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ABSTRACT

In the absence of diapycnal mixing processes, fluid parcels move in directions along which they do not en-

counter buoyant forces. These directions define the local neutral tangent plane. Because of the nonlinear nature

of the equation of state of seawater, these neutral tangent planes cannot be connected globally to form a well-

defined surface in three-dimensional space; that is, continuous ‘‘neutral surfaces’’ do not exist. This inability to

form well-defined neutral surfaces implies that neutral trajectories are helical. Consequently, even in the ab-

sence of diapycnal mixing processes, fluid trajectories penetrate through any ‘‘density’’ surface. This process

amounts to an extra mechanism that achieves mean vertical advection through any continuous surface such as

surfaces of constant potential density or neutral density. That is, the helical nature of neutral trajectories causes

this additional diasurface velocity. A water-mass analysis performed with respect to continuous density surfaces

will have part of its diapycnal advection due to this diasurface advection process. Hence, this additional dia-

surface advection should be accounted for when attributing observed water-mass changes to mixing processes.

Here, the authors quantify this component of the total diasurface velocity and show that locally it can be the

same order of magnitude as diasurface velocities produced by other mixing processes, particularly in the

Southern Ocean. The magnitude of this diasurface advection is proportional to the ocean’s neutral helicity,

which is observed to bequite small in today’s ocean. The authors also use a perturbation experiment to show that

the ocean rapidly readjusts to its present state of small neutral helicity, even if perturbed significantly. Addi-

tionally, the authors show how seasonal (rather than spatial) changes in the ocean’s hydrography can generate

a similar vertical advection process. This process is described here for the first time; although the vertical ad-

vection due to this process is small, it helps to understand water-mass transformation on density surfaces.

1. Introduction

Diapycnalmixing in the deep ocean is a key process by

which dense water that sinks near the poles is made less

dense and returned to the sea surface as part of the

thermohaline circulation. However, in addition to the

diapycnal motion that is caused by diapycnal mixing,

there are several other physical processes that can cause

diapycnal motion. Double-diffusive convection is per-

haps the best known of these additional processes. In ad-

dition, there is the diapycnal motion caused by cabbeling

and thermobaricity, with both being caused by a combi-

nation of isopycnal mixing and the nonlinear nature of

the equation of state. Neither cabbeling nor thermobar-

icity has a signature in the dissipation of mechanical en-

ergy; that is, both cabbeling and thermobaricity operate

independently of the amount of diapycnal mixing.

There are (at least) three other processes by which

seawater can migrate through isopycnals without the

need for diapycnal mixing. First, submesoscale coherent

vortices, by maintaining anomalous water-mass char-

acteristics, are able to migrate through density surfaces

(McDougall 1987c). This process is essentially a finite

amplitude version of thermobaricity. The second and
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third processes are the subject of the present paper: the

second is the mean vertical motion achieved by the

ocean circulation because of the helical nature of neutral

trajectories in space, and the third is a temporal analog

of this neutral helical advection. This third temporal

helical motion is described in this paper for the first time.

In the remainder of this introduction, we discuss the

previous work that has appeared in the literature on the

spatial neutral helical advection process.

Reid and Lynn (1971) were the first to discuss the

possibility of neutral surfaces being ill defined. They

showed that lateral mixing along a locally referenced

potential density surface at one pressure, followed by

a pressure excursion and then isopycnal mixing at the

new pressure, and finally a subsequent movement back

to the original pressure results in a difference in the po-

tential density at the original pressure. In this way, they

showed that a neutral trajectory could be helical in na-

ture. The example discussed by Reid and Lynn (1971)

did not come from the real ocean, and the authors

thought that this process would not be important in the

real ocean. Ivers (1975) discussed the same process but

thought (incorrectly) that such helical motion could only

occur if the water column had neutral vertical stability

(i.e., zero buoyancy frequency) somewhere. McDougall

and Jackett (1988) introduced theoretical relationships

between the pitch of the neutral helix and the nature

of the thermodynamic variables in space, introducing

the concept of neutral helicity. The concept introduced

by Reid and Lynn (1971) of isopycnal mixing at two dis-

tinctly different pressures is the physical process that un-

derlies the theory developed by McDougall and Jackett

[1988; see Fig. 1a of McDougall and Jackett (1988) for a

sketchof the concept introducedbyReid andLynn (1971)].

Theodorou (1991) has analyzed data from the Mediterra-

nean and from the northern North Atlantic to quantify the

vertical pitch of the neutral helix in these locations, finding

the vertical ambiguity to be no more than 4 m.

2. Consequences of neutral helicity

It is known that, in the absence of diapycnal mixing

processes, a fluid moves along the neutral tangent plane

(McDougall 1987a; McDougall and Jackett 1988). Lo-

cally, we can define these neutral tangent planes (i.e., the

direction along which a fluid parcel can move without

working against buoyancy forces; McDougall 1987a);

however, because of the helical nature of neutral tra-

jectories, these neutral tangent planes cannot be con-

nected globally to form a continuous ‘‘density’’ surface.

Therefore, density surfaces such as potential density

surfaces or approximately neutral surfaces are only ap-

proximations to the directions along which fluid parcels

move. When discussing continuous ‘‘density’’ surfaces,

we therefore put density into quotes to remind that we

are talking about surfaces along which a certain density

variable (such as potential density or neutral density) is

constant, even though water parcels following these sur-

faces do have to dowork against buoyant restoring forces.

