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The eastern Himalayan syntaxis has experienced some of the highest rates of deformation and erosion in the
orogen during the Late Cenozoic, and the Yarlung Tsangpo, Brahmaputra, Irrawaddy, Salween, and Mekong
rivers are the key erosional systems in that region. The Yarlung Tsangpo drains southern Tibet and the
deep Siang River gorge through the eastern Himalayan syntaxis before joining the Brahmaputra in northeast-
ern India. It has been proposed that the Yarlung Tsangpo drained into other large rivers of southern Asia, such
as the Irrawaddy, Salween and Red River. We have used uranium/lead dating and hafnium measurements of
detrital zircons from Cenozoic sedimentary deposits in Central Myanmar to demonstrate that the Yarlung
Tsangpo formerly drained into the Irrawaddy River in Myanmar through the eastern syntaxis, and that this
ancient river system was established by (at least) the Middle–Late Eocene. The Yarlung Tsangpo–Irrawaddy
river disconnected in the Early Miocene driven by increased deformation in the eastern syntaxis and
headward erosion by tributaries of the Brahmaputra. Our results highlight the significance of the sedimentary
record of large orogen-parallel rivers and provide key chronological constraints on landscape evolution during
the Early Miocene phase of the Himalayan orogeny.
© 2013 The Authors. Published by Elsevier B.V. on behalf of International Association for Gondwana Research.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Recent research on large Asian river systems (Brookfield, 1998;
Zeitler, 2001; Clark et al., 2004; Clift et al., 2006; Finnegan et al., 2008;
Booth et al., 2009) has focused attention on their role in tectonics and
tested how influential rivers are in controlling the location and magni-
tude of deformation. The significance of the coupling between tectonics
and riverine erosion is well demonstrated in the eastern syntaxis of the
Himalayas, where a proportionally small, but rapidly uplifting area of
the orogen contributes half of the sediment budget for the modern
Brahmaputra River (Stewart et al., 2008). The evolution of the Yarlung
Tsangpo, prior to its capture by the Brahmaputra, has been debated
for over a century. Brookfield (1998) and Clark et al. (2004), building
on earlier publications by Burrard and Hayden (1907) and Seeber and
Gornitz (1983), have stressed that the timing of river capture events
throughout the Himalayas and southeast Asia is particularly relevant
to understanding the mechanics and feedback between focused uplift
on).

B.V. on behalf of International Asso
and river erosion (Booth et al., 2009). Clark et al. (2004) suggested
that the Yarlung Tsangpo, Irrawaddy and Salween (Fig. 1) were tribu-
taries to the Red River before the onset of Himalayan collision. Hoang
et al. (2009) used U/Pb dating and εHf isotopic values of detrital zir-
cons from modern Red River samples and Middle–Upper Miocene
sedimentary rocks within the catchment of the modern Red River to
demonstrate that there was no connection between the Irrawaddy
and Red Rivers after the LateMiocene, and concluded that it is unlikely
that one ever existed. We have obtained new U/Pb and εHf isotopic
data of the detrital zircons from Cenozoic deposits of the Central
Myanmar Basin (Fig. 1) that demonstrates that a Yarlung Tsangpo–
Irrawaddy system existed as long ago as the Late Eocene, and that
the Yarlung Tsangpo–Irrawaddy connection was broken in the Early
Miocene, coincidentwith deformation along the strike slip Jiali–Parlung
and Gaoligong faults in the eastern syntaxis (Lin et al., 2009) and the
Sagaing Fault in Myanmar (Mitchell et al., 2007). Our results provide
constraints on the rate of landscape response to deformation in the
syntaxis and temporal constraints on the earliest evolution of the mod-
ern Yarlung Tsangpo–Brahmaptura river system that drains Namche
Barwe in the eastern syntaxis (Stewart et al., 2008).
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2. Background

