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Abstract

The b-amyloid precursor protein (APP) has been extensively

studied for its role as the precursor of the b-amyloid protein

(Ab) of Alzheimer’s disease. However, the normal function of

APP remains largely unknown. This article reviews studies on

the structure, expression and post-translational processing of

APP, as well as studies on the effects of APP in vitro and in

vivo. We conclude that the published data provide strong

evidence that APP has a trophic function. APP is likely to be

involved in neural stem cell development, neuronal survival,

neurite outgrowth and neurorepair. However, the mechanisms

by which APP exerts its actions remain to be elucidated. The

available evidence suggests that APP interacts both intracel-

lularly and extracellularly to regulate various signal transduc-

tion mechanisms.
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The b-amyloid precursor protein (APP) is a type I trans-

membrane glycoprotein that is expressed in a wide variety of

mammalian and non-mammalian cells (Muller-Hill and

Beyreuther 1989). APP is the precursor of the b-amyloid

protein (Ab), which is the major protein component of

amyloid plaques in the Alzheimer’s disease (AD) brain

(Masters et al. 1985). Ab was identified by Glenner and

Wong (1984) and the first complete cDNA sequence

encoding human APP was cloned in 1987 (Kang et al.

1987). The regulation of APP expression, the mechanisms of

APP trafficking, post-translational modification and proteo-

lytic cleavage of APP are now well understood. The

production of Ab from APP, which is generally considered

to be a key event in the pathogenesis of AD, has also been

well studied. However, despite more than two and a half

decades of APP research, the normal function of the protein

remains unclear. Circumstantial evidence points towards a

number of potential biological roles for APP, but a clearly

defined mechanism of action has been elusive. The aim of

this article is to examine the putative functions of APP in

relation to the expression, post-translational processing and

structure of APP.

Expression of APP

APP belongs to a family of evolutionarily and structurally

related proteins. The human APP cDNA sequence was first

cloned from a brain tissue library (Kang et al. 1987).

Subsequently, a number of homologous APP family mem-

bers were identified in a variety of mammalian and non-

mammalian organisms (Muller and Zheng 2012). The APP

family in mammals consists of three members: APP, the

APP-like protein-1 (APLP1) and the APP-like protein-2

(APLP2) (Wasco et al. 1992, 1993). In humans, the APP

gene is located on chromosome 21 (21q21.3), contains 18

exons and extends over a distance of approximately 240

kilobases (Yoshikai et al. 1990) (Fig. 1).
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The APP promoter sequence indicates that the APP gene

belongs to the class of housekeeping genes. The promoter

lacks typical TATA and CAAT boxes, but contains consen-

sus sequences for the binding of a number of transcription

factors including SP-1, AP-1 and AP-4 sites, a heat shock

control element and two Alu-type repetitive sequences

(Salbaum et al. 1988; Izumi et al. 1992; Quitschke and

Goldgaber 1992). The presence of SP-1, AP-1 and AP-4 sites

in the APP promoter, which regulate the expression of

proteins associated with cell proliferation and mitosis, as well

as cell differentiation, suggests that APP has a function

related to cell growth or maturation. Consistent with this

idea, the expression of APP or APP-like proteins is increased

during development and in association with neurite out-

growth and synaptogenesis (Clarris et al. 1995).

During transcription, differential splicing of APP mRNA

can result in a number of APP splice variants (Fig. 1). The

major expressed isoforms of APP have 770, 751 or 695

amino acid residues. The APP751 and APP695 isoforms are

produced as a result of splicing out of exons 7 and/or 8

(Fig. 1a) (Kang et al. 1987; Tanzi et al. 1988; Weidemann

et al. 1989). Some less common splice variants have also

been reported, such as L-APP, which lacks exon 15

(Pangalos et al. 1996) and APP639, which lacks exons 2,

7 and 8 (Tang et al. 2003).

APP mRNA is expressed in a wide variety of tissues

including the nervous system (brain, spinal cord, retina),

immune system (thymus, spleen), muscle (smooth, cardiac

and skeletal), kidney, lung, pancreas, prostate gland and

thyroid gland (Liu et al. 2008). However, the mRNA splice

variants of APP are expressed in different amounts in

different cells. APP695 is the predominant neuronal isoform

(Kang et al. 1987), but non-neuronal cells express mostly

APP770 and APP751 (Rohan de Silva et al. 1997). L-APP is

expressed in leucocytes, microglia and astrocytes (Konig

et al. 1992). APP639 is expressed widely in foetal tissue, but

only in the liver of adults (Tang et al. 2003). The widespread

expression, distribution and sequence homology of the APP

gene family members suggest that APP plays an important

role that is common to many different tissues and organisms.

Gene knock-out (KO) studies can be a powerful method

for investigating protein function. APP-KO mice are viable

and fertile, indicating that the APP gene alone does not play

an essential role in development (Zheng et al. 1995).

Similarly, KO of the Drosophila APP homologue (APPL)

does not result in a lethal phenotype (Luo et al. 1992).

However, APP-KO does result in a number of subtle

phenotypic abnormalities. APP-KO mice are slightly smaller,

with a reduced weight of 15–20% and reduced brain weight

(Zheng et al. 1995; Magara et al. 1999) and APPL-KO in
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Fig. 1 Structure of the amyloid precursor protein

(APP) gene, mRNA and protein. (a) The APP gene

is located on chromosome 21q21.3. The gene has

18 exons. Differential mRNA splicing of Exons 7,8

(dark grey) can lead to the expression of 695, 751

and 770 amino-acid isoforms. Exons 2 and 15

(light grey) are spliced out in APP639 and L-APP,

respectively. (b) Protein structure. APP has an

N-terminal signal peptide (SP). The E1 domain has

a heparin-binding domain (HBD1), and a copper-

binding domain (CuBD); the E2 domain contains a

second heparin-binding domain (HBD2). APP751

and APP770 contain a Kunitz protease inhibitor

(KPI) and an Ox-2 antigen domain. Between the

E2 and Ab region are two potential N-linked

glycosylation sites (CHO). In this region, there is

also a potential chondroitin sulphate attachment

site that is formed when exon 15 is spliced out. The

amino-acid sequence of the Ab region is shown

along with the secretase cleavage sites. The

intracellular C-terminal domain contains a YENPTY

sorting motif. TMD, transmembrane domain.
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Drosophila results in a behavioural defect (Luo et al. 1992).

Importantly, several studies suggest that APP may have a

function that is related to the function of other APP family

members. Like APP-KO mice, APLP1-KO mice and

APLP2-KO mice are both viable and fertile (Heber et al.

2000). Double KO of APLP1 and APP does not produce a

lethal phenotype; however, both APP/APLP2 double KO

mice and APLP1/APLP2 double KO mice have a postnatal

lethal phenotype (Heber et al. 2000). Furthermore, knockout

of APL-1, which is the only APP gene in C. elegans, results

in a lethal phenotype (Hornsten et al. 2007). Therefore these

studies suggest that APP has a function that is likely to be

related or overlapping with that of APLP2 in mammals.

Post-translational modification, trafficking and
processing of APP

After it has been expressed, the newly translated APP

polypeptide can undergo a number of post-translational

modifications including glycosylation, sulphation, phosphor-

ylation and palmitoylation (Selkoe 2001; Bhattacharyya

et al. 2013). After modification in the Golgi apparatus,

APP is trafficked to the cell surface (Koo et al. 1996) before

being internalised by clathrin-mediated endocytosis and

incorporated into the endosomal-lysosomal system (Yama-

zaki et al. 1996). Most APP is trafficked from the endosome

to the lysosome, where it is degraded (Haass et al. 1992).

However, a portion can be returned to the cell surface

(Yamazaki et al. 1996).

APP can be post-translationally processed by enzymes

termed secretases, which can cleave the protein to produce a

number of smaller fragments. The proteolytic processing of

APP will not be discussed in detail, as this topic has been

well reviewed elsewhere (Haass et al. 2012). APP can

initially be cleaved by two proteases, a-secretase or

b-secretase (Fig. 1b), to produce the secreted ectodomains

sAPPa and sAPPb. Following APP cleavage by a- or

b-secretase, the membrane-associated C-terminal fragments

(C83 and C99, respectively) can be cleaved by c-secretase to

yield p3 or Ab, respectively, and a short C-terminal peptide

known as the APP intracellular domain (AICD).

A number of enzymes can act as a-secretases. All of them

are members of the A disintegrin and metalloprotease

(ADAM) family (Buxbaum et al. 1998; Koike et al. 1999;

Lammich et al. 1999). The b-secretase has been identified as

a type 1 transmembrane aspartyl protease termed the b-site

APP-cleaving enzyme 1 (BACE 1) (Hussain et al. 1999;

Sinha et al. 1999; Vassar et al. 1999; Yan et al. 1999; Lin

et al. 2000). BACE1 also cleaves APP at position 11 of the

Ab sequence, although the significance of this cleavage is

unclear (Fig. 1b) (Liu et al. 2002). c-Secretase is a trans-

membrane complex consisting minimally of four protein

subunits, presenilin 1 or 2, nicastrin, anterior pharynx-

defective phenotype and presenilin enhancer 2 (De Strooper

et al. 1998; Yu et al. 2000; Francis et al. 2002; Kimberly

et al. 2003). c-Secretase cleavage is a type of regulated

intramembrane proteolysis (RIP), as cleavage occurs in the

middle of the transmembrane domain (Lichtenthaler et al.

2011). RIP of APP is thought to occur as a series of

cleavages, starting from the C terminal end of the substrate

and moving towards the N-terminal region of the trans-

membrane domain. These cleavage sites have been termed

the c- e- and f- sites (Fig. 1b) (Lichtenthaler et al. 2011).

Although the proteolytic processing of APP by b-secretase

can lead to the pathological production of Ab, b-cleavage is a

normal process. Generally, the cleavage of transmembrane

proteins by an ADAM or BACE (ectodomain shedding) is

commonly involved in the activation of a number of

functional pathways. Ectodomain shedding by ADAMs is

essential for the release of many cytokines and growth factor

ligands, such as epidermal growth factor (EGF) (Blobel

2005). Additionally, ADAMs are involved in ectodomain

shedding of growth-factor receptors, such as human epider-

mal growth factor receptor 2 (Liu et al. 2006) and Notch

(Bozkulak and Weinmaster 2009). Ectodomain shedding by

BACE is also likely to be required for the proper function of

a number of proteins (Klaver et al. 2010). For example,

neuregulin is cleaved by BACE1 and ADAM17 to release an

ectodomain fragment, which acts in a paracrine manner to

stimulate myelination (Fleck et al. 2013). Therefore,

cleavage by ADAMs or BACE can potentially facilitate

cellular signalling in a variety of ways, either by release of

growth factors or by ligand-dependent activation of cellular

receptors.

RIP by c-secretase is also a process involved in the normal

function of many proteins. RIP can serve two general

functions. First, it can remove the membrane-associated

fragment that is produced by ectodomain shedding. Second, it

can catalyse the production of intracellular signalling domains

(Lichtenthaler et al. 2011). c-Secretase has over 80 currently

known substrates (Haapasalo and Kovacs 2011). Apart from

APP, the most well known c-secretase substrate is the

developmental protein Notch, which is activated by c-secre-

tase cleavage (De Strooper et al. 1999; Struhl and Greenwald

1999). Therefore, it is also possible that c-secretase cleavage

may also be involved in the function of APP.

Structure of APP

Structurally, APP has features of an integral type I

transmembrane glycoprotein (Fig. 1b). The structure of

APP suggests that it may act as a cell-surface receptor

(Kang et al. 1987) or as a growth factor (Rossjohn et al.

1999). The encoded protein contains a large ectodomain,

which includes a cysteine-rich globular domain (E1), an

acidic domain, a helix-rich domain (E2) and part of the Ab

sequence, which extends into the transmembrane domain

(Fig. 1b). The relatively short cytoplasmic domain contains

© 2014 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
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the C-terminus, which has some phosphorylation sites and a

YENPTY sorting motif (Fig. 1b). This section will discuss

the structure and putative interactions of these domains.

E1 domain and acidic region

The cysteine-rich E1 domain of APP shares little amino-acid

sequence similarity to non-APP family members. Cysteine-

rich globular domains are found in a number of transmem-

brane domain proteins including scavenger receptors and

hepsin, a cell-surface serine protease (Wu and Parry 2007).

The E1 domain is divided into two distinct regions, the

heparin-binding domain (HBD) and the copper/metal binding

domain (Fig. 2). The HBD is formed of a single a-helix and

an anti-parallel b-sheet, with a loop rich in basic residues

(95-110) that binds to heparin (Small et al. 1994; Rossjohn

et al. 1999) Immediately adjacent to the HBD is a hydro-

phobic pocket, which could form either a protein-binding site

or a dimerisation site (Rossjohn et al. 1999). It has been

proposed that this region may dimerise in the presence of

heparin (Gralle et al. 2006; Dahms et al. 2010). The size of

the putative binding domain at the N-terminus suggests that

APP may act as a receptor for a ligand or act as a growth

factor (Rossjohn et al. 1999), or may bind to an extracellular

matrix component (e.g. proteoglycan) (Small et al. 1994).

Adjacent to the HBD is the copper/metal binding domain,

which contains a single a-helix and a short b-sheet (Fig. 2).

This region can bind several metal ions (Bush et al. 1993).

The role of this domain is unclear, but it has been suggested

that copper (II) binding and reduction may be a principal

function (Multhaup et al. 1996). On the C-terminal side of

the E1 domain is an acidic region of unknown significance

that is rich in glutamic acid and aspartic acid residues. This

region also contains a stretch of seven threonine residues

(Kang et al. 1987).

KPI and Ox-2 antigen domains

Longer isoforms of APP (APP770 and APP751) may contain

a Kunitz-type protease inhibitor (KPI) domain and an Ox-2

antigen domain. APP isoforms containing the KPI domain

are more commonly expressed in non-neuronal cells (Rohan

de Silva et al. 1997), suggesting that they may play a role in

glial functions such as in wound repair. Clues to the function

of these isoforms comes from studies on blood coagulation.

KPI-containing forms of APP (APP751 and APP770) are

highly expressed in platelets where they can influence wound

repair by regulating blood clotting serine proteases (Van

Nostrand et al. 1991b). As serine proteases are also impli-

cated in neuronal cell growth (Wang and Reiser 2003), it is

possible that KPI-containing APP isoforms regulate cell

growth by inhibiting one or more of these proteases.

The role of the Ox-2 domain in APP770 is less clear. The

Ox-2 antigen is a lymphoid and neuronal cell-surface

glycoprotein, which has homology to Thy-1 and immuno-

globulin light chains (Clark et al. 1985). In APP, the Ox-2

domain is an insert of 19 amino-acid residues that is similar

to a region of the Ox-2 antigen. As immunoglobulin loop

domains are commonly found in cell-surface receptors and

are involved in cell-surface binding and recognition, it seems

likely that the Ox-2 domain in APP has a similar function.

E2 domain

The E2 domain is a a-helix rich region (Fig. 2) that can

readily dimerize (Xue et al. 2011) and may therefore be
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Fig. 2 Hypothetical 3-dimensional structure of amyloid precursor

protein (APP) based on the following protein data bank files: E1

domain (3KTM), Kunitz protease inhibitor (KPI) domain (1ZJD), E2

domain (3UMK), transmembrane domain (TMD) (2LLM) and intracel-

lular domain (3DXC). A cholesterol molecule is shown in the proposed

lipid-binding site in the transmembrane domain. The acidic region and

the region between the E2 and Ab domains are predicated to have little

secondary structure.
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involved in APP self-association. The E2 domain has a

heparin-binding site (Multhaup 1994; Clarris et al. 1997) as

well as a number of putative metal-binding sites that may

hold the E2 domain in a rigid conformation (Dahms et al.

2012). The metal-binding site in the E2 domain has been

suggested to possess a ferroxidase activity, which may

function in cellular iron export through an interaction with

ferroportin (Duce et al. 2010). A role in metal homeostasis is

supported by the finding that levels of holo-APP can be

regulated by iron (Rogers et al. 2002), although more work

is needed in this area to support this idea.

Chondroitin sulphate attachment domain

An unusual spliced variant of APP (L-APP) is formed by

splicing out exon 15. This creates a consensus sequence for

the attachment of chondroitin sulphate (Pangalos et al.

1995). The proteoglycan form of APP (called ‘appican’),

which is formed as a consequence of this splicing event, has

been found mostly in glia rather than in neurons. Appican

contains a chondroitin sulphate E in the repeating disaccha-

ride region and a 4-O-sulphated galactose in the linkage

region (Tsuchida et al. 2001). Although the function of

appican is unclear, it may be involved in adhesion events

(Wu et al. 1997), as chondroitin sulphates are known to

inhibit cell attachment and neurite outgrowth (Cui et al.

2013). In addition, appican has been found to bind to certain

heparin-binding growth factors such as midkine and pleio-

trophin, suggesting that the protein may play some role in the

regulation of cell growth (Umehara et al. 2004).

Ab, transmembrane domain and intracellular domain

The Ab region on the C-terminal side of the E2 domain lies

partly within the ectodomain and partly within the trans-

membrane domain. A GxxxG sequence motif within the

transmembrane domain has been implicated in homodimer-

isation (Munter et al. 2007) and in cholesterol binding

(Barrett et al. 2012; Fig. 2).

From a functional standpoint, the C-terminal cytoplasmic

domain of APP is arguably the most interesting region. The

structure and possible interactions of this region have been

reviewed in detail elsewhere (Kerr and Small 2005;

Schettini et al. 2010). The intracellular domain of APP is

highly conserved among APP family members and contains

a YENPTY sorting motif located between residues 757 and

762 of the APP770 isoform. This motif is involved in the

facilitation of clathrin-mediated endocytosis and is present

in many tyrosine receptor kinases, non-receptor tyrosine

kinases, low-density lipoprotein-receptor related family

proteins and integrins (Bonifacino and Traub 2003; Lem-

mon and Schlessinger 2010). Consistent with this role,

many studies have demonstrated that the YENPTY motif in

APP is involved in the regulation of its trafficking and

endocytosis (Lai et al. 1995; Perez et al. 1999; Ring et al.

2007).

Putative functions of APP

Despite the large number of published studies on APP, there

is still no clear consensus on the protein’s function. This

section aims to summarise the major ideas relating to the

function of APP. Coverage of more specific aspects of APP

function can be found in other recent reviews (Aydin et al.

2012; Chasseigneaux and Allinquant 2012; Muller and

Zheng 2012).

Trophic actions of APP

APP has been reported to influence cell proliferation,

differentiation, neurite outgrowth, cell adhesion and syna-

ptogenesis. A number of studies suggest that the extracellular

domain can stimulate cellular growth. In vitro, sAPPa has

been reported to alter the growth of fibroblasts, keratino-

cytes, B109 cells, FRTL-5 cells, PC12 cells and neurons

(Saitoh et al. 1989; Araki et al. 1991; Milward et al. 1992;

Jin et al. 1994; Ninomiya et al. 1994; Pietrzik et al. 1998;

Hoffmann et al. 2000; Young-Pearse et al. 2008). Addition-

ally, there are some reports that infusion of sAPPa after

traumatic brain injury can improve neuronal survival and

recovery (Thornton et al. 2006). Genetic knock-in of sAPPa

into APP/APLP2 double KO mice (APPsa-DM mice)

rescues the lethal phenotype of the double KO (Weyer et al.

2011), supporting a role for sAPPa in growth. Similarly,

knock-in of the extracellular domain fragment of APL-1

from C. elegans rescues the lethal phenotype of the APL-1

KO (Hornsten et al. 2007). Collectively, these studies

provide good evidence that APP has a trophic function,

and that the extracellular region of APP is involved in this

function.

Effects on neural stem cell proliferation and differentiation

As APP is co-ordinately expressed in neuroblasts and

neurons at the time of cell proliferation and differentiation

(Fukuchi et al. 1992; Masliah et al. 1992; Salbaum and

Ruddle 1994; Clarris et al. 1995; Reinhard et al. 2005), this

has led to the idea that APP may play a role in the regulation

of stem-cell proliferation or differentiation. Indeed, APP is

processed in a manner that is very similar to the protein

Notch, which regulates neural stem cell differentiation (Ables

et al. 2011). Therefore, it is possible that APP may have a

similar or related developmental function to that of Notch

(Kimberly et al. 2001).

There is strong evidence that APP is able to stimulate the

proliferation of neural stem or progenitor cells (NSPCs). For

example, sAPPa and sAPPb can promote the proliferation

of NSPCs (Hayashi et al. 1994; Ohsawa et al. 1999;

Demars et al. 2011; Baratchi et al. 2012). Hayashi et al.

(1994) examined the effect of secreted APP770 on NSPC

proliferation and found secreted APP770 had a stronger

effect on NSPC proliferation than secreted APP695. A more

recent study reported that inhibition of a-secretase reduced

© 2014 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of
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NSPC proliferation and that sAPPa was able to rescue

this effect (Demars et al. 2011). In another study, sAPPa

infused into the ventricles of mice was found to bind to

epidermal growth factor receptor (EGFR) expressing stem

cells in the subventricular zone (Caille et al. 2004). Both the

secretion of EGF and the proliferation of the EGFR-

expressing cells were increased by sAPPa infusion (Caille

et al. 2004).

To examine the specific contribution of APP to stem cell

proliferation, our group examined the ability of NSPCs

derived from APP transgenic mice to proliferate. We found

that the expression of APP positively correlated with the

proliferation of NSPCs (Hu et al. 2013). However, surpris-

ingly, the APP-induced increase in NSPC proliferation was

not due to the secretion of sAPPa, but rather to the secretion

of cystatin C (Hu et al. 2013). Therefore, APP could

potentially influence NSPC proliferation through two differ-

ent mechanisms, i.e. either via the production of sAPPa or

via cystatin C release.

Studies on APP transgenic mice also suggest the possible

involvement of APP in NSPC proliferation. Some studies

have reported increased NSPC proliferation in APP mice, but

have also suggested the effect was due to Ab (Verret et al.

2007; Kolecki et al. 2008; Sotthibundhu et al. 2009). J20

mice, which overexpress human APP with the Swedish and

Indiana familial AD mutations, have a 2-fold increase in the

number of proliferating stem cells in the dentate gyrus and

subventricular zone at an age of 3 months (Jin et al. 2004;

Lopez-Toledano and Shelanski 2007). In contrast, a number

of studies have reported decreased NSPC proliferation in

APP mice (Haughey et al. 2002; Dong et al. 2004; Donovan

et al. 2006; Naumann et al. 2010) or no effect of APP on

NSPC proliferation in vivo (Yetman and Jankowsky 2013).

As Ab starts to accumulate in APP mice, the proliferation of

neural stem cells decreases (Lopez-Toledano and Shelanski

2007), suggesting that the build-up of Ab may reduce stem

cell proliferation.

APP may also play a role in regulating the differentiation

of NSPCs. A study using human embryonic stem cells found

that APP overexpression or addition of sAPPa enhanced

neuronal differentiation (Freude et al. 2011). We also found

that APP-overexpressing NSPCs derived from Tg2576 mice

possessed a greater potential to differentiate into neurons,

whereas cells derived from APP KO mice exhibited

decreased neuronal differentiation (Hu et al. 2013). Another

recent study has suggested that sAPPa/b may cause an

increase in glial cell differentiation (Baratchi et al. 2012).

APP expression is probably not mandatory for the initiation

of neuronal differentiation, as embryonic stem cells derived

from APP triple KO mice still form neuronal precursors

(Bergmans et al. 2010). However, the differentiation of

neuronal precursors appears to be delayed in vivo when APP/

APLP1 and APLP2 expression is reduced (Shariati et al.

2013).

Effects on neurite outgrowth, synaptogenesis and synaptic

plasticity

APP can promote neurite outgrowth in cell culture (Small

et al. 1994; Allinquant et al. 1995). Furthermore, APP

expression is upregulated rapidly in axons in response to

axonal injury, possibly as part of a repair mechanism

(Gentleman et al. 1993). One possible mechanism by which

APP promotes neurite outgrowth is by regulating cell-

substrate adhesion. APP is reported to bind to laminin,

collagen type I and heparan sulphate (Kibbey et al. 1993;

Beher et al. 1996; Clarris et al. 1997), all of which can

influence neurite outgrowth. APP may also promote cell-cell

adhesion (Soba et al. 2005). For example, in the presence of

heparin, APP can form trans-dimers that could form cell-to-

cell contacts (Gralle et al. 2006; Dahms et al. 2010). This

trans-dimerisation mode of action has also been proposed as

a mechanism for the stabilisation of synapses by APP (Wang

et al. 2009). APP may also modulate the activity of other

proteins involved in cell adhesion. APP reportedly interacts

with several cell-adhesion molecules including integrins,

fasciclin II, contactin 4, neuroglia cell adhesion molecule,

and transient axonal glycoprotein-1 (Yamazaki et al. 1997;

Ashley et al. 2005; Ma et al. 2008; Osterfield et al. 2008).

These studies suggest a number of mechanisms by which

APP may influence adhesion, although the precise mecha-

nisms still remain obscure.

APP may also be involved in the regulation of synapto-

genesis. During development, APP is expressed in both pre-

and postsynaptic sites and its level is dramatically increased

during the critical period of synaptogenesis (Loffler and

Huber 1992; Clarris et al. 1995; Wang et al. 2009). Clarris

et al. (1995) found that APP expression was increased in

mitral cells of the olfactory bulb at precisely the stage when

neurites from olfactory receptor neurons were coming in

contact with the mitral cell dendrites. In neurons, a pool of

APP is also preferentially found in the post-synapse,

suggesting a synaptic role for this protein (Shigematsu et al.

1992).

APP KO mice display a number of neurological deficien-

cies that may be explained by an effect on synaptogenesis,

such as a deficit in grip strength and locomotor activity

(Zheng et al. 1995; Ring et al. 2007). APP-KO mice also

have a number of deficits that are associated with altered

synaptic function, such as hypersensitivity to kainate-induced

seizures, alterations in dendritic spine density, and reduced

performance in tests of spatial memory (Steinbach et al.

1998; Dawson et al. 1999). APP/APLP2 double KO mice

have impaired neuromuscular junction formation, as demon-

strated by a reduced number of synaptic vesicles, excessive

terminal sprouting, incorrect apposition of pre- and post-

synaptic proteins and impaired synaptic transmission (Wang

et al. 2005). These synaptic deficits may be responsible for

the lethality of the APP/APLP2 double KO (Wang et al.

2005).
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A role for APP in regulating synaptic plasticity, learning

and memory has also been proposed. APP may alter

expression of the GluR2 subunit of the a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor, which

plays an important role in regulating synaptic calcium

permeability (Lee et al. 2010). APP may also affect synaptic

calcium by altering cell-surface expression of the NMDA

receptor (Cousins et al. 2009; Hoe et al. 2009). As sAPPa is

secreted during long-term potentiation (LTP) (Fazeli et al.

1994), it may play a role in the regulation of LTP. However,

whether cognitive deficits in APP mice (Chapman et al.

1999) are due to APP-induced disruption of LTP (Weyer

et al. 2011) or whether they are due to effects of Ab, as

seems likely (Janus et al. 2000; Morgan et al. 2000),

remains to be established. Indeed, some studies suggest that

APP can directly increase LTP (Ishida et al. 1997; Seabrook

et al. 1999; Taylor et al. 2008).

Function of APP in blood coagulation

The predominant forms of APP in blood contain the KPI

domain (Bush et al. 1990; Gardella et al. 1990; Van

Nostrand et al. 1991a). These isoforms have been suggested

to have a role in the regulation of blood coagulation. In

platelets, APP, sAPP and Ab accumulate in a-granules,

which are vesicles that store a variety of clotting factors (Van

Nostrand et al. 1991b; Blair and Flaumenhaft 2009). Upon

platelet stimulation, APP, sAPP and Ab are released, along

with a number of another components of the coagulation

cascade (Bush et al. 1990; Gardella et al. 1990; Smith et al.

1990; Van Nostrand et al. 1990; Smith 1997). The KPI

domain of APP is a potent inhibitor of the coagulation factors

XIa, IXa and Xa (Smith et al. 1990; Schmaier et al. 1993;

Scandura et al. 1997). Factor XIa, for example, is strongly

inhibited (Ki = 400 pM) (Smith et al. 1990; Scandura et al.

1997). Notwithstanding the role of the KPI domain, other

regions of APP may also participate. For example, inhibition

of factor XIa by APP is enhanced in presence of heparin,

suggesting an involvement of the heparin-binding regions

of APP (Smith et al. 1990). The E1 N-terminal heparin-

binding domain of APP is also reported to inhibit the

activation of factor XII and to inhibit platelet activation,

independently of the KPI domain (Niwano et al. 1995;

Henry et al. 1998).

KPI-containing forms of APP can inhibit blood coagula-

tion in vitro, consistent with a role of APP as an inhibitor of

coagulation (Schmaier et al. 1993; Annich et al. 1999).

Genetic overexpression of APP in mice decreases cerebral

thrombosis and also increases the severity of haemorrhage

in animal models, whereas KO of APP has the opposite

effect (Xu et al. 2005, 2007). The anti-coagulant function of

APP is also conserved among APP family members (Xu

et al. 2009). Therefore in the circulatory system, other APP

family members may also have functions in the clotting

cascade.

What is the mechanism of APP signalling?

Despite the many reports of effects of APP on cell

proliferation, neurite outgrowth and synaptogenesis, the

mechanisms that underlie these effects have not been fully

elucidated. The original description of the APP gene noted

that the structure of APP resembles a cell-surface receptor

(Kang et al. 1987), however a receptor function for APP has

not been unequivocally established. A major missing piece of

information is the identity of a physiological ligand that

activates the APP ‘receptor’. F-spondin has been suggested

to be a potential APP ligand (Ho and Sudhof 2004).

However, the strongest support for the idea that APP

functions as a receptor comes from studies that suggest

APP can activate intracellular signal transduction

mechanisms.

The C-terminal domain (residues 732-751) has been

suggested to be a binding site for G-proteins (Nishimoto

et al. 1993). The binding of an extracellular antibody to the

N-terminal domain of APP may result in signal transduction

by activating the guanosine 50-triphosphate-binding protein

GaO (Okamoto et al. 1995; Murayama et al. 1996). The

significance of G-protein coupled APP signalling has yet to

be fully elucidated, but studies of the insect APP homologue

APPL suggest that an APP-G-protein interaction could be

involved in the control of neuronal migration (Ramaker et al.

2013).

Other mechanisms of signal transduction have also been

proposed. APP has been suggested to activate gene tran-

scription in a similar manner to Notch, which signals through

the c-secretase-mediated release of the Notch intracellular

domain. This domain translocates to the nucleus and

activates gene transcription. The AICD fragment of APP

has also been reported to translocate to the nucleus (Cupers

et al. 2001; Gao and Pimplikar 2001). Normally AICD is

prone to degradation (Kimberly et al. 2001). However,

AICD can be bound by Fe65, which binds to the YENPTY

motif through its phosphotyrosine-binding domain (Fiore

et al. 1995). Fe65 binding may help to stabilise AICD

(Kimberly et al. 2001). After translocating to the nucleus, the

Fe65-bound AICD has been reported to form a transcrip-

tionally active complex in combination with Tat-interactive

protein 60 (Tip60), which is a histone acetyltransferase (Cao

and Sudhof 2001; Gao and Pimplikar 2001). A number of

target genes have been reported for AICD. These genes

include KAI1 (Baek et al. 2002), APP, BACE, Tip60 (von

Rotz et al. 2004), glycogen synthase kinase-3b (Kim et al.

2003), EGFR (Zhang et al. 2007), p53 (Checler et al. 2007),

neprilysin (Belyaev et al. 2009) and low-density lipoprotein-

receptor related family proteins (Liu et al. 2007).

Despite the evidence that the AICD may be involved in the

regulation of gene transcription, some studies suggest that the

role of AICD may not be quite so straightforward. For

example, c-secretase-induced AICD release is not necessary
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for Tip60 activation (Hass and Yankner 2005). Fe65 has also

been reported to signal gene transcription independently of

APP (Yang et al. 2006). Additionally, many of the down-

stream gene targets of the proposed AICD complex have

been questioned (Chen and Selkoe 2007; Repetto et al. 2007;

Waldron et al. 2008; Aydin et al. 2011) and the mechanism

is still unclear (Chen and Selkoe 2007; Waldron et al. 2008).

APPmay also exert its physiological effects via the secreted

fragments sAPPa or sAPPb. At present, it is not clear whether

secreted APP can activate a specific signal transduction

pathway via, for example, a growth factor receptor. Binding

studies suggest that there is a high-affinity receptor for secreted

APP, which interacts with the E1 domain (Reinhard et al.

2013). However, this receptor has not yet been identified.

Some putative APP receptors include b1-integrin, lipoprotein

receptor related protein-1, class A scavenger receptor, death

receptor 6, p75 neurotrophin receptor andAPP itself (Kounnas

et al. 1995; Santiago-Garcia et al. 2001; Young-Pearse et al.

2008;Gralle et al.2009;Nikolaev et al. 2009).However,APP

may interactwithmanyother extracellular proteins aswell (Bai

et al. 2008).

To complicate matters, APP’s trophic effects may be

mediated via other growth factors. For example, sAPP is able

to potentiate the action of nerve growth factor (NGF)

(Milward et al. 1992; Wallace et al. 1997; Akar and Wallace

1998). APP can also increase the secretion and expression of

cystatin C, which positively modulates the growth of NSPCs.

(Hu et al. 2013). APP has been suggested to regulate NGF/

tyrosine receptor kinase A signalling, through an intracellular

interaction involving the C-terminal YENPTY phosphoryla-

tion site (Matrone et al. 2011). Along similar lines, NGF,

EGF, and fibroblast growth factor-2 have all been reported to

increase the expression of APP (Ohyagi and Tabira 1993;

Villa et al. 2001) and NGF, EGF and insulin have been

reported to increase the secretion of sAPP (Slack et al. 1995;

Solano et al. 2000; Ruiz-Leon and Pascual 2001; Caille

et al. 2004). The interplay between these growth factor

pathways and APP not only suggest that APP is linked to

cellular growth, but also presents a challenge for establishing

the direct signalling mechanisms undertaken by APP.

It has also been suggested that the production of Ab from

APP may represent a normal physiological function. How-

ever, this suggestion has been controversial. Ab neither

possesses a defined primary structure, nor is it produced as a

major pathway of APP processing. Nevertheless, a number of

functions for Ab have been proposed. For example, Ab has

been suggested to be involved in cholesterol transport (Yao

and Papadopoulos 2002) and Ab peptides can increase cell

adhesion and neurite outgrowth (Koo et al. 1993). Kamenetz

et al. (2003) found that synaptic activity regulated Ab

production and that Ab, in turn, selectively suppressed

excitatory neurotransmission, suggesting that synaptic activ-

ity may be regulated by a negative feedback loop involving

Ab secretion. In contrast, a more recent study by Abramov

et al. (2009) has suggested that Ab is a positive endogenous

regulator of release probability at hippocampal synapses. The

identification of Ab’s normal physiological function (if it has

one) is extremely important. As many therapeutic strategies

for the treatment of AD aim to prevent Ab production or

increase Ab clearance from the brain, it is important to

ensure that these strategies do not disrupt a normal physi-

ological function.

Summary and conclusions

There is strong evidence that APP plays an important role in

cell growth and proliferation. There is also evidence that APP

may act as a trophic factor to influence events such as neurite

outgrowth and synaptogenesis. As APP is expressed at early

stages of nervous system development, APP clearly plays a

key role in the growth and maturation of many cells.

However, the expression of APP in the mature brain and the

up-regulation of APP following traumatic brain injury argue

for an important tissue-repair function as well.

Although the role of APP as a growth-regulatory molecule

can now be stated with some confidence, the precise

mechanism by which APP regulates cell growth is still

unclear. The extracellular domain of APP may interact with a

cell-surface receptor or a component of the extracellular

matrix. The intracellular domain is also undoubtedly impor-

tant and may interact with a number of cytoplasmic adaptor

molecules to facilitate signal transduction or control APP

trafficking. However, further research is needed to under-

stand APP’s mechanism of action. In particular, future

research needs to focus on mechanisms of APP action in

which the function of APP is most clearly established. By

understanding the mechanism of APP action in well-defined

roles (e.g. NSPC proliferation), it may be possible to

generalise the findings to understand the mechanisms of

APP in relation to other less well-defined roles.
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