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Abstract 
In this paper, we focus on efficient construction of tightest matched subtree (TMSubtree) results, for keyword queries on

extensible markup language (XML) data, based on smallest lowest common ancestor (SLCA) semantics. Here,

“matched” means that all nodes in a returned subtree satisfy the constraint that the set of distinct keywords of the subtree

rooted at each node is not subsumed by that of any of its sibling nodes, while “tightest” means that no two subtrees

rooted at two sibling nodes can contain the same set of keywords. Assume that d is the depth of a given TMSubtree, m is

the number of keywords of a given query Q. We proved that if d ≤ m, a matched subtree result has at most 2m! nodes;

otherwise, the size of a matched subtree result is bounded by (d – m + 2)m!. Based on this theoretical result, we propose

a pipelined algorithm to construct TMSubtree results without rescanning all node labels. Experiments verify the benefits

of our algorithm in aiding keyword search over XML data.
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I. INTRODUCTION

Over the past few years, keyword search on extensible

markup language (XML) data has been a hot research

issue, along with the steady increase of XML-based

applications [1-12]. As with the importance of effective-

ness in keyword search, efficiency is also a key factor in

the success of keyword search.

Typically, an XML document is modeled as a node-

labeled tree T. For a given keyword query Q, each result t

is a subtree of T containing each keyword of Q at least

once, where the root node of t should satisfy a certain

semantics, such as smallest lowest common ancestor

(SLCA) [4], exclusive lowest common ancestor (ELCA)

[2, 3, 9], valuable lowest common ancestor (VLCA) [11]

or meaningful lowest common ancestor (MLCA) [5].

Based on the set of qualified root nodes, there are three

kinds of subtree results: 1) complete subtree (CSubtree),

which is a subtree  rooted at a node v that is excerpted

from the original XML tree without pruning any informa-
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tion [2, 4]; 2) path subtree (PSubtree), which is a subtree

 that consists of paths from v to all of its descendants,

each of which contains at least one input keyword [13];

and 3) matched subtree (MSubtree), which is a subtree 

rooted at v satisfying the constraints of monotonicity and

consistency [7, 8]. Let Sv' = {k1,k2,...km'} be the set of dis-

tinct keywords contained in the subtree rooted at a node

v', Sv'  Q. Intuitively, a subtree tv is an MSubtree if and

only if for any descendant node v' of v, there does not

exist a sibling node u' of v', such that Sv'  Su' , which we

call the constraint of “keywords subsumption”. Obvi-

ously, for a given CSubtree ,  can be got by removing

from  all nodes that do not contain any keyword of the

given query in their subtrees, and, according to [8], 

can be got by removing from  all of the nodes that do

not satisfy the constraint of keywords subsumption.

EXAMPLE 1. To find for “CS” laboratory all papers

that are written by “Tom” and published in “DASFAA”

about “XML” from the XML document D in Fig. 1, we

may submit a query Q = {CS, Tom, DASFAA, XML} to

complete this task. Obviously, the qualified SLCA node

is the root node with Dewey [10] label “1”. Therefore, the

CSubtree for Q is D itself, the PSubtree is R1, while the

MSubtree is R2.

From Example 1 we know that a CSubtree, e.g., D,

may be incomprehensible for users, since it could be as

large as the document itself, while a PSubtree could make

users feel frustrated, since it may contain too much irrele-

vant information, e.g., although each leaf node of R1

directly contains at least one keyword of Q, the three

papers with Dewey labels “1.2.3, 1.3.2, 1.3.3” have noth-

ing to do with “XML”. In fact, from Fig. 1 we can easily

know that for “CS” laboratory, the paper written by

“Tom” and published in “DASFAA” about “XML” is the

node with Dewey label “1.2.2”. According to Fig. 1, we

know that the keyword sets for nodes 1.1, 1.2, and 1.3 are

S1.1 = {CS}, S1.2 = {Tom, DASFAA, XML}, and S1.3 =

{DASFAA}, respectively. According to the constraint of

keywords subsumption, all nodes in the subtree rooted at

node 1.3 should be pruned, since S1.3  S1.2. Similarly, the

keyword sets for node 1.2.1, 1.2.2, and 1.2.3 are S1.2.1 =

{Tom}, S1.2.2 = {Tom, DASFAA, XML}, and S1.2.3 = {Tom,

DASFAA}, respectively. According to the constraint of

keywords subsumption, since S1.2.1  S1.2.2 and S1.2.3 

S1.2.2, all nodes in the subtrees rooted at node 1.2.1 and

1.2.3 should be removed. After that, we get the MSub-

tree, i.e., R2, which contains all necessary information

after removing nodes that do not satisfy the constraint of

keywords subsumption, and is more self-explanatory and

compact.

However, most existing methods [3, 4, 6, 9, 14] that

address efficiency focus on computing qualified root

nodes, such as SLCA or ELCA nodes, as efficient as pos-

sible. In fact, constructing subtree results is not a trivial

task. Existing methods [7, 8] need to firstly scan all node

labels to compute qualified SLCA/ELCA results, and

then rescan all node labels to construct the initial sub-

trees. After that, they need to buffer these subtrees in

memory, and apply the constraint of keywords subsump-

tion on each node of these subtrees, to prune nodes with

keyword sets subsumed by that of their sibling nodes,

which is inefficient in time and space.

EXAMPLE 2. Take the MaxMatch algorithm [8] for

example. It firstly gets the set of SLCA nodes based on

either indexed lookup (IL) [4], incremental multiway

SLCA (IMS) [6] or hash search (HS) [12] algorithm, then

computes all matched subtree results. We ran the Max-

Match algorithm for query Q1 = {school, gender, educa-

tion, takano, province} and Q2 = {incategory, text, bidder,

data} on the XMark (http://monetdb.cwi.nl/xml) dataset

of 582 MB. We found that no matter which one of IL,

IMS, and HS is adopted, the time of SLCA computation

is less than 7% and 1% of the overall running time for Q1

and Q2, respectively, as shown in Table 1.