The Central Myanmar Basin is a forearc basin formed during north-
eastward subduction of the Bengal oceanic crust beneath Myanmar and
is comprised of Eocene-Quaternary sedimentary and volcanic rocks
(Mitchell, 1993). Seismic reflection data reveal that the basin is com-
posed of a Western Trough with up to 15 km of Eocene–Pliocene sedi-
mentary rocks, while less than 8 km of primarily Miocene–Pliocene
rocks overlie the basement rocks of the Burma plate in the Eastern
trough (Bertrand and Rangin, 2003). The Kabaw Fault bounds the
Central Myanmar Basin on the west (Fig. 1) and separates it from the
Late Mesozoic–Neogene carbonate and flysch forearc-accretionary
prism and plutonic rocks of the Indo-Burman Ranges (Bender, 1983;
Mitchell, 1993; Allen et al., 2008). The Mogok Metamorphic Belt and
Sibumasu block border the basin to the east, and south of Mandalay
this boundary is clearly defined by the right-lateral Sagaing Fault
(Fig. 1). The Mogok Metamorphic Belt occurs as narrow deformational
zones (30–40 km wide) between the Central Myanmar Basin and the
Shan Plateau of the Sibumasu block (Fig. 1), and is bounded by the
Slate Belt in northeastern Myanmar (Mitchell et al., 2007). These re-
gions contain intrusive rocks that are part of the Late Jurassic–Eocene
magmatic arcwhich can be traced north through the easternHimalayan
syntaxis and into the Transhimalayan rocks of Tibet (Mitchell et al.,
2007; Searle et al., 2007; Chiu et al., 2009; Mitchell et al., 2012). All
of the magmatic arc rocks have similar chronologies, but differing
geochemistry: the Gangdese is an I-type batholith, whereas the intru-
sive rocks of the eastern Transhimalayan, Mogok Metamorphic Belt
and western Thailand (Fig. 1) are predominately S-type (Bertrand et
al., 1999; Mitchell et al., 2007; Chiu et al., 2009; Ji et al., 2009; Searle
et al., 2012).

During Late Jurassic–Cretaceous time, theWest Burma block docked
with Asia resulting in northwards-directed thrusting of ophiolites that
are compositionally equivalent to the Yarlung ophiolite zone in Tibet
(Mitchell, 1993). The 90° clockwise rotation of the Bangong–Nujiang
and Indus–Yarlung Tsangpo suture zones reflects the cumulative
Cenozoic deformation of SE Asia (Fig. 1) and 40° of this rotation is
thought to have occurred since the Early Miocene (Tapponnier et al.,
1982). The right lateral Sagaing Fault runs from north to south and is
the boundary between the Central Myanmar Basin and the Mogok
Metamorphic Belt (Fig. 1); total offset is debated but ranges from
330 km (Curray, 2005) to as much as 1000 km (Hla Maung, 1987;
Mitchell, 1993; Mitchell et al., 2012), and most of this has occurred
since the Miocene (Pivnik et al., 1998; Morley, 2002).

Here we report on the results of our isotopic fingerprinting of the
sedimentary rocks in the Central Myanmar Basin. We have measured
the U–Pb ages and εHf values for detrital zircons from a suite of
Eocene, Oligocene, and Miocene units in order to investigate whether
a Yarlung Tsangpo–Irrawaddy connection existed during the Eocene
and Oligocene, and if so, to constrain when that connection was
broken. Our study complements and builds upon previous research
that has documented the chronology of magmatic events and dating
of detrital zircons from southern Tibet, the Eastern syntaxis, and
Myanmar (Bodet and Scharer, 2000; Mo et al., 2005; Chu et al., 2006;
Liang et al., 2008; Chiu et al., 2009; Chung et al., 2009; Ji et al., 2009;
Mo et al., 2009; Zhu et al., 2009a,b; Zhang et al., 2010; Chu et al.,
2011; Guan et al., 2011; Guo et al., 2011; Zhu et al., 2011; Guan et al.,



114 R.A.J. Robinson et al. / Gondwana Research 26 (2014) 112–121
2012; Guo et al., 2012; Ji et al., 2012). A number of studies on igneous
andmetamorphic rocks in the eastern Transhimalayan syntaxis region
and within the Mogok Metamorphic Belt and Slate Belt provide the
bedrock U/Pb and εHf signatures from this part of the orogen which
is within the current Irrawaddy River catchment area (Liang et al.,
2008; Chiu et al., 2009; Shi et al., 2009; Zhu et al., 2009c; Xu et al.,
2012). Liang et al. (2008) presented U/Pb and εHf data for zircons
from three Transhimalayan batholiths in Tibet and Myanmar, and
detrital zircons from aMiocene deposit inMyanmar, and used the pres-
ence of high positive εHf values of the Gangdese batholith in Tibet as
evidence that the Yarlung Tsangpo was connected to the Irrawaddy in
the Late Miocene.
2.1. Sample collection

Wecollected a total of ten rock sampleswithin the CentralMyanmar
Basin from fluvial and estuarine sandstones of Middle–Late Eocene
(Pondaung Formation), Oligocene (Padaung Formation), and Miocene
(Taungtalon, Shwetaung, Moza, Obogon Formations) age (Figs. 1, 2).
The Eocene shoreline was located at a similar latitude to Mandalay
(Aung Khin and Kyaw Win, 1968). In the Eastern Trