
gN—2 H" and—V, xe-k, as all the points of the surface al-
{post end up on the line.
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4 How “neutral” are existing density variables?

To show the differences between different density variables ° ° o2
we use a density surface in the North Atlantic with an aver- 2 g
age depth of about 600 dbar. We concentrate on the North At- ° o
lantic instead of the global ocean because it is easier to see °
differences on a smaller scale and neutral physics are inter-
esting in the North Atlantic due to the Mediterranean out-
flow producing increased values of neutral helicity. Showing
only the North Atlantic also gives us the opportunity to use
the density variabler£W of Eden and Willebran@1999, a S oy o
density variable fitted only to the North Atlantic. The results -4
shown below are very similar for depth ranges different to the
average pressure of the density surfaces of about 600 dbar. gN"H
The density surfaces which we compare are the new and (@
the old neutral density variables( (Jackett et a).2009 x 107"
and y" (Jackett and McDougalll997), respectively), a/-
variable approximated with a rational function of salinity ot .
and conservative temperaturg”(, McDougall and Jack- 850200
ett, 20058, a y-variable approximated with a function fit- T
ted to data of the North Atlanticy®", Eden and Wille- E
brand 1999, potential density with reference pressures of = 0 °
x
=

0, 600, 1000 and 2000 dbat‘oc 0600, 01000 and 0‘2000), or-
thobaric density 4,, de Szoeke et gl2000, modified steric
anomaly surfaces and the optimized approximately neutral o
density surface, the-surface, of this paper. Note that the ° ‘ ‘ ‘
algorithm producinge-surfaces improves exisiting density —4 _2 0 2
surfapes (i._e. it works i.n two dimensions), wherea§ all o?her gNH" [m™] x 107"
density variables mentioned above label a three-dimensional
; . (b)
hydrography with density.

Fig. 9. T2V px Va©-k~gN~2H" vs.—V, xe-k for (a) ay™ and

4.1 Different approximations to neutral surfaces ;
(b) an w-surface. The rms error of the difference between theory

Five different approximations to neutral surfaces have beerﬁancI the plotted data decreases by a factor of 6.
discussed to date. All of them except" are constructed to
minimizes? or €2 (i.e. minimize the slope difference or den-

sity gradient errors between the approximately neutral denitude and longitude. Not being dependent on latitude and
sity surface and the neutral tangent plane). longitude means that it ignores the hemispheric changes in

The firsty-variable, y", is dependent on a pre-labelled Water-mass characteristics, therefore making it less neutral

dataset and therefore the quality of a surface calculated withan the other neutral density variables (at least when used
this technique is highly dependent on the proximity of the for @ global density surface). The advantageytf is that
dataset to be labelled to the reference dataset (which is thé is faster and easier to compute making it better for use by
Levitus climatology Levitus 1982). Therefore if this code  the ocean modelling community.“" is a neutral density

is used for model output simulating a different ocean (a palec/ariable constructed for use in the North Atlantic. Compared
ocean or future climate) or if the model drifts from its initial 0 the other approximate surfaces its main aim is not only
state, the/" variable may be less neutral than a well chosent© have the approximately neutral surface as neutral as pos-
potential density surface. This problem has been adressegible but also to approximately satisfy the points mentioned
with a new method of constructing approximate neutral sur-N Sect. 3, i.e. trying to make the horizontal gradient of the
faces,y’, which uses the olg” variable as an initial condi- neutral density agree with the gradient of the in situ density
tion and an iterative inversion method to improve the sur-and trying to make the vertical gradient of the neutral den-
faces. This new variable is computationally more expen-Sity proportional to the static stablility of the water column.
sive but significantly improves the accuracy of the surfaces Compared to the other variables,» (as described in this
The thirdy-variable,y’” , is a rational function approximat- Paper) only improves a single surface rather than producing
ing neutral density surfaces dependent only on S@ndn a continuum of surfaces in a three-dimensional dataset.
contrast toy’ andy”, y'f is independent of pressure, lat-  The yi-surface (Fig.10a) , which is the most accurate
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Fig. 10. logyo(D/) for (a) ¥, (b) ¥", (c) y'/, (d) yEW and(e) ». The surface chosen for these plots has an average pressure of approx.
600 dbar. The same colour scale is used in each plot.

method to date of achieving the neutral property in three-of the two needs to be zero. The highest value®édfoc-
dimensional hydrography, shows the smallest valueB-6f  cur near Spain where there are strong pressure gradients and
compared to all the other density variables in this analysisemperature gradients that do not align. Further off the coast
(apart from individualw-surfaces constructed by the algo- of Spain there is a strong temperature gradient but the pres-
rithm described in this paper). The main regions of increasedure gradient is quite small (the density surface is relatively
fictitious diapycnal diffusivity are the Mediterranean outflow, flat) and thereforéd/ reduces drastically. The other two re-
the outcropping regions in the north and the Gulf stream re-gions of highD/ are mainly due to a very strong pressure
gion. We would expect increased values of slope error on aradient, near the outcropping of the density surface.

good approximate neutral surface in regions where we have Looking at they”-surface (Fig.10b) we can see a very
increased values of neutral helicity, which is proportional 10 similar pattern to the//-surface and slightly increased val-
VapxV,®. Such large values of neutral helicity are likely e of fictitious diapycnal diffusivity. These increased values
to occur in regions of either a strong pressure gradient onye gue to the offset of the model output from the reference
the surface, a strong temperature gradient or both. To havgais set used by the'-code as explained ByicDougall and
zero neutral helicity on a surface the pressure gradient angackett(ZOOSb. This is the major problem of this density
the temperature gradient have to be exactly aligned, or ongaiaple which has been adressed with the néwariable
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Fig. 11. Ioglo(Df) for (a) og, (b) o600, () 01000 and(d) 02000 The surface chosen for these plots has an average pressure of approx.
600 dbar. The colours chosen for these plots are the same as for thoseld. Fig.

(Jackett et a).2009. The main improvements gf’ com- 4.2 Potential density

pared withy” are in the Southern Ocean (not shown here)
and the North Atlantic. Potential density is a widely used density variable. At its

reference pressure a potential density surface coincides with
the neutral tangent plane but as soon as a potential density
surface departs from its reference pressure, the slope of this
§_urface increasingly differs from the slope of the neutral tan-

y'! (Fig. 10c) gives a very small fictitious diapycnal dif-
fusivity over most of the North Atlantic with the larger errors
located at a concentrated region where the surface outcrop . .
This is likely due to a change in the outcropping region from 9Nt Plane. This can be seen by looking at the normal to the
the hydrography which has been used to construct this variPCtential density surface,
able.

/3(")( _ 0

PrIVS —a”(p)VO, 17)
yEW (Fig. 10d) is the y-variable with the largest ficti-

tious diapycnal diffusivity. The order of magnitude of this  and the normal to a neutral tangent plane,
diffusivity is comparable with that of a potential density sur-
face with a reference pressure which is not well chosen. The
reason for this is that instead of trying to minimize osfy p
as with the other -variables, the aim of this function was  (q,jising that these two expressions are equal only at the
to aIsp minimize the other two mutually inconsistent points reference pressure.
mentioned in Sect. 3. It can also be shown that the variations of potential density

(referenced top,) along a neutral tangent plane are given

o (Fig. 10e) shows the smallest fictitious diapycnal dif- by (Jackett and McDougalll997 McDougall and Jackett
fusivity, with the highest values close to Spain. This two- 20050
dimensional approach decreases this diffusivity by about two
orders of magnitude, pushing/ far below the values mea-

O(p)VS —a®(p)Ve, (18)

(O] ®

sured in the ocean. The errors close to Spain are likely due = vy . _ 5© @ _¢

y : L o =B"(PIlo5(P) — -5 (P)IV,0O
to the crossland mixing scheme used in MOM4 to distribute oo B® B® ! (19)
the Mediterranean outflow into the North Atlantic. ~TPIp — p1V,O.
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The fictitious diapycnal diffusivity on potential density 4.4 Orthobaric density
surfaces referenced to 0, 600, 1000 and 2000 dbar are shown
in Fig. 11. These potential density surfaces show a large fic-Orthobaric densityde Szoeke et gl2000, p,, has recently
titious diapycnal diffusivity in the east where the warm wa- been introduced as a density variable that is a function of
ter of the Mediterranean enters and at the northern outcropressure and in situ density that has the property that as long
where cold surface waters are reached. as water mass variations occur in a monotonic way with pres-

The fictitious diapycnal diffusivity in these figures is also sure along the neutral directions, it can be made quite neutral
due to the offset of the pressure on these surfaces from théor a single ocean basiticDougall and Jacket?0053. If
reference pressure (Efj9). Theogoo-surface is the closest used for the global ocean it is not possible to tune this vari-
we can get to the approximate neutral surface due to the refable so that it is a good approximation to neutrality. This
erence pressure being optimally chosen, with larger errors ifis due to the inability of the variable to accurately accom-
the other potential density surfaces (proportional to the dis-modate differences between water masses at fixed values of
tance of the reference pressure to the average pressure of thatessure and in situ density such as occur between the North-

surface). ern and Southern Hemisphere portions of the World Ocean
- _ (McDougall and Jacket20053.
4.3 Modified steric anomaly surfaces The fictitious diapycnal diffusivity forp, is shown in

. . . . Fig. 12c. Most of the large values fdp/ are concentrated at
A similar variable to potential density that has not been usedregions of highesV,,. p. This can be seen by looking at the
Pv

much recently is steric.anomaly (a}lso caII.ed specific VO'_umechange of orthobaric density along a neutral tangent plane
anomaly). Here we define a modified steric anomaly varlable(Eq 14 ofMcDougall and Jacket2005a:

as

11 20) Viov=—®TpT(O = Oo(p, p)IVap, (22)

p(S,0,p) (S, O, p)

whereS, and®, are fixed values of salinity and conserva- vyhere@o_ is a reference conserv_atlve temperature@n_sl .
tive temperature. This differs from the normal definition of an mFegratmg factor, both a function of pressure and in situ
steric anomaly by simply replacing 35 psu with some otherdenSlty oy shows some of the largest errors/i of all the
fixed salinity and replacing in situ temperature of 0°C with surfaces analysed.
a different reference temperature. It is important to note that .
once the reference parcel is decided on, the second part (§‘f‘5 Further comparisons
the equation is a function only of pressure.

It can be shown that the variation of modified steric
anomaly along a neutral tangent plane is given by

8(5,0,p) =

Above we have seen two-dimensional maps of the fictitious
diapycnal diffusivities on the previously described approxi-
mate density surfaces in the North Atlantic, giving us a view
as to how good these surfaces are in representing isopycnal
pVud = —[Kk — ﬁK,]vnp ~ T2[0 — ©,1V,p, (21)  flow in the ocean. To further facilitate this intercomparison
Pr we now look at frequency distributions @/. These dis-
wherer is the adiabatic and isohaline compressibility of tributions fory”, og andw, plotted on a logy-scale, can be
seawater ang, andk, are the density and compressibility at seen in Fig.13. Fig. 14 shows the 95th-percentiles of the
(S,, ©,, p) (whereS, and®, have been optimally chosen to fictitious diapycnal diffusivities for all density surfaces pre-
minimize the spatial variation ). viously considered. That is, the vertical axis shows the value
The fictitious diapycnal diffusivity on the modified steric of the fictitious diapycnal diffusivity of density that is ex-
anomaly surface (Fidl2a) shows the largest values close to ceeded by 5% of the data.
large pressure gradients on the surface, which is a logical Itis clear from Fig.13 that there is a substantial decrease
consquence of Eq2(@). The largest error is west of Spain of fictitious diapycnal diffusivity going fronzg to y" to w.
close to where the crossland mixing scheme of MOM4 dis-The surfaces on which these frequency distributions are cal-
tributes the Mediterranean outflow into the North Atlantic. culated are the same as the density surfaces shown previ-
This region of large error can be seen in the fictitious di- ously, all with an average pressure of 600 dbar. It is known
apycnal diffusivity of most surfaces but it is largest in the that og is not the potential density surface with an ideally
modified steric anomaly surface. The other region of largechosen reference pressure; by choosing a better reference
D/ is along the highesV,p — the region where the sur- pressure the fictitious diapycnal diffusivity would decrease,
face outcrops in the northern North Atlantic. One big ad- but still be larger than for the other surfaces shown. ¥fe
vantage of using steric anomaly surfaces is the existencsurface is dependent on a reference dataset which limits its
of a geostrophic streamfunction, the Montgomery potentialneutrality since the model output drifted from the reference
(Montgomery 1937). data set.
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Fig. 14. The 95th-percentiles of the fictitious diapycnal diffu-
sivity in the North Atlantic is shown for all the density surfaces

. f n
Fig. 13. logio(DJ) of v (green), op (red) ande (black). considered. One can see that for the North Atlantic ¢hggo

The black vertical line shows a ficititious diapycnal diffusivity of S . e .
10-5m2s~2; values right of this line are larger than the mean and p,-surfaces have fictitious diapycnal diffusivities exceeding

5m2a1 o ;
value for the diapycnal diffusivity measured in the ocean. Thesetlho_ f n:ms g\i/er mr?r:e dti?fani\flsit/o Orf ﬂ;er" erllrea. tThleserfvaIuea/iftzr
values for the fictitious diapycnal diffusivity are for one actual sur- € ficliious diapycna usivity are for one actual surface (

face (with an average pressure of 600 dbar). an average pressure of 600 dbar).

fusivity associated with these-surfaces is the least that has
been found to date using other surfaces.
These surfaces are ideal to use as water mass density

In Fig. 14 one can see that for the North Atlantic the
02000 and p, -surfaces have fictitious diapycnal diffusivities
exceeding 10° m? s~ over more than 5% of their area. The - Sural , :
decrease in fictitious diapycnal diffusivities frogp-surfaces boundaries in inverse models. The improved neutrality of
to potential density surfaces to approximate neutral densitf€S€ surfaces might not be significant for large box inverse
surfaces shows the considerable improvement that can bg'Cdels of non-synoptic hydrographic sections but will def-

achieved by using more accurate density variables for inversiNitély improve inverse models using synoptic sections for
models or other applications of density surfaces describingor,of:ess studies that particularly target the determination of

isopycnal flow. mixing. o
The small deviation of these-surfaces from exact neu-
5 Conclusions trality is shown to be limited by the neutral helicity that is

inherent in the hydrographic data.
We have developed a new method for finding an individual The algorithm for forming these-surfcaes is described
approximately neutral surface through a three-dimensionalnd the extent of the non-neutrality of many other den-
hydrographic data set (either observational data or modesity surfaces is compared with thesesurfaces. MAT-
output). The degree of non-neutrality along suchan LAB software to form these surfaces is available at
surface has been minimized and the fictitious diapycnal dif-http://www.TEOS-10.0rg
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Appendix A
surface
Path-dependency caused by the nonlinear equation of state . ntp
@ / ™ o
This is to show that path-dependency is caused by the ratio S p p

“—8 being a function of pressure. We start with writing the

change of potential density, along a neutral tangent plane Fig. B1. (a) The slope difference between a geopotential and
as. an isopycnal surface ang) the slope differences, between an
arbitrary surface and a neutral tangent plane (ntp).

V, o

= BOV,S — a®V,0
P where ntp is the neutral tangent plane.

) 0 i ! i i
_ oo a? If we then divide byp; and use the following relation for
=p=( Bo ,3~® )V ® (A1) the slope difference,
) e
= BO155(S,©, p) — 25(S, ©, p)IV, 0, vl
B B s =L, (B4)
Pz

wherea® and ﬂb are the thermal expansion coefficient _ o o
and the saline contraction coefficient at a reference pressure, We arrive at Eq.§1). The above derivation is for the ficti-
pr, andV, is the gradient along a neutral tangent plane. tious diapycnal diffusivity caused by mixing along a geopo-

So if 22 is a function of§ and®, but not of pressure, then  t€ntial instead of an isopycnal surface. _
o B This approach can be used in a similar way to describe

‘;—@—%):0 and %=0; therefore the path-dependency the fictitious diapycnal diffusivity which occurs when using
would be zero. That is, path-dependency is due to the ra2 surface which has a different slope to the neutral tangent

A . . . l
tio of "‘—8 being a function of pressure, consistent with the pl_ane (s?e F'g31b)'_ In this case we have to SUbSt.'tlﬂgp
B with Vo', whereV; is the gradient along the density surface

. . Q e}
definition of the thermobaric paramet@,=4(%5) . used. This then gives us the fictitious diapycnal diffusivity
which arises when mixing laterally along a density surface

which has a different slope to the neutral tangent plane.

Appendix B Itis important to note that this fictitious diapycnal diffusiv-
Fictiti di | diffusivi ity is a density diffusivity and does not apply &@or S — just
ictitious diapycnal diffusivity to p'. This is because for examp& ©® could be zero. The

fictitious diapycnal diffusion of§ and® can even be nega-
tive. These unequal diffusivities ¢f and® are reminiscent
of double-diffusive convection. Formulae for the fictitious
diapycnal diffusivity of® and S can be derived by a similar
process to the above.

Veronis(1979 has shown that mixing along a horizontal di-
rection instead of mixing along an isopycnal produces a ficti-
tious diapycnal flux of density. This fictitious diapycnal dif-
fusivity is given by

D/ =K -§? (B1)  Appendix C
where K is a lateral diffusivity ands is the slope error
(Eq.5) between a surface of constant pressure and the neutr

tangent plane (see Figla). _ _ Here we prove the validity of Stokes’ theorem for two-
The resultB1 can be understood by taking the horizontal 4imensional curls specifically

flux of density,

horizontal flux of density= — KV, o', (B2) ?g‘? -dl = // Va x € - kdxdy. (C1)
A

which is the lateral diffusivity multiplied by the change of A ) . ] ) .
locally referenced potential density on a geopotential. If we Hered! is a two-dimensional line element in the surface
then multiply this horizontal flux of density with the slope A. Stokes’ theorem for a full three-dimensional curl tells us
difference between the geopotential and the neutral tangerif'@t for any vectoe

plane we get:
%e-dr://Vxe-dA, (C2)
(B3) 4 h
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where the line integral is in a surface A and the area ele-

ment is normal to Ad A=m“dxdy. So if we can show

Vxe m*=V,xe-k (C3)

the result will be proven (note that*=k—V,z ande is
two dimensional so thatdl=e¢-dr).

From McDougall and Jackei{1988 Egs. (4) and (5) we
have

a
V=V,+m—|;,

c4
3z (C4)
So the left-hand side of EQCQ) is
0
Vxe-m'=V, xe-m”~|—m“8—|x,y x € - m“
z
a (C5)

=V, xe€-k+m*xe;,-m
=V, xe€-k.

The first part of the right-hand side simplifies ¥ xe-k
becausev, xe is an exactly vertical vector. Therefore our
resultClis proven.

Appendix D

Equation 11in detail

169
For a good approximately neutral surface
we expect V,p~V,p and V,0~V,0 so that
TOVapxV,0-k~T PV, pxV,0-k=gN~2H" (from

Eqg. 9) so that Eq. D3) establishes the desired approximate
relation—V, xe~gN—2 H".

Now we continue our derivation of EqlY) to result in
7.2 ¢, pd®:

// Th@Vap x V,0 -k dxdy
A

~ TP f/ Vu x (pV,0) - k dxdy
A (D4)
= T}

ki
Tb@yg
A

VO -dl

pd®

From the first to the second line we use Stokes’ theorem.
The only approximation in Eq.04) is the assumption that
Th(”) is constant so it can be taken outside the integral.

Appendix E

Theoretical thoughts about the algorithm and numerical
testcases

Here we derive a close connection between neutral helicity

andV, xe.
Using the definition ok (Eq.10) we get

Vi x € = BOV,0xV,S—a®V,5xV,0

; : (D1)
+By VapxVaS—ay)VapxVa®

Here we explore the theoretical ideas on the relationship be-
tween neutral helicity and the density gradient ereonghich
led to the development of the algorithm used to optimize ap-
proximately neutral surfaces.

We know that the path-dependent uncertainty does not oc-
cur on a single ocean section because we can link up all the
neutral tangent planes on a section without any slope errors.

The first two terms on the right-hand side add up to Therefore we take a N-S section of the ocean and repeat it

zero becauseg?z—ﬁg and thereforév, xe becomes (using
o_.0_a°% 40
Tb —Olp _ﬂ_®ﬂp )

Va x € =—TPVap x Va® + B Vap x VS

a(-)
— ﬂ_@

If we now useVaS:g—gVa(aJrﬁ—l@e from Eq. (10) we get

o (D2)
'317 Vap x V,0.

e)
—pVap X €.

V,x€=—-TpVyp x V0 + 56 (D3)

The second term is small and will therefore be ignored

e <]
from here on. % is only about 10% o% and|e| is much
less thara®V,0)).

www.ocean-sci.net/5/155/2009/

to the east and west so that there are no zonal gradients.
This gives us an initial three-dimensional data set from which
“perfect” neutral surfaces with neutral helicity being zero ev-
erywhere can be found. Having found a neutral surface from
this artificial data set we can perturb a single point on this
surface in a way that the perturbed bottle talks neutrally to
the original water parcel, but neutral helicity is introduced.

An even simpler way to think of this numerical test case
is to imagine a region of the ocean where the pressure and
conservative temperature gradients on a particular approxi-
mately neutral surface are aligned so tiiap andVv,® are
parallel everywhere. Now we consider a circular pertuba-

tion of ® in the presence of the backgound pressure gradient

as shown in Fig. Ela. This pertubatiéfield produces a
dipole of neutral helicity as shown in Fig. E1b. An isolated
anomaly of® or S, as shown in FigD, could for example
occur as a result of diapycnal mixing.

Ocean Sci., 5, 152-2009
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temperature pertubation

(@ (b)

Fig. E1. (a)A circular pertubation oB is shown in the presence of a background pressure gradient (the pressure gradient is not shown; it
increases linearly along the y-axigl) The resulting dipole of neutral helicity.

links from a to b (as well as b to a) and from f to a (as
well as a to f). On these links the neutral tangent planes
do not coincide with the approximate neutral surface. The
amount of this non-neutrality can be quantified by looking at
I —r h dh a the p—©-diagram in Fig. E2b, with the area in the-6-
diagram being proportional t¢e-d!, since (from Eq.11)
—f, edI=TPf ,p dO.
efg Notice that the area of the two triangles in Fig. E2b a-c-
d and a-d-e are equal, henfge-di is the same on the link
f-a as along a-b. Fig. E2 has illustrated how a water-mass
contrast at one point can create a localized pair of non-zero
€ vectors. We now illustrate how the technique of adding a
@’ (x, y) field can redistribute thig error in space to mini-
mize|e|2.

To do this we use the same algorithm as described in

. In_our test prob!em we have constrgcted_a localized he_I'C'Sect. 3 but with an idealized field of density gradient errors,
ity dipole from a single anomalous point using @ N-S section, 5 initial condition instead of anfield calculated from a

repeateq to the east and west as dgspnbed garher. Fig. E%?ensity surface in a three-dimensional hydrography. The test
shows nine grid points out of this helicity-free field. Now we case is made up of a 553 point grid. From every point we
make bottle a in Fig. E2 warmer and saltier. It still continues, e an equation in the east-west direction and one in the
to talk neutrally to bottles d and h that are at the same pres;, v <\ 4h direction

sure as bottle a and have the same salinity and temperature -, o« first test case we build a block (a square region
as the undisturbed bottle a. The same bottles are shown ingf our grid, as seen in Fig. E3a and b) of north-south den-
p—0 d_|agram in Fig. E2b. Al the data here are on the Samesity gradient errors of strength 12 in arbitrary dimensionless
approximately neutral surface. FrowhcDougall and Jack- units. These values af imply that

ett (1988, Eq. (38), we know that the pitch of a neutral he- '

lix 8z is approximately equal te-6zN2 g~ 1~7° [[ , p d©®

e f g p
(@) (b)

Fig. E2. (a)Nine grid points of an initially helicity-free ocean are
shown in which we perturb a single point (see text for a description)
and(b) the same points in g — ©-diagram.

(this follows from Eq.11 above). If we go around the two BO (58— §Wesh — O (@%— @Y = 0

left-hand boxes of Fig. E2a in an anti-clockwise direction, g gnorth _ gsouthy _ ;0 gnorth _ gsouth _ 1 (ED
as shown by the arrows (correspondingly going around the _ _ o _

loops in thep — ® diagram in Fig. E2b also in an anti-  for the grid points within the white block and

clockwise direction), we can see that the neutral helicity in

both Ioct)Jps is of ;[]he same sirg];n dueI to the t:cian%ular areaﬁ in  pOgeast_ gwesy _ 0 geast_ gwes _ g
Fig. E2b being the same. This is also true for the two right- o . cout ®, north sout

hand boxes of Fig. E2a, just with opposite sign. Bo(S - 5% @ — % =0 (E2

In this case all the links are exactly neutral except for the for all others.
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5 10 15 2 2 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

(a) (left) A block of density gradient errors with every ermothe square block initially pointing
from the south to the north having strength 12 in dimensiemilenits (the block is marked by &
white surrounding), color is thé’-field, the arrows show the finalvectors; (right)V,, x €™*
of the resultinge-field.

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Fig. E3. Solutions for the simplified density gradient errors as described in the text.

If we now minimizee2, we come to the solution seen in values ofV, x€e™". Thee"W vectors are spread beyond the
Fig. E3a (right), colour being the perturbddfield, ', and initial white box and rotate around the strips of positive and
the vectors showing"®¥, the new field of density gradient negative helicity.
errors with minimizede?. Fig. E3a (left) shows/, xe. We
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