From Example 2 we know that, given a set of SLCA

nodes, the operation of computing matched subtree results

will dominate the overall performance of the MaxMatch

algorithm, thus should deserve being paid more attention.

As illustrated by [7], an MSubtree could still contain

redundant information; e.g., the four conference nodes,

i.e., 1.2.2.3, 1.2.3.3, 1.3.2.3, and 1.3.3.3, of D in Fig. 1

are the same as each other according to their content, and

for keyword query {CS, conference}, returning only one

of them is enough. However, the MSubtree result con-

tains all of these conference nodes, because all of them

satisfy the constraint of keywords subsumption.

In this paper, we focus on constructing tightest matched

subtree (TMSubtree) results according to SLCA seman-

tics. Intuitively, a TMSubtree is an MSubtree after remov-

ing redundant information, and it can be generated from

the corresponding PSubtree by removing all nodes that

do not satisfy the constraint of keywords subsumption,

and just keeping one node for a set of sibling nodes that
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Table 1. Comparison of the running time for smallest lowest
common ancestor (SLCA) computation and subtree construction

Query Algorithm t1 (ms) t2 (ms) t1 / (t1+t2) (%)

Q1 MaxMatch-IL 4.06 147.54 2.8

MaxMatch-IMS 10.02 6.8

MaxMatch-HS 3.52 2.4

Q2 MaxMatch-IL 25.78 6,442 0.4

MaxMatch-IMS 0.18 0.003

MaxMatch-HS 4.88 0.076

t
1
 is the time of indexed lookup (IL) [4], incremental multiway SLCA

(IMS) [6], and hash search (HS) [12] for SLCA computation, t2 is the

time of the MaxMatch algorithm [8] for computing matched subtree

results.
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have the same keyword set. Assume that d is the depth of

a given TMSubtree, m is the number of keywords of the

given query Q. We proved that if d ≤ m, then a TMSub-

tree has at most 2m! nodes; otherwise, the number of

nodes of a TMSubtree is bounded by (d − m + 2) m!.

Based on this theoretical result, we propose a pipelined

algorithm to compute TMSubtrees without rescanning all

node labels. Our algorithm sequentially processes all

node labels in document order, and immediately outputs

each TMSubtree once it is found. Compared with the

MaxMatch algorithm [8], our method reduces the space

complexity from O( ) to O(d · max{2m!, (d − m +

2) · m!}), where Li is the inverted Dewey label list of key-

word ki.

The rest of the paper is organized as follows. In Section

II, we introduce background knowledge, and discuss the

related work. In Section III, we give an in-depth analysis

of the MaxMatch algorithm [8], then define the tightest

matched subtree (TMSubtree) and discuss its properties,

and finally, present our algorithm on computing all TMSub-

tree results. In Section IV, we present the experimental

results, and in Section V, we conclude our paper.

II. BACKGROUND AND RELATED WORK

We model an XML document as a node labeled ordered

tree, where nodes represent elements or attributes, while

edges represent direct nesting relationships between

nodes in the tree. Fig. 1 is a sample XML document. We

say a node v directly contains a keyword k, if k appears in

the node name or attribute name, or k appears in the text

value of v. 

A Dewey label of node v is a concatenation of its par-

ent's label and its local order. The last component is the

local order of v among its siblings, whereas the sequence

of components before the last one is called the parent

label. In Fig. 1, the Dewey label of each node is marked

as the sequence of components separated by “.”. For a

Dewey label A: a1.a2...an, we denote the number of com-

ponents of A as |A|, and the ith component as A[i]. As each

Dewey label [10] consists of a sequence of components

representing the path from the document root to the node

it represents, the Dewey labeling scheme is a natural

choice of state-of-the-art algorithms [2, 4, 6, 15, 16] for

keyword query processing on XML data. The positional

relationships between two nodes include document order

( d), equivalence (=), ancestor-descendant (AD, a), par-

ent-child (PC, p), ancestor-or-self ( a) and Sibling rela-

tionship. u d v means that u is located before v in

document order, u a v means that u is an ancestor node

of v, and u p v denotes that u is the parent node of v. If u

and v represent the same node, we have u = v, and both u

d v and u a v hold. In the following discussion, we do

not differentiate between a node and its label, if without

ambiguity.

For a given query Q = {k1, k2, …, km} and an XML doc-

ument D, we use Li to denote the inverted Dewey label

list of ki, of which all labels are sorted in document order.

Let LCA(v1, v2,...., vm) be the lowest common ancestor

(LCA) of nodes v1, v2,…, vm, the LCAs of Q on D are

defined as LCA(Q) = {v|v = LCA(v1, v2,…, vm), vi 

Li(1≤i≤m)}; e.g., the LCAs of Q ={XML, Tom} on D in

Fig. 1 are nodes 1.2 and 1.2.2.

In the past few years, researchers have proposed many

LCA-based semantics [1, 2, 4, 5, 11], among which SLCA

[4, 6] is one of the most widely adopted semantics. Com-

pared with LCA, SLCA defines a subset of LCA(Q), of

which no LCA in the subset is the ancestor of any other

LCA, which can be formally defined as SLCASet =

SLCA(Q) = {v|v  LCA(Q) and v'  LCA(Q), such that

v a v'}. In Fig. 1, although 1.2 and 1.2.2 are LCAs of Q

= {XML, Tom}, only 1.2.2 is an SLCA node for Q,

because 1.2 is an ancestor of 1.2.2.

Based on the set of matched SLCA nodes, there are

three kinds of subtree results: 1) CSubtree [2, 4]; 2) PSub-

tree [13]; and 3) MSubtree, which is a subtree rooted at v

satisfying the constraints of monotonicity and consistency

[7, 8], which can be further interpreted by the changing of

data and query, respectively. Data monotonicity means

d Li

m

1∑

∈

∈  ∃ ∈

Fig. 1. A sample extensible markup language document D.



Journal of Computing Science and Engineering, Vol. 6, No. 2, June 2012, pp. 127-140

http://dx.doi.org/10.5626/JCSE.2012.6.2.127 130 Junfeng Zhou et al.

that if we add a new node to the data, the number of query

results should be (non-strictly) monotonically increasing.

Query monotonicity means that if we add a keyword to

the query, then the number of query results should be

(non-strictly) monotonically decreasing. Data consistency

means that after a data insertion, each additional subtree

that becomes (part of) a query result should contain the

newly inserted node. Query consistency means that if we

add a new keyword to the query, then each additional

subtree that becomes (part of) a query result should con-

tain at least one match to this keyword. [8] has proved

that if all nodes of a subtree tv satisfy the constraint of

“keywords subsumption”, then tv must satisfy the con-

straints of monotonicity and consistency, that is, tv is an

MSubtree. According to Example 1, we know that com-

pared with CSubtrees and PSubtrees, MSubtrees contain

all necessary information after removing nodes that do

not satisfy the constraint of keywords subsumption, and

are more self-explanatory and compact.

To construct MSubtrees, the existing method [8] needs

to firstly scan all node labels to compute qualified SLCA

nodes, then rescan all node labels to construct the initial

subtrees. After that, they need to buffer these subtrees in

memory and apply the constraint of keywords subsump-

tion on each node of these subtrees to prune nodes with

keyword sets subsumed by that of their sibling nodes,

which is inefficient in time and space.

Considering that an MSubtree may still contain redun-

dant information (discussed in Section I), in this paper, we

focus on efficiently constructing TMSubtree results based

on SLCA semantics. Intuitively, a TMSubtree is an MSub-

tree, after removing redundant information. Constructing

TMSubtree results based on ELCA semantics [7] is simi-

lar, and therefore omitted for reasons of limited space.

III. RESULT ENUMERATION

A. Insight into the MaxMatch Algorithm

The MaxMatch algorithm [8] returns MSubtree results

that are rooted at SLCA nodes, and satisfy the constraint

of “keywords subsumption”. For a given query Q = { k1,…,km}

and an XML document D, supposing that L1(Lm) is the

Dewey label list of occurrence of the least (most) fre-

quent keyword of Q, d is the depth of D. As shown in

Algorithm 1, the MaxMatch algorithm works in three

steps to produce all MSubtree results.

Step 1 (line 1): MaxMatch finds from the m inverted

Dewey label lists the set of SLCA nodes, i.e., SLCASet,

by calling the IL algorithm [4]. The cost of this step is

O(md|L1| log |Lm|). In this step, all Dewey labels are pro-

cessed once. Note that any algorithm for SLCA computa-

tion can be used in this step.

Step 2 (line 2): MaxMatch calls function groupMatches

to construct the set of groups, i.e., groupSet. As shown in

groupMatches, it needs to firstly merge the m lists into a

single list with cost O(log m ), then sequentially

rescan all labels and insert each one to a certain group (if

possible), with cost O( ).  in this step, all

Dewey labels are processed twice to construct the set of

groups.

Step 3 (lines 3-5): For each group g, MaxMatch firstly

constructs the PSubtree, then traverses it to prune redun-

dant information. The overall cost of Step 3 is O(min{|D|,

}·2m), where 2m is the cost of checking whether

the set of distinct keywords of node v is subsumed by that

of its sibling nodes; if not, then v is a node that satisfies

the constraint of keywords subsumption.

Therefore, the time complexity of Algorithm 1 is O(max

{min{|D|, }·2m, md|L1|log|Lm|}). Moreover, as the

MaxMatch algorithm needs to buffer all groups in mem-

ory before step 3, its space complexity is O( ).

B. The Tightest Matched Subtree

DEFINITION 1. (TMSubtree) For an XML tree D and

a keyword query Q, let Sv  Q be the set of distinct key-

words that appear in the subtree rooted at v, Sv . A

subtree t is a TMSubtree iff t’s root node is an SLCA node,

and each node v of t satisfies that for each sibling node v'

of v, Sv  Sv', and for each set of sibling nodes {v1,v2, …,

vn} satisfying Sv1 = Sv2 =…= Svn, only one of them is kept

for presentation.

Intuitively, a TMSubtree is an MSubtree with redun-

dant information being removed. It can be generated

from the corresponding PSubtree by removing all nodes

that do not satisfy the constraint of keywords subsump-

tion, and just keeping one node for a set of sibling nodes

that have the same keyword set.

DEFINITION 2. (Maximum TMSubtree) Let t be a

Li

m

1∑

d Li

m

1∑ d Li

m

1∑

d Li

m

1∑

d Li

m

1∑

d Li

m

1∑

⊆

Φ≠

 ⊄

Algorithm 1 MaxMatch (Q) /*Q={k1,…,km}*/

1 SLCASet ← findSLCA(L1, L2,…, Lm)

2 groupSet ← groupMatches(L1, L2,…, Lm, SLCASet)

3 foreach group g groupSet do 

4    pruneMatches(g)

5 endfor

Function groupMatches (L1, L2,…, Lm, SLCASet)

1 L ← merge(L1, L2,…, Lm)

2 sequentially scan each Dewey label s SLCASet to construct

groupSet, where each group gs corresponds to an SLCA node s

3 sequentially scan each Dewey label n L, and put n to group gs
if s SLCASet satisfies that s a n

4 return groupSet

Procedure pruneMatches (group g)

1 process all Dewey labels of g to construct a PSubtree t

2 foreach node n of t do/*traversing t in depth-first order*/

3    if n satisfies the constraint of keywords subsumption then

4          output n

5    end if

6 end for

∈

∈

∈
∈
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TMSubtree of Q, v a node of t, Sv  Q the set of distinct

keywords that appear in the subtree rooted at v, v.level

the level value of v in t. We say t is a maximum TMSub-

tree if it satisfies the following conditions:

1) v has|Sv| child nodes v1, v2,… , v|Sv|,

2) if |Sv|≥2 v.level < d, then for any two child nodes vi,

vj(1≤i j≤|Sv|), |Svi| = |Svj| =|Sv| − 1 |Svi Svj| = |Sv| − 2,

3) if |Sv| = 1 v.level < d, then v has one child node v1
and Sv = Sv1.

LEMMA 1. Given a maximum TMSubtree t, t is not a

TMSubtree anymore, after inserting any keyword node

into t without increasing t's depth.

Proof. Suppose that t is not a maximum matched sub-

tree result, then there must exist a non-leaf node v of t,

such that we can insert a node vc into t as a child node of

v; vc satisfies that Svc  Sv. Obviously, there are four kinds

of relationships between Svc and Sv:

1) |Svc| = |Sv| = 1. In this case, v has one child node that

contains the same keyword as v. Obviously, vc cannot be

inserted into t, according to Definition 1.

2) Svc = Sv |Sv| ≥ 2. Since v has |Sv| child nodes and

each one contains |Sv|−1 keywords, for each child node vi
(1≤i≤|Sv|) of v, we have Svi  Sv = Svc. According to Defi-

nition 1, all existing child nodes of v should be removed

if vc is inserted into t, thus vc cannot be inserted into t as a

child node of v, in such a case.

3) |Svc| = |Sv| − 1 |Sv| ≥ 2. According to condition 2, all

existing child nodes of v contain all possible combina-

tions of keywords in Sv, thus there must exist a child node

vci of v, such that Svc = Svci, which contradicts Definition 1,

thus vc cannot be inserted into t in this case.

4) if |Svc| <|Sv| − 1 |Sv| ≥ 2. According to condition 2,

all existing child nodes of v contain all possible combina-

tions of keywords in Sv, thus there must be a child node vci
of v, such that Svc  Svci, which also contradicts Defini-

tion 1, thus vc cannot be inserted into t in such a case.

In summary, if t is a maximum TMSubtree result, no

other keyword node can be inserted into t, such that t is

still a TMSubtree, without increasing t’s depth.

THEOREM 1. Given a keyword query Q = {k1, k2, ...,

km} and one of its TMSubtree t of depth d, if d ≤ m, then t

has at most 2m! nodes; otherwise, the number of nodes of

t is bounded by (d − m + 2) m!.

Proof. Assume that t is a maximum TMSubtree, obvi-

ously, the number of nodes at 1st level of t is 1 = .
For the 2nd level, since St.root = Q, t.root has |St.root| = 

child nodes, of which each one contains |St.root| − 1 dis-

tinct keywords.

Thus we have Formula 1 to compute the number of

nodes at the ith level.

(1)

If d ≤ m, the total number of nodes in t is

(2)

If d > m, each node at the mth level of t contains only

one keyword, and all levels greater than m contain the

same number of nodes as that of the mth level. According

to Formula 1, we know that N(m) = m!, thus the total

number of nodes in t is

(3)

Therefore if d ≤ m, a TMSubtree t has at most 2m!

nodes, otherwise, the number of nodes of t is bounded by

(d − m + 2) · m!.

EXAMPLE 3. Given a keyword query Q = {k1, k2, k3},

Fig. 2 shows three subtree results; according to Defini-

tion 1, they are all TMSubtrees. Obviously, by fixing

their depths, no other node with any kind of combination

of k1 to k3 can be inserted into these TMSubtree results,

according to Lemma 1, that is, they are all maximum

TMSubtrees. The TMSubtree in Fig. 2a has 4 nodes.

Since its depth is 2 and is less than the number of key-

words, i.e., 3, it satisfies Theorem 1, since 4 < 2 × 3! = 12.

The TMSubtree in Fig. 2b is another maximum TMSub-

tree with 10 nodes, and also satisfies Theorem 1, since 10

< 2 × 3! = 12. Fig. 2c is also a maximum TMSubtree with

16 nodes. Since the depth of the TMSubtree is 4 and is

greater than the number of keywords of Q, it still satisfies

Theorem 1, since 16 < (4 − 3 + 2) × 3! = 18.

C. The Algorithm 

Compared with the MaxMatch algorithm that produces

all subtree results in three steps, the basic idea of our

method is directly constructing all subtree results in the

procedure of processing all Dewey labels. The benefits of

our method lie in two aspects: 1) the buffered data in

memory is largely reduced; 2) each Dewey label is vis-

ited only once. The first benefit comes from Theorem 1,

⊆
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⊆

∧

⊂
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Fig. 2. Illustration of three possible TMSubtrees for keyword
query Q ={k1, k2, k3}.
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which guarantees that our method does not need to buffer

huge volumes of data in memory as [8] does; the second

benefit is based on our algorithm.

In our algorithm, for a given keyword query Q = {k1,

k2,…, km}, each keyword ki corresponds to a list Li of

Dewey labels sorted in document order, and Li is associ-

ated with a cursor Ci pointing to some Dewey label of Li.

Ci can move to the Dewey label (if any) next to it by

using advance(Ci). Initially, each cursor Ci points to the

first Dewey label of Li.

As shown in Algorithm 2, our method sequentially

scans all Dewey labels in document order. The main pro-

cedure is very simple: for all nodes that have not been

visited yet, in each iteration, it firstly chooses the cur-

rently minimum Dewey label, by calling the selectMin-

Label function (line 3), then processes it, by calling the

pushStack procedure (line 4), and finally, it moves Ck for-

wardly to the next element in Lk (line 5). After all Dewey

labels are processed, our algorithm pops all in-stack ele-

ments (line 7-9), then outputs the last TMSubtree result,

to terminate the processing (line 10).

During the processing, our algorithm uses a stack S to

temporarily maintain all components of a Dewey label,

where each stack element e denotes a component of a

Dewey label, which corresponds to a node in the XML

tree. e is associated with two variables: the first one is a

binary bitstring indicating which keyword is contained in

the subtree rooted at e; the second is a set of pointers

pointing to its child nodes, which is used to maintain

intermediate subtrees.

The innovation of our method lies in that our method

immediately outputs each TMSubtree result tv when finding

v is a qualified SLCA node, which makes it more effi-

cient in time and space. Specifically, in each iteration

(line 2 to 6 of Algorithm 2), our method selects the cur-

rently minimum Dewey label Ck in line 3, then pushes all

components of Ck into S in line 4. The pushStack proce-

dure firstly pops from S all stack elements that are not the

common prefix of Ck and the label represented by the cur-

rent stack elements, then pushes all Ck's components that

are not in the stack into S. To pop out an element from S,

the pushStack procedure will call popStack procedure to

complete this task. The popStack procedure is a little

more tricky. It firstly checks whether the popped element

v is an LCA node. If v is not an LCA node, popStack

firstly transfers the value of v's bitstring to its parent node

in S (line 14), then inserts subtree tv into ttop(S) in line 15.

In lines 16 to 22, popStack will delete all possible redun-

dant subtrees, by checking the subsumption relationship

between the keyword set of v and that of its sibling nodes.

If v is an LCA node (line 3) and located after the previous

LCA node u in document order (line 4), it means that u is

an SLCA node if it is not an ancestor of v (line 5), then

popStack directly outputs the TMSubtree result rooted at

u in line 6. The subtree rooted at u is then deleted (line 8),

and u points to v in line 9. If v is an LCA node but located

Algorithm 2 mergeMatching(Q)

1   u ← 1 /* u is the root node initially*/

2   while( i( eof(Li))) do

3    Ck ← selectMinLabel(Q)

4    pushStack(S , Ck) /*S is the stack*/

5    advance(Ck)

6   endwhile

7   while( isEmpty(S)) do

8    popStack(S)

9   endwhile

10 output the subtree rooted at u

Function selectMinLabel(Q)

1   Cmin ← C1

2   foreach(2 ≤ i ≤ m) do
3    if(Ci d Cmin) then Cmin ← Ci

4   endfor

5   return Cmin

Procedure pushStack(S, Ck)

1   n← the length of the LCA of Ck and the Dewey label in S

2   while(|S|>n) do

3    popStack(S)

4   endwhile

5   foreach(|S|<i≤|Ck|) do

6    pushStack(S)

7   endfor

8   top(S).bit← top(S).bit OR 1<<(k-1)

Procedure popStack(S)

/*Suppose that e1.e2…en is a Dewey label of a node, and all the n

components are in the stack S. In this procedure, v denotes the last

component en popped from S if it is used for bit operation; other-

wise, it represents Dewey label e1.e2…en or the node itself*/

1   flag← ~(~0<<m)

2   v← pop(S) /*v denotes the Dewey label consists of all components

            of S*/

3   if((v.bit AND flag)=flag) then 

4    if(u d v) then

5      if(u a v) then

6      output the subtree rooted at u

7      end if

8      delete the subtree rooted at u

9      u ← v

10  else

11      delete the subtree rooted at v

12  end if

13  else

14  top(S).bit ← top(S).bit OR v.bit

15  add subtree rooted at v to the subtree rooted at top(S)

16  foreach(sibling node v' of v) do

17      if((v'.bit AND v.bit) = v.bit) then

18          delete the subtree rooted at v

19      else if ((v'.bit AND v.bit) = v'.bit) then

20     delete the subtree rooted at v'

21      end if

22  endfor

23  endif

Function eof(Li)

1 if (all Dewey labels of Li are processed) then return TRUE

2 else return FALSE

3 end if 

 ∃  ¬

 ¬
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before u, it means that v is not an SLCA node, thus we

directly delete the subtree rooted at v (line 11).

Example 4. Consider the XML document D in Fig. 1

and query Q = {Mike, DASFAA, DB}. The inverted Dewey

label lists for keywords of Q are shown in Fig. 3b. The

status of processing these labels is shown in Fig. 3a1-a14.

In this example, we use “001” (“010” or “100”) to indi-

cate that “Mike” (“DASFAA” or “DB”) is contained in a

subtree rooted at some node. After 1.2.2.1 is pushed into

stack, the status is shown in Fig. 3a1, where the bitstring

of the top element of S is “001”, indicating that node

1.2.2.1 contains “Mike”. The second pushed label is

1.2.2.3, and the status is shown in Fig. 3a2. Note that

after an element is popped out from the stack, its bitstring

is transferred to its parent in the stack. The next two

labels are processed similarly. Before 1.3.1 is pushed into

the stack, we can see from Fig. 3a5 that the bitstring of

the top element in S is “111”, which means that node 1.2

contains all keywords. After 1.3.1 is pushed into stack,

the subtree rooted at 1.2 is temporarily buffered in mem-

ory. As shown in Fig. 3a10, before 1.3.3.1 is pushed into

stack, the last component of 1.3.2 will be popped out

from the stack. Since the bitstring of the current top ele-

ment in S is “111” (Fig. 3a10), we know that 1.3.2 is an

LCA node. According to line 5 of popStack procedure,

we know that the previous LCA, i.e., 1.2, is an SLCA

node, thus we output the matched subtree result rooted at

1.2. After that, the subtree rooted at 1.3.2 will be tempo-

rarily buffered in memory. When the last component of

1.3 is popped out from S (Fig. 3a14), according to line 3

of popStack procedure, we know that 1.3 is an LCA

node. According to line 4 of popStack procedure, we

know that the previous LCA node, i.e., 1.3.2, is located

after 1.3 in document order, thus we know that 1.3 is not

an SLCA node immediately, and delete the subtree rooted

at 1.3 in line 11 of popStack procedure. Finally, we out-

put the TMSubtree rooted at 1.3.2 in line 10 of Algorithm

2. Therefore for Q, the two TMSubtree results are rooted

at 1.2 and 1.3.2, respectively.

As shown in Algorithm 2, for a given keyword query

Q = {k1, k2, …, km} and an XML document D of depth d,

our method just needs to sequentially scan all labels in

the m inverted label lists once, therefore the overall I/O

cost of Algorithm 2 is O(d ).

Now we analyze the time complexity of our algorithm.

Since our algorithm needs to process all components of

each involved Dewey label of the given keyword query Q

= {k1, k2, …, km}, the total number of components pro-

cessed in our method is bounded by d , and the cost

of processing these components is dm . During pro-

cessing, each one of the d  components will be

inserted into a subtree and deleted from the same subtree

just once, and the cost of both inserting and deleting a

component is O(1). When inserting a subtree into another

subtree, the operation of checking the subsumption rela-

tionship between the two keyword sets of two sibling

nodes will be executed at most m times, according to

Definition 2. Therefore, the overall time complexity is

O(dm2 ).

Since our method is executed in a pipelined way, at

any time it just needs to maintain at most d subtrees,

where each one is not greater than a maximum TMSub-

tree. According to Theorem 1, each matched subtree result

contains at most max{2m!,(d − m +2)m!} nodes. There-

fore, the space complexity of our method is O(d·max{2m!,

(d − m + 2)m!}). Since d and m are very small in practice,

the size of these subtrees buffered in memory is very

small.

Note that to output the name of nodes in a TMSubtree

result, existing methods may either store all path infor-

Li

m

1∑

Li

m

1∑
Li

m

1∑
Li

m

1∑

Li

m

1∑

Fig. 3. Running status for Q = {Mike, DASFAA, DB}.
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mation in advance, by suffering from huge storage space

[1], or use the extended Dewey labels [17], by affording

additional cost on computing the name of each node,

according to predefined rules. In contrast, our method

maintains another hash mapping between each path ID

and the path information; the total number of index

entries is the number of nodes in the dataguide index [18]

of the XML tree, which is very small in practice. To derive

Table 2. Statistics of keywords used in our experiment

Keyword tissue baboon necklace arizona cabbage hooks shocks patients cognition villages

|Li| 384 725 200 451 366 461 596 382 495 829

Keyword male takano order school check education female province privacy gender

|Li| 18,441 17,129 16,797 23,561 36,304 35,257 19,902 33,520 31,232 34,065

Keyword bidder listitem keyword bold text time data emph incategory increase

|Li| 299,018 304,969 352,121 368,544 535,268 313,398 457,232 350,560 411,575 304,752

Table 3. Queries on XMark dataset

ID Keywords |Lmax| |Lmin| Ns Rs (%) Freq.

Q1 village, hooks 1,290 829 461 9 1.95

Low
Q2 baboon, patients, Arizona 1,575 742 382 1 0.26

Q3 cabbage, tissue, shocks, baboon 2,088 742 366 9 2.46

Q4 shocks, necklace, cognition, cabbage, tissue 2,041 596 200 9 4.5

Q5 female, order 36,594 19,894 16,700 570 3.41

Med
Q6 privacy, check, male 85,960 36,300 18,428 29 0.16

Q7 takano, province, school, gender 108,187 34,061 17,129 107 0.62

Q8 school, gender, education, takano, province 143,444 35,257 17,129 107 0.62

Q9 bold, increase 674,824 370,118 304,706 34,136 11.2

High
Q10 data, listitem, emph 1,112,760 457,231 304,969 43,777 14.35

Q11 incategory, text, bidder, data 1,696,631 528,807 299,018 1 0.0003

Q12 bidder, data,keyword, incategory, text 2,048,752 528,807 299,018 1 0.0003

Q13 text, tissue 529,191 528,807 384 384 100

Random

Q14 takano, province 50,649 33,520 17,129 1,803 10.526

Q15 incategory, cabbage 411,941 411,575 366 224 61.2

Q16 check, bidder 335,318 299,018 36,300 1,922 5.2948

Q17 baboon, patients 1,124 742 382 9 2.356

Q18 tissue, shocks, order 17,680 16,700 384 9 2.344

Q19 province, bold, increase 708,344 370,118 33,520 427 1.27

Q20 cabbage, male, female 38,688 19,894 366 9 2.459

Q21 listitem, emph, Arizona 655,980 350,560 451 1 0.22

Q22 patients, school, gender 57,920 34,061 382 9 2.356

Q23 patients, school, gender, text 586,727 528,807 382 9 2.356

Q24 bold, increase, hooks, takno 692,414 370,118 461 6 1.3

Q25 male, female, keyword, incategory 802,018 411,575 18,428 69 0.374

Q26 emph, Arizona, villages, education 387,097 350,560 451 1 0.22

Q27 check, bidder, data, baboon 793,291 457,231 742 1 0.13

Q28 school, gender, time, baboon, patients 371,980 313,318 382 9 2.356

Q29 tissue, shocks, order, province, bold 421,318 370,118 384 9 2.344

Q30 femal, keyword, incategory, cabbage, male 802,384 411,575 366 9 2.459

Q31 arizona, villages, education, listitme, emph 692,066 350,560 451 1 0.22

Q32 bidder, data, necklace, cognition, check 793,244 457,231 200 1 0.5

Σ : the sum of the lengths of all keyword inverted lists, |L
max
|(|L

min
|): the length of the longest (shortest) keyword inverted list, N

s
: the number of

qualified SLCA results, R
s
 = N

s
/|L

min
|: the results selectivity.

Li

m

1∑

Li

m

1
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for each node its name on a path, we maintain in each

Dewey label a path ID after the last component, thus we

can get the name of each node on a path in constant time.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experiments were implemented on a PC with Pen-

tium(R) Dual-Core E7500 2.93 GHz CPU, 2 GB mem-

ory, 500 GB IDE hard disk, and Windows XP professional

as the operating system.

The algorithms used for comparison include the Max-

Match algorithm (the MaxMatch algorithm is used to

output TMSubtrees in our experiment) [8] and our merge-

Matching algorithm. MaxMatch was implemented based

on IL [4], IMS [6] and HS [12] to test the impacts of dif-

ferent SLCA computation algorithms on the overall per-

formance, and is denoted as MaxMatch-IL, MaxMatch-

IMS and MaxMatch-HS, respectively. All these algorithms

and our mergeMatching algorithm were implemented

using Microsoft VC++. All results are the average time,

by executing each algorithm 100 times on hot cache.

B. Datasets and Queries

We use XMark dataset for our experiments, because it

possesses a complex schema, which can test the features

of different algorithms in a more comprehensive way.

The size of the dataset is 582 MB; it contains 8.35 million

nodes, and the maximum depth and average depth of the

XML tree are 12 and 5.5, respectively.

We have selected 30 keywords, which are classified

into three categories, according to the length of their

inverted Dewey label lists (the |Li| line in Table 2): 1)

low frequency (100-1,000); 2) median frequency (10,000-

40,000); and 3) high frequency (300,000-600,000).

Based on these keywords, we generated four groups of

queries, as shown in Table 3: 1) four queries (Q1 to Q4)

with 2, 3, 4, 5 keywords of low frequency; 2) four queries

(Q5 to Q8) of median frequency; 3) four queries (Q9 to

Q12) of high frequency; and 4) 20 queries (Q13 to Q32)

with keywords of random frequency.

C. Evaluation Metrics

The metrics used for evaluating these algorithms

include: 1) the number of buffered nodes, which is used

to compare the space cost of these algorithms, 2) running

time on SLCA and subtree result computation, and 3)

scalability.

For a given query, we define the result selectivity as the

size of the results over the size of the shortest inverted

list. The second to last column of Table 3 is the result

selectivity of each query.

D. Performance Comparison and Analysis

1) Comparison of the Number of Buffered Nodes

To make comparison of space cost for different algo-

rithms, we have collected the statistics of the number of

buffered nodes for the MaxMatch and mergeMatching

algorithms. Table 4 shows a comparison of the number of

buffered nodes for each query, from which we know that

the number of buffered nodes for mergeMatching is

Table 4. Comparison of the number of buffered nodes for each
query

Query MaxMatch mergeMatching

Q1 1,290 28

Q2 6,979 18

Q3 2,088 44

Q4 2,041 61

Q5 1,171 39

Q6 6,206 76

Q7 17,693 62

Q8 19,715 113

Q9 243,461 50

Q10 465,991 72

Q11 2,826,470 18

Q12 3,218,018 18

Q13 768 12

Q14 3,608 42

Q15 1,096 20

Q16 12,134 27

Q17 1,124 27

Q18 17,680 38

Q19 3,779 51

Q20 6,707 40

Q21 1,441,330 15

Q22 10,025 39

Q23 538,832 39

Q24 231,594 57

Q25 920 62

Q26 1,331,246 18

Q27 17,123 13

Q28 324,085 83

Q29 389,656 92

Q30 623,179 49

Q31 1,540,236 30

Q32 669,062 28
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much less than that of MaxMatch. The reason lies in that

MaxMatch needs to firstly construct all path subtrees and

buffer them in memory, while mergeMatching just needs

to buffer at most d TMSubtrees in memory, where d is the

depth of the given XML tree.

2) Comparison of SLCA Computation:

To get all matched subtree results, the first critical step

is computing all qualified SLCA nodes. Fig. 4 shows the

comparison of different algorithms on SLCA computation.

From Fig. 4 we have the following observations: 1)

mergeMatching is beaten by HS, IL and IMS for almost

all queries. This is because mergeMatching sequentially

processes all involved Dewey labels. Its performance is

dominated by the number of involved Dewey labels,

while IL and IMS are more flexible in utilizing the posi-

tional relationship to prune useless keyword nodes; HS

only sequentially processes each Dewey label of the

shortest inverted Dewey label list L1, and its performance

is dominated by the length of L1. 2) HS is more efficient

than IL and IMS when there exists huge difference

between the set of involved Dewey label lists, such as

Q13, Q15, Q17 to Q32, while it is beaten by IMS when

the result selectivity is low, such as Q11 and Q12. This is

because HS needs to process all Dewey labels of the

shortest list, while IMS can wisely skip many useless

nodes. 3) IL can beat IMS for some queries, while it can

also be beaten by IMS for other queries, especially when

the result selectivity is low, such as Q6, Q11 and Q12.

This is because the IL algorithm computes the SLCA

results by processing two lists each time from the shortest

to the longest, while the IMS algorithm computes each

potential SLCA by taking one node from each Dewey

label list in each iteration. IMS could be the best choice

when all nodes of the set of lists are not uniformly distrib-

uted; IL could perform best when all nodes are uniformly

distributed, and there exists huge difference in lengths of

the set of lists.