It has been shown that the error between a continuous

‘‘density’’ surface and the neutral tangent planes can be

reduced substantially by using appropriate techniques

(Jackett and McDougall 1997; Klocker et al. 2009a,b;

D. R. Jackett et al. 2009, unpublished manuscript), but it is

impossible to define a surface that has a slope equal to the

neutral tangent plane at every point. Such a surface would

only be possible if neutral helicity in the ocean, defined as

Hn [ (aQ$Q�bQ$S) �$3 (aQ$Q�bQ$S), (1)

is everywhere zero (McDougall and Jackett 1988). Here,

aQ$Q2 bQ$S is normal to the local direction of mixing

(i.e., the neutral tangent plane), where aQ is the thermal

expansion coefficient and bQ is the saline contraction

coefficient with respect to conservative temperature Q.

Neutral helicity can also be written as any of the fol-

lowing three expressions (McDougall and Jackett 2007):

Hn 5bQTQ
b $p � $S3$Q,

5 p
z
bQTQ

b $p
S3$

p
Q � k,

5 g�1N2TQ
b $n

p3$
n
Q � k,

’ g�1N2TQ
b $a

p3$
a
Q � k, (2)

where Tb
Q is the thermobaric parameter,

TQ
b 5bQ(aQ/bQ)

p
. (3)

Here, $a is the gradient along an approximately neu-

tral surface. The derivation of Eq. (2) can be found

in McDougall and Jackett (1988, 2007). The last line of

Eq. (2) is an approximation to neutral helicity. It would

be an exact identity if the gradients of pressure and

temperature in the approximately neutral surface were

equal to those in the neutral tangent plane, $np and

$nQ. In most regions, the ocean seems to adjust itself

so that neutral helicity is close to zero, as demonstrated

in McDougall and Jackett (2007). However, as long as

neutral helicity is not exactly equal to zero, a mathemat-

ically well-defined density surface does not describe the

direction of lateral mixing. Because of this resulting slope

error, there is a fictitious diapycnal diffusivity of density

(Klocker et al. 2009a) and an additional diapycnal ad-

vection through any continuous ‘‘density’’ surface.

The diapycnal advection through continuous ‘‘den-

sity’’ surfaces can be derived in terms of the diapycnal
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velocity through neutral tangent planes by the following

argument: First, we note the conservation equations for

salinity and conservative temperature,

S
t
j
n
1V � $

n
S1 eS

z
5 h�1$

n
� (hK$

n
S)1 (DS

z
)
z

and

(4)

Q
t
j
n
1V � $

n
Q1 eQ

z
5 h�1$

n
� (hK$

n
Q)1 (DQ

z
)
z
, (5)

where $n is the gradient operator in the neutral tangent

plane; V is the thickness-weighted lateral velocity, av-

eraged between a pair of closely spaced neutral tangent

planes whose average vertical separation is h; and S and

Q are the thickness-weighted salinity and conservative

temperature. An expression for the diapycnal velocity e

through neutral tangent planes is obtained in terms of

mixing processes by cross multiplying Eqs. (4) and (5) by

bQ and aQ, respectively, and then substracting to find

e
N2

g
5aQ(DQ

z
)� bQ(DS

z
)1 h�1aQ$

n
� (hK$

n
Q)� h�1bQ$

n
� (hK$

n
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5aQ(DQ
z
)� bQ(DS

z
)�KCQ
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Q � $

n
Q�KTQ

b $n
Q � $

n
p, (6)

where Cb
Q and Tb

Q are the cabbeling and thermobaric

coefficients defined in McDougall (1987b) and Klocker

and McDougall (2010).

The right-hand side (rhs) of Eq. (6) describes small-

scale turbulent mixing (the first two terms) and pro-

cesses due to the nonlinear equation of state (the third

and fourth terms): namely, cabbeling and thermobar-

icity. These terms on the right-hand side of Eq. (6) are

explained in detail in Klocker andMcDougall (2010) and

will not be discussed here.

We nowwrite thematerial derivative of S andQ on the

left-hand side of Eqs. (4) and (5) with respect to contin-

uous ‘‘density’’ surfaces so that they become

S
t
j
a
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(8)

Here, ea is the vertical velocity through the continuous

approximately neutral surface (or any other continuous

‘‘density’’ surface), andV is now the thickness-weighted

lateral velocity averaged between a pair of closely spaced

approximately neutral surfaces. These equations are again

cross multiplied by the same bQ and aQ coefficients and

substracted, obtaining [using Eq. (6)]

ea 5 e1
g

N2
V � (bQ$

a
S� aQ$

a
Q)

1
g

N2
(bQS

t
j
a
� aQQ

t
j
a
).

(9)

From Klocker et al. (2009a) we know that

g

N2
(bQ$

a
S� aQ$

a
Q)5$

n
z� $

a
z5 s; (10)

that is, s is the vector slope difference between the slope

of a neutral tangent plane and the slope of the approxi-

mately neutral surface (or any other continuous ‘‘den-

sity’’ surface). Hence, the middle term on the right-hand

side of Eq. (9), V � s, is the vertical velocity through the

approximately neutral surface due to the lateral flow oc-

curring along the neutral tangent plane. Because of the

slope error s, this vertical velocity through approximately

neutral surfaces depends on the surface used. When the

approximately neutral surface is formed very accurately,

such as the v surfaces by Klocker et al. (2009a), V � s is
almost solely due to neutral helicity,1 and we label V � s
as ehel, the vertical velocity through the v surface due to

neutral helicity.

The term ehel can be understood by looking at Fig. 1.

In this figure, the blue surface is an approximately neu-

tral surface ga, the red arrow describes a fluid trajectory

(which in the absence of mixing processes is along local

neutral tangent planes) with lateral velocity V, and u
(tanu 5 jsj) is the angle between the approximately neu-

tral surface and the fluid trajectory. Note that, if Eq. (9) is

used in a neutral tangent plane, the slope error [Eq. (10)]

would equal zero, leading to ehel5 0. This shows that it is

necessary to take this diapycnal advection due to neutral

helicity ehel into account when using continuous ‘‘den-

sity’’ surfaces for water-mass analysis (where s 6¼ 0) but

1 Because of the way the algorithm by Klocker et al. (2009a)

works, we know that in an ocean with zero neutral helicity this al-

gorithm will find a surface on which the slope error s is zero. How-

ever, by using different weights when solving the set of equations by

the direct inversion or the iterative technique, this algorithm would

result in a slightly different v surface in an ocean with nonzero

neutral helicity. Nevertheless, in the case of an ocean with zero

neutral helicity, all choices of weight would lead to a surface with

zero slope error.
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not when doing this water-mass analysis locally with re-

spect to a neutral tangent plane (where s 5 0).

Similarly, the last term in Eq. (9) can be written as

g

N2
(bQS

t
j
a
� aQQ

t
j
a
)5

�rltja
rlz

5 z
t
j
n
� z

t
j
a
, (11)

namely, the vertical velocity of the neutral tangent plane

(at fixed latitude and longitude) minus the vertical ve-

locity of the approximately neutral surface, with rl being

the locally referenced potential density. This is then the

vertical velocity through the approximately neutral sur-

face due to water parcels simply moving vertically while

staying on the neutral tangent plane (in time at fixed x

and y). In section 5 of this paper, we call this vertical

velocity [Eq. (11)], which is described in this work for the

first time etmp.

Rewriting Eq. (9), we can express the vertical velocity

through an approximately neutral surface ea as

ea 5 e1V � ($
n
z� $

a
z)1 z

t
j
n
� z

t
j
a
,

5 e1 ehel 1 etmp. (12)

Note that the words ‘‘diapycnal’’ and ‘‘isopycnal’’ are

generally used to describe diasurface and along-surface

flow as well as flow through and along a neutral tangent

plane. To be more accurate about which directions are

meant when using the terms diapycnal and isopycnal, we

recommend the use of the symbol e for the diapycnal

velocity through a neutral tangent plane and ea for the

diapycnal flow through a well-defined (i.e., continuous)

‘‘density’’ surface, which we frequently call an approx-

imately neutral surface.

The aim of this paper is to quantify the diapycnal ve-

locities attributable to neutral helicity. We will show that

in some regions these diapycnal velocities are of the same

order of magnitude as those caused by the usual water-

mass transformation processes. This is particularly true for

the Southern Ocean, where these ‘‘extra’’ diapycnal ve-

locities need to be taken into account when analyzing

water-mass transformation on continuous ‘‘density’’ sur-

faces. To quantify these diapycnal velocities, we calculate

ehel at every point on a surface and sum the diapycnal

transport from these velocities (an Eulerian perspective).

An alternative method (McDougall and Jackett 1988) is

to followneutral trajectories in the ocean to calculate their

vertical excursion from an approximately neutral surface

(a Lagrangian perspective). The latter method is based on

two assumptions that are hard to justify in the ocean

(discussed in the appendix), and therefore we do not use

this approach here. A more sophisticated Lagrangian ap-

proach would be to use full Lagrangian particle trajecto-

ries of millions of parcels in an ocean model.

We note that, in calculating the diapycnal velocities at-

tributable to the slope error, s in Eq. (10) does not have

to be caused by neutral helicity but can be a result of

the definition of the continuous ‘‘density’’ surface used.

We will demonstrate how ehel can change when using

different continuous ‘‘density’’ surfaces by comparing di-

apycnal velocities through accurate approximately neutral

surfaces [e.g., the gn surfaces by Jackett and McDougall

(1997) or the v surfaces by Klocker et al. (2009a,b)] with

those through potential density surfaces. To distinguish

ehel through these various surfaces, we will use the sym-

bols ehelv , ehelgn , ehels0
, etc. for ehel through v surfaces, gn sur-

faces, and s0 surfaces, respectively.

The estimates of the diapycnal velocities ehel through

the best type of approximately neutral surfaces depend

on the magnitude of neutral helicity in the ocean. From

McDougall and Jackett (2007), we know that the ocean

is in a state in which neutral helicity is relatively small

but nonzero. Therefore, we conduct an experiment in

which we push the ocean into a state in which neutral

helicity is significantly larger than in its normal state.

This experiment helps to understand if or how the ocean

adjusts back to its normal state and how this perturba-

tion affects the diapycnal velocity ehel.

We will also show how temporal changes in the

ocean’s hydrography can cause vertical advection etmp

because of these same nonlinear effects. The idea be-

hind this process is similar to the diapycnal advection

FIG. 1. Schematic of the diapycnal velocity ehel due to neutral

helicity. Here, we ignore all other diapycnal processes, such as

cabbeling, thermobaricity, and small-scale turbulent mixing. The

blue surface shows an approximately neutral surface (a ga surface);

the red arrow shows the path of a fluid trajectory (which is along the

neutral tangent plane) with lateral velocity V; u(tanu ’ jsj) is the
angle between the ga surface and the neutral tangent plane; and ehel

is the diapycnal velocity due to neutral helicity V � s.
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due to neutral helicity, as described earlier; however,

instead of being dependent on the spatial variation of

S, Q, and p, this vertical advection is due to seasonal

changes of the ocean’s hydrography.

3. Quantifying diapycnal advection through
continuous ‘‘density’’ surfaces

To quantify the diapycnal advection due to neutral

helicity, we need a dataset with salinity, temperature,

pressure, and lateral velocity. Because of the sparseness

of velocity measurements in the ocean, we have to use

model output for this analysis. The model we use here is

version 4 of theModularOceanModel (MOM4;Griffies

et al. 2004). The standard MOM4 configuration is used,

but with conservative temperature (McDougall 2003)

instead of potential temperature as the model’s con-

served temperature variable, although this change is not

important for the results in this paper. This model con-

figuration uses an isopycnal diffusivity of 1000 m2 s21,

the vertical mixing scheme by Bryan and Lewis (1979),

and the McDougall et al. (2003) equation of state. The

‘‘density’’ surfaces we use here to compute ev
hel are v

surfaces, which are the most accurate continuous ‘‘den-

sity’’ surface approximations to describing neutral tan-

gent planes with the residual slope errors being caused

almost solely by neutral helicity (Klocker et al. 2009a,b).

The term ev
hel is studied on two different v surfaces:

v 5 27.25 kg m23 and v 5 27.75 kg m23 (Fig. 2). The

average pressures of these surfaces are 1000 and 1800 dbar,

respectively. These particular surfaces were chosen be-

cause both of these surfaces extend over most parts of

the global ocean and cover quite different depth ranges.

The results shown here are very similar on surfaces be-

low and above these two surfaces. The highest values

of ev
hel occur in the Southern Ocean, with large values

also occurring close to the outcropping regions in the

North Atlantic. Along most of the Antarctic Circum-

polar Current (ACC), the magnitude of the diapycnal

velocities is greater than 1027 m s21. These velocities

appear as both upward and downward diapycnal veloci-

ties. The regions of large ev
hel are created by neutral hel-

icity forming from large isopycnal pressure gradients

and isopycnal temperature gradients [see Eq. (2)] oc-

curring near outcropping density surfaces. The main

change we observe ongoing from a less dense surface

to a denser one is that the regions of high ev
hel in the

Southern Ocean are more confined to a thinner region

on the less dense surfaces and are wider in the latitudinal

direction on denser surfaces.

Another way of looking at the diapycnal advection

caused by neutral helicity is to use zonal-mean values of

ev
hel (averaged along v surfaces). We consider the zonal

mean of ev
hel over each of the Atlantic Ocean, Pacific

Ocean, and Indian Ocean basins separately (Fig. 3). The

southern Atlantic Ocean (Fig. 3a) has a positive (up-

ward) ev
hel in the upper layers and negative (downward)

ev
hel beneath. In contrast, the Pacific Ocean (Fig. 3b)

shows positive values of ev
hel on the northern limit of the

Antarctic Circumpolar Current and negative values of

ev
hel on the ACC’s southern extent. The Indian Ocean

(Fig. 3c) is dominated by a negative ev
hel. Almost the

entire diapycnal velocity caused by neutral helicity is

in the Southern Ocean. The North Atlantic is the only

other region where we can see large values of ev
hel. How-

ever, the ev
hel values in theNorthAtlantic aremuch smaller

than in the Southern Ocean, and these values are con-

fined to single grid cells instead of forming large patches

of one sign.

To further understand the physics behind the diapycnal

advection due to neutral helicity, we compare the zonal

mean (averaged along v surfaces) of ev
hel (Fig. 4a), the

zonal mean of gN22Hn (Fig. 4b), and the zonal mean of

the slope errors s (Fig. 4c). Large values of ev
hel, gN22Hn,

FIG. 2. Diapycnal advection due to neutral helicity ev
hel on (a) an

v 5 27.25 kg m23 surface (with an average pressure of approxi-

mately 1000 dbar) and (b) an v 5 27.75 kg m23 surface (with an

average pressure of approximately 1800 dbar). Red patches show

an upward diapycnal velocity, and blue patches show a downward

diapycnal velocity. The largest diapycnal velocities occur in the

Southern Ocean and the North Atlantic, where the isopycnal gra-

dients of pressure and conservative temperature and therefore

neutral helicity are the largest.
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and the slope errors tend to occur in similar locations, but

the signs and shape of these values can be different. The

difference between neutral helicity and the slope errors is

probably due to the algorithm used to construct v sur-

faces, redistributing the slope errors slightly differently

than one might expect to minimize the slope errors over

the global ocean. The slope errors and ev
hel show very

similar patterns.

We have shown that neutral helicity causes ev
hel on the

order ofO(1027 m s21). In most regions with high values

of ev
hel, patches of positive ev

hel occur with patches of

negative ev
hel and vice versa. Hence, we explore whether

there is a net diapycnal transport due to these velocities

when integrated over the global ocean. We consider the

transports through v surfaces (Figs. 5, 6), s0 surfaces, and

s2 surfaces (Fig. 6). The diapycnal transports through the

v surfaces in Fig. 5 (blue line) exclude data above the base

of the mixed layer, a region where processes other than

neutral physics are dominant. The transports excluding

data above 200 dbar are also considered (black line) and

do not always align with the blue line. This discrepancy

is due to complicated processes in the shallow Southern

Ocean. The algorithm used to construct v surfaces en-

counters numerical issues near the base of the mixed

layer; therefore, we get spikes in our transports, as can

be seen when looking at the blue line in contrast to the

black.

We now look at transports caused by ehel through po-

tential density surfaces (see Fig. 6). For all of the fol-

lowing calculations, data above 200 dbar are excluded.

Figure 6 shows transports associated with ehels0
to be

much larger than the transports associated with ev
hel,

with even the transports through s2 surfaces being ap-

proximately twice as large as those through v surfaces.

The diapycnal transport through the v surfaces is almost

solely due to neutral helicity.

FIG. 3. Zonal mean of ev
hel along v surfaces in (a) the Atlantic

Ocean, (b) the Pacific Ocean, and (c) the Indian Ocean. Red

patches show an upward zonal-mean diapycnal velocity, and blue

patches show a downward zonal-mean diapycnal velocity.

FIG. 4. Zonal mean along v surfaces of (a) the diapycnal advection

ev
hel, (b) gN22Hn, and (c) the slope error s.
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The ehels0
transports show a strong increase with depth.

These larger ehels0
transports occur because potential

density surfaces are further away from being neutral

than v surfaces. The increase of the transports associ-

ated with ehel with depth is due to the increasing pressure

difference from the reference pressure. This can be un-

derstood by looking at the slope difference s between

a potential density surface $sz and a neutral tangent

plane $nz, which can be written as (McDougall 1988)

s5$
n
z� $

s
z5�$

n
Q

Q
z

(m� 1), (13)

where m is defined as

m5
bQ(p)

bQ(p
r
)

r(R
r
� 1)

(R
r
� r)

. (14)

The stability ratio of the water column Rr and r are

defined as

R
r
5

aQQ
z

bQS
z

; r5
aQ(p)/bQ(p)

aQ(p
r
)/bQ(p

r
)
, (15)

where pr is the reference pressure. From Eq. (13), the

slope of a potential density surface differs from the slope

of a neutral tangent plane because of the temperature

gradient along the neutral tangent plane. In the South-

ern Ocean, where this isopycnal temperature gradient is

large and mainly of one sign, Eq. (13) implies a signifi-

cant slope difference of one sign, as shown in the fre-

quency distribution of slope errors for the v surface and

the s0 surface in Fig. 7. In this figure, the slope errors

on the potential density surface are larger than on the v

surface and biased toward positive slope errors giving

an additional ehel transport. Therefore, ehels0
in this case is

not only due to neutral helicity but also due to errors

caused by the way potential density surfaces are defined.

Another reason for increased values of transports

though s0 surfaces are issues concerning regions in which

the vertical stratification ofs0 decreases downward, which

is also why s0 surfaces have not been routinely used as

the vertical coordinate of density coordinate models for

about a decade now (Sun et al. 1999). Therefore, diag-

nostic calculations of the diapycnal velocity, such as ea5
(1/s0

a)(Dsa/Dt), become ill defined where (s0)z 5 0.

Therefore, ehels0
in this case is not only due to neutral

helicity but also due to errors caused by the way po-

tential density surfaces are defined.

Diapycnal transports larger than ev
hel but much smaller

than ehels0
are caused by ehels2

. This is due to s2 surfaces

being less neutral than v surfaces; however, with its ref-

erence pressure chosen to optimize these potential den-

sity surfaces for the entire water column, they are a great

improvement over s0 surfaces. Using a s2 surface also

avoids issues with density inversions in the deep ocean,

which causes a substantial part of ehels0
in the deep ocean.

Because of the minimization procedure used to construct

v surfaces (minimizing the slope error s), we expect ehel to

be caused by neutral helicity (in the case of an idealized

ocean with zero neutral helicity, this minimization pro-

cedure used to construct v surfaces creates a surface with

no remaining slope errors).

The ev
hel transports are smaller than 1 Sv (1 Sv 5

106 m3 s21) for most of the water column. These are

small transports compared to those caused by other forms

of water-mass transformation, such as bottom water pro-

duction, cabbeling, or thermobaricity. However, even

though the global integral of the ev
hel transports is not large,

FIG. 5. A vertical profile of diapycnal transports caused by the

diapycnal advection through v surfaces. The blue line excludes data

shallower than the mixed layer, and the black line excludes data

shallower than 200 dbar. The spikes of the blue line are due to

problemswith the construction ofv surfaces close to themixed layer.

FIG. 6. A vertical profile of diapycnal transports caused by the

diapycnal advection through v surfaces, s0 surfaces, and s2 sur-

faces. The vertical black lines show 0 and 61 Sv. All data above

200 dbar are excluded.
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the regional velocities caused by ev
hel [O(1027 m s21)] are

comparable to diapycnal velocities caused by cabbeling

and thermobaricity, as quantified by McDougall (1987b).

From Fig. 2, we know that ehel appears in positive and

negative patches, which cancels much of the diapycnal

transport shown in the previous figures. In Fig. 8, we

therefore show ehel for an v surface, a s0 surface, and

a s2 surface, all with an average pressure of 1200 dbar.

This figure shows how going from a surface that is far

away from being neutral (the s0 surface in Fig. 8a), to

a surface that is closer to being neutral (the s2 surface in

Fig. 8b), and to a surface that is as close as we can get to

being neutral (thev surface in Fig. 8c) the patches of ehel

reduce from large regions of the global ocean to regions

where neutral helicity is large (e.g., along the ACC). In

these regions of high neutral helicity, it will be impos-

sible to avoid diapycnal transports resulting from ehel.

Further improvements to minimize ehel might be made

by changing weights in the algorithm used to construct v

surfaces to align the patches of slope errors more accu-

rately with patches of increased neutral helicity, but it is

impossible to achieve zero ehel in an ocean with nonzero

neutral helicity.

4. The ocean’s adjustment toward small
neutral helicity

In the last section, we quantified ehel in today’s ocean:

that is, an ocean with small neutral helicity (McDougall

and Jackett 2007). However, what happens if the ocean

is perturbed from its state with small neutral helicity

(i.e., its ‘‘skinny’’ state, occupying little volume in three-

dimensional S–Q–p space; McDougall and Jackett

2007)? Will it adjust back to this skinny state? Using

approximately neutral surfaces of any type, including

those of Jackett and McDougall (1997), D. R. Jackett

et al. (2009, unpublished manuscript), and Klocker et al.

(2009a), for water-mass analysis essentially relies on neu-

tral helicity being small in the ocean. Large neutral helicity

would make the use of density surfaces for water-mass

analysis impossible, causing large values of ehel and Df

(Klocker et al. 2009a).

Here, we will perturb today’s ocean to see how or if it

adjusts back to a state with small neutral helicity. We

therefore start with a model ocean that has small neutral

helicity Hn: that is, small values of

$
p
S0 3$

p
Q0 � k, (16)

whereQ0 and S0 are the initial conservative temperature

and salinity values. Now, we introduce the perturbation

temperatureQ9(x) and S9(x)5 (aQ/bQ)(S,Q, p)Q9. Here,

the perturbation values only vary in the zonal direction.

FIG. 7. The frequency distribution of the magnitude of slope er-

rors s. Red is for an v 5 27.25 kg m23 surface, and blue is for a

s0 surface with the same average pressure as the v 5 27.25 kg m23

surface. Note the biased distribution of the slope errors on the s0

surface.

FIG. 8. (a) ehels0
(b) ehels2

and (c) ev
hel are shown on surfaces with

an average pressure of 1200 dbar.
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The perturbation conservative temperatures are chosen

to vary zonally with the shape of a sine curve with

a maximum temperature perturbation of 28C with one

cycle around the globe. The salinity perturbations are

chosen to keep the density perturbations zero. These

perturbations are shown in Figs. 9a,b.

Introducing these perturbations, we derive a quantity

proportional to the perturbation neutral helicity,

$
p
(S0 1 S9)3$

p
(Q0 1Q9) � k� $

p
S0 3$

p
Q0 � k

5$
p
S0 3$

p
Q9 � k1 aQ

bQ
$
p
Q93$

p
Q0 � k,

5$
p
Q93 �$

p
S0 1

aQ

bQ
$
p
Q0

� �
� k. (17)

In this equation, the bracket in the last line would equal

zero if $pr
05 0 (where r0 is the initial density), in which

case the perturbation neutral helicityHn9 would be zero

as well. The perturbation neutral helicity is therefore the

largest in regions in which the gradient of density along

isobars is at maximum, as is the case in the Southern

Ocean. With the zonal perturbation of temperature and

the meridional gradient of density along isobars in the

Southern Ocean, $pQ9 3 $pr is large; therefore, the

imposed perturbed neutral helicity is large. This can be

seen in Fig. 9d, which shows high values of neutral hel-

icity in the Southern Ocean with the maxima in regions

where the gradients of the perturbation temperatures

and salinities have their maxima.

In Fig. 10, a two-dimensional view of the hydrography

is shownwith salinity plotted against a linear combination

of conservative temperature and pressure of the Atlantic

Ocean. Colors represent latitude, with blue in the south

and red in the north. FromMcDougall and Jackett (2007),

we know that the ocean would be represented on a sin-

gle surface in S–Q–p space if Hn 5 0. In this figure, the

panel representing the perturbed state (Fig. 10a) shows

that the hydrography occupies a significant volume in

this space, whereas the panel representing the original

state (Fig. 10b) occupies significantly less volume and is

therefore closer to being on a surface, which we would

expect from an ocean with small Hn. This additional

volume can be seen better when plotting the perturbed

hydrography on a three-dimensional S–Q–p diagram (not

shown here) and rotating this diagram.

The evolution of neutral helicity after the perturba-

tion is shown in Fig. 11, and its global root-mean-square

values are shown in Fig. 12. These figures shows how the

enhanced values of neutral helicity caused by the per-

turbation of conservative temperatures and salinities de-

creaseswith time, reaching levels close to the initial ocean

before the perturbation after approximately 50 yr. From

Fig. 13, which shows the temperature difference of the

evolving perturbed ocean and the initial ocean, it is ap-

parent that, apart from the Southern Ocean, the temper-

ature takes much longer to recover after the perturbation

than neutral helicity. This is likely due to the increased

isopycnal diffusion caused by the enhanced temperature

and salinity gradients.

Changes in the diapycnal transports caused by non-

linearities in the equation of state of seawater (i.e., cabb-

eling, thermobaricity, and the diapycnal advection due to

neutral helicity) can be seen in Fig. 14. These transports,

FIG. 9. (a) Q, (b) S, and (c),(d) Hn perturbations on a pressure level of approximately 2400 dbar.
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calculated on an v 5 27.75 kg m23 surface, rapidly in-

crease to large values of up to almost 10 Sv quickly after

the perturbation and decrease substantially after approx-

imately 25 yr. Horizontal plots of these transports on the

same v surface are shown in Fig. 15. In these horizontal

plots, one can see that, even though ev
hel is not the most

dominant diapycnal advection when integrated globally

compared to cabbeling and thermobaricity, locally it seems

to be the most dominant form of diapycnal advection.

The most important point to note here is the rapid ad-

justment of the ocean back to a state with small neutral

helicity. Even though the perturbation used here is of

unrealistically largemagnitude, the ocean readjusts quickly

and the slope errors and therefore ev
hel readjust back to

very similar values as estimated for today’s ocean.

5. Vertical advection caused by temporal changes
in the ocean’s hydrography

The diapycnal advection due to neutral helicity, as

described in the last section, is due to the spatial varia-

tion of temperature and salinity in the ocean’s hydrog-

raphy. Here we will describe a similar process; however,

in this case it is due to the temporal changes of salinity

and temperature in the ocean. This vertical advection is

what we call etmp. We look at the S–Q–p values of one

cast at a time and calculate the local direction of mixing

(in pressure and time) between two realizations of the

same cast separated in time by a month. We do this for

each month of an annual cycle, beginning and finishing

in January. The left side of Fig. 16 shows the Q–p dia-

gram of such a ‘‘seasonal’’ neutral trajectory. We know

that the depth change around a closed loop (in this case

in time) dz can also be calculated by (McDougall and

Jackett 1988)

�dzN2g�1 ’TQ
b

þ
t

p dQ. (18)

The rhs of Eq. (18) is equal to the enclosed area in the

Q–p diagram in Fig. 16. In this figure, we can also see the

difference in pressure between January of the first year

and January of the second year (see the enlargement

on the right of the Q–p diagram). This process is physi-

cally similar to the helical nature of neutral trajectories

(McDougall and Jackett 1988); however, instead of spa-

tial variations of the ocean’s hydrography, we are looking

at its temporal variations [cf. Eqs. (18) and (A1)].

We construct an example of this depth change due to

temporal changes (Fig. 17). As an initial condition, we

chose S–Q–p values on an v surface with an average

pressure of approximately 800 dbar. Most of this vertical

velocity is confined to a narrow region along the Ant-

arctic Circumpolar Current. Locally, the vertical veloc-

ities can exceed 1027 m s21. Larger cohesive regions

have vertical velocities around 1028 m s21, cumulating as

a downward vertical transport of approximately 0.1 Sv.

This vertical velocity resulting from seasonal changes of

hydrography is found to decrease with depth. Note that

these vertical velocities are approximately one order of

magnitude smaller than the diapycnal advection due to

ehel. These estimates of etmp assume the seasonal cycle of

S–Q–p values to be periodical; that is, the hydrography in

the first year is the same as the hydrography of the fol-

lowing year. Aperiodic seasonal changes in the hydrogra-

phy have not been looked at in this work andmight change

estimates of etmp. Additionally to the seasonal changes in

hydrography, another source of temporal changes in the

ocean is associated with mesoscale eddies, which has not

been looked at here.

FIG. 10. A two-dimensional view of the Atlantic Ocean with salinity being plotted against a linear combination of

conservative temperature and pressure: (a) perturbed and (b) initial state. Color represents latitude, with blue in the

south and red in the north.
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6. Summary and conclusions

We have derived a ‘‘density’’ conservation equation

with respect to continuous ‘‘density’’ surfaces, showing

that two ‘‘extra’’ processes have to be accounted for when

using continuous ‘‘density’’ surfaces as a reference frame

instead of neutral tangent planes. These processes are

the diapycnal advection due to neutral helicity ehel and

the vertical advection due to the temporal variation of the

ocean’s hydrography etmp. Using continuous ‘‘density’’

surfaces as the reference frame for water-mass analysis

has been common for quite some time, but the two extra

processes described here have been ignored.

Using the output of a numerical oceanmodel, we have

quantified the diapycnal advection ehel caused by the ill-

defined nature of neutral surfaces. This diapycnal ad-

vection arises as a result of using continuous ‘‘density’’

surfaces as a framework for viewing ocean circulation. If

the equation of state of seawater were linear, this ap-

proach would be correct and diapycnal flow would only

occur as a result of the usual well-understood mixing

such as small-scale turbulent mixing and double-diffusive

convection. Because the equation of state is nonlinear

and the neutral helicity Hn is nonzero in the ocean, we

have to deal with the helical nature of neutral trajecto-

ries (McDougall and Jackett 1988), which means that,

depending on the path a neutral trajectory takes, it will

end up at some distance above or below a continuous

‘‘density’’ surface. This effect therefore always produces

FIG. 11. Neutral helicity at certain times after the perturbation are shown on a pressure level of 2400 dbar:

(a)–(f) after 1 to 50 yr.

FIG. 12. The evolution of neutral helicity at the 2500-dbar isobar

from the time of perturbation until 50 yr after.
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diapycnal advection, no matter which density surface we

use. It is not possible to quantify this diapycnal advec-

tion in a climatology because of the lack of lateral ve-

locities, but McDougall and Jackett (2007) have shown

that neutral helicity is small in a climatology, which gives

us confidence that this diapycnal advection is small in

these datasets as well.

In this work, we show that this diapycnal velocity ehel

can be on the order of 1027 m s21. The highest values

of ehel occur in the Southern Ocean and in the North

Atlantic. In these regions, ehel is of a similar order of

magnitude to diapycnal velocities caused by small-scale

turbulent mixing and also by cabbeling and thermobar-

icity, which have been quantified by McDougall (1987b)

and in this paper. This means that, when one is interested

in quantifying water-mass transformation processes, such

as cabbeling, thermobaricity, or small-scale turbulent mix-

ing, it is important to take ehel into account.

The regions of substantial ehel are observed to corre-

spond closely to regions where neutral helicity, Hn 5
g21N2Tb

Q$ap 3 $aQ � k, is high. Most regions of the

global ocean seem to have adjusted in a way to attain

small values of neutral helicity (McDougall and Jackett

2007). The main exception seems to be the outcropping

regions: that is, the regions where the atmosphere has

a chance to modify deep water masses. This atmospheric

FIG. 13. Temperature changes from the ocean after the perturbation are shown on a pressure level of 2400 dbar:

(a)–(f) after 1 to 50 yr.

FIG. 14. The transports caused by nonlinearities in the equation

of state of seawater are shown from the time of the Q and S per-

turbation until 50 yr after on an v 5 27.75 kg m23 surface. The

blue line shows transports due to cabbeling ecab, the red line shows

transports due to thermobaricity etherm, and the green line shows

transports due to neutral helicity ehel.
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modification could act as a perturbation of the ocean

from a state with very small neutral helicity.

We find that net global diapycnal transports due to

ev
hel are less than 1 Sv on most v surfaces. Regionally, this

transport can be either upward or downward. Therefore,

even though in certain regions the diapycnal advection

due to neutral helicity can be significant, the globally

integrated transports remain relatively small. To un-

derstand what happens if we use less accurate density

surfaces for our calculations for ehel, we repeated the

FIG. 15. Diapycnal velocities due to nonlinearities in the equation of state of seawater are shown 5 yr after the

perturbation ofQ and S on an v5 27.75 kg m23 surface. These are (a) ecab, the diapycnal velocity due to cabbeling;

(b) etherm, the diapycnal velocity due to thermobaricity; (c) ehel, the diapycnal velocity due to neutral helicity; and

(d) the sum of these three diapycnal velocities.

FIG. 16. AQ–p diagram showing the seasonal changes following a neutral ‘‘trajectory’’ throughout one year on one

single cast in space. One can see that the loop in this diagram is almost closed. The gap at the end (January, which is

shownmagnified on the right) is the depth change dz of the neutral trajectory through time. This depth change can be

calculated via �dzN2g�1 ’TQ
b

Þ
p dQ (McDougall and Jackett 1988).
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same procedure as earlier to derive transports through

s0 surfaces and s2 surfaces: that is, transports associated

with ehels0
and ehels2

. This analysis for potential density

surfaces resulted in transports twice as large (for s2) or

larger (for s0) than through v surfaces. Therefore, using

inaccurate density surfaces can lead to very large ‘‘fic-

titious’’ diapycnal transports. We call these transports

fictitious because using these inaccurate density surfaces

leads to ehel not only being due to neutral helicity but

also due to errors made when defining density surfaces.

We have also conducted a perturbation experiment

with a numerical ocean model in which we perturb to-

day’s ocean into a state in which it has enhanced values

of neutral helicity. These enhanced values of neutral

helicity cause an increase in thermobaricity, cabbeling,

and ev
hel in the years following the perturbation and de-

crease to values close to the ones before the perturbation

after approximately 50 yr. This shows that the ocean ad-

justs rapidly toward a state with small neutral helicity.

We also demonstrated how seasonal changes in the

ocean’s hydrography can cause vertical advection. This

vertical advection etmp is on O(1028 m s21) (i.e., an or-

der of magnitude less than the diapycnal advection due

to ehel) and causes a net global downward diapycnal

transport of approximately 0.1 Sv. This form of vertical

advection is therefore relatively insignificant as a water-

mass transformation mechanism.
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APPENDIX

Alternative Ways of Calculating Diapycnal Motion
due to Neutral Helicity

In this work, we quantify the diapycnal velocity due

to neutral helicity ehel. Therefore, after finding an ap-

proximately neutral surface, we have to calculate the

residual slope error s and the lateral velocity V on this

surface. Then, we can calculate ehel everywhere on this

surface, including the transports it causes.We have shown

in this paper that it is necessary to use accurate approx-

imately neutral surfaces. If we use other density surfaces

that do not minimize the residual slope error s, some of

this error is not due to neutral helicity but due to errors

associated with defining, for example, a potential density

surface. This problem can be seen in the frequency dis-

tribution of slope errors in an v surface and a potential

density surface in Fig. 7. The errors on the potential den-

sity surface are larger and unevenly distributed, leading to

a larger transport through this surface.

Instead of calculating ehel at every point on an ap-

proximately neutral surface, one can follow a neutral

trajectory around the ocean and quantify its vertical

displacement from this surface. McDougall and Jackett

(1988) described the vertical displacement of a neutral

trajectory from an approximately neutral surface with

the equation

�dzN2g�1 ’

þ
e � dl5TQ

b

þ
p dQ. (A1)

Here, they relate the depth change dz of a neutral tra-

jectory after doing a closed loop in x–y space in the ocean

to a closed line integral of the density gradient error e

on an approximately neutral surface A. McDougall and

Jackett (1988) argued that, no matter which density sur-

face is used, the depth change dzwill be unchanged. They

assumed that, by using different density surfaces, one

changes the local slope error, but when calculating the

closed line integral around the circular path these large

positive and negative slope errors would cancel.

This argument is based on two assumptions:

d The flow is circular; that is, the mean flow always

comes back to its original horizontal position, even

though its depth might be different.
d The lateral velocity on an approximately neutral sur-

face is equal to the lateral velocity along a whole loop

of a circular trajectory.

FIG. 17. The vertical advection due to temporal changes in the

ocean’s hydrography. Initial S–Q–p values are chosen on an v 5
27.25 kg m23 surface that has an average pressure of approxi-

mately 800 dbar.
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The first point assuming circular flow is definitely not

true in the real ocean, because the pathways of the mean

flow aremore complicated and usually do not come back

to their original horizontal position.

The second assumption assumes the lateral velocity

to be constant with depth. In the real ocean, the lateral

velocity can change quickly with depth and therefore

this assumption is only valid if the approximately neutral

surface is a very close approximation to the neutral tan-

gent planes.

We prefer to not make these two assumptions, so we

calculate ehel as described in this paper instead of using

this technique. For both techniques, we need accurate

approximately neutral surfaces; however, because of

calculating ehel on every point on an approximately

surface, we avoid having to deal with the two assump-

tions described here. It would also be more complicated

to calculate diapycnal transports from vertical displace-

ment of neutral trajectories than from local values for ehel.
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