Fig. 4. Comparison of running time on smallest lowest common ancestor (SLCA) computation. HS: hash search, IL: indexed lookup, IMS:
incremental multiway SLCA.

Table 5. Comparison of the running time for the MaxMatch
algorithm based of different methods on smallest lowest common
ancesto computation (ms)

Query MaxMatch-HS MaxMatch-IL MaxMatch-IMS

Q1 2.34 2.35 2.3

Q2 2.3 2.35 2.36

Q3 3.1 3.15 3.35

Q4 2.703 3.15 2.9

Q5 4.71 7.45 5.21

Q6 15.11 17.15 15.8

Q7 97.12 105.45 103.2

Q8 149.3 151.6 158.3

Q9 460.6 479.7 452.4

Q10 3,021.7 3,135.95 3,037

Q11 6,446.2 6,468 6,443.7

Q12 9,067 9,594 9,057

Q13 25.13 25.75 26.7

Q14 29.4 14.05 17.21

Q15 11.4 11.75 11.7

Q16 32.57 28.9 27.47

Q17 5.3 5.45 5.6

Q18 93.81 94.5 94.21

Q19 28.1 34.4 30.1

Q20 38.33 39.05 38.79

Q21 1,909 1,910.2 1910

Q22 78.3 78.9 78.47

Q23 4,047.63 4,048.45 4,048.2

Q24 1,651.1 1,651.55 1,652.4

Q25 26.17 28.1 28.1

Q26 1,344.2 1,344.55 1,344.5

Q27 20.2 20.3 20.7

Q28 1,429.3 1,429.7 1,429.8

Q29 2,944.7 2,945.35 2,945.9

Q30 2,204.7 2,204.7 2,204.7

Q31 2,073.3 2,073.45 2,074.2

Q32 1,531.7 1,532 1,531

HS: hash search, IL: indexed lookup, IMS: incremental multiway

smallest lowest common ancestor.
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3) Impacts of the SLCA Computation on the Overall

Performance

To further investigate the impacts of SLCA computa-

tion on the overall performance, we implemented the

MaxMatch algorithm based on IL, IMS, and HS, which

are denoted as MaxMatch-IL, MaxMatch-IMS, and Max-

Match-HS, respectively. As shown in Table 5, the three

algorithms always consume similar running time, and in

most cases, MaxMatch-HS is a little better than the other

two algorithms. The reason lies in that they all share the

same procedure in constructing matched subtree results,

which usually needs much more time than computing

SLCA nodes. Therefore, even though HS performs better

than IL and IMS in most cases, their overall performance

is similar to each other.

Further, from Fig. 4 and Table 5 we know that no mat-

ter how efficient HS, IL, and IMS are, and no matter how

much HS performs better than IL and IMS, or vice versa,

their performance benefits on SLCA computation do not

exist anymore, if compared with the time on constructing

matched subtree results based on the MaxMatch algorithm.

4) Comparison of Constructing Subtree Results

Fig. 5 shows the comparison between MaxMatch and

mergeMatching on constructing all matched subtree

results, from which we know that although mergeMatch-

ing is not as efficient as HS, IL, and IMS on SLCA com-

putation, it is much more efficient than MaxMatch on

constructing matched subtree results, such as Q1 to Q12,

Q17, Q18, Q20 to Q24, Q26, and Q28 to Q32, and the

time saved in the second phase is much more than that

wasted in the first phase. The reason lies in that merge-

Matching processes each Dewey label only once, while

MaxMatch needs to firstly scan all Dewey labels once to

compute SLCA results, then scan all Dewey labels once

more to construct a set of initial groups according to

different SLCA nodes. After that, it constructs all path

subtree results by processing these Dewey labels again.

Fig. 5. Comparison of running time on constructing all subtree results.

Fig. 6. Comparison of the overall running time for different methods. HS: hash search.
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At last, it needs to traverse all nodes to prune useless

nodes.

5) Comparison of the Overall Performance

Fig. 6 shows the comparison of the overall running

time between MaxMatch-HS and mergeMatching, from

which we know that in most cases, mergeMatching per-

forms much better than MaxMatch-HS. The reason lies in

that compared with MaxMatch, mergeMatching does not

need to rescan all involved Dewey labels, and does not

need to delay prune useless nodes after constructing all

path subtree results.

On the contrary, it prunes useless nodes when con-

structing each matched subtree result, and thus can quickly

reduce the number of testing operations of the keywords

consumption relationship between sibling nodes.

Besides, we show in Fig. 7 the scalability when execut-

ing Q7 on XMark datasets with different sizes (from 116

MB to 1745 MB [15x]). The query time of the MaxMatch-

HS and our mergeMatching algorithms grow sublinearly

with the increase of the data size. Also, mergeMatching

consistently saves about 78% time when compared with

MaxMatch-HS. For other queries, we have similar results,

which are omitted due to limitations of space.

V. CONCLUSIONS

Considering that TMSubtree is more self-explanatory

and compact than CSubtree and PSubtree, but existing

methods on subtree result computation need to rescan all

Dewey labels, we focus in this paper on efficient con-

struction of TMSubtree results for keyword queries on

XML data based on SLCA semantics. We firstly proved

the upper bound for the size of a given TMSubtree, that

is, it has at most 2m! nodes if d ≤ m; otherwise, its size is

bounded by (d-m+2) · m!, where d is the depth of a given

TMSubtree, and m is the number of keywords of the

given query Q. Then we proposed a pipelined algorithm

to accelerate the computation of TMSubtree results,

which only needs to sequentially scan all Dewey labels

once without buffering huge volumes of intermediate

results. Because the space complexity of our method is O

(d · max {2m!, (d-m+2) · m!}), and in practice, d and m

are very small, the size of the buffered subtrees is very

small. The experimental results in Section IV verify the

benefits of our algorithm in aiding keyword search over

XML data. 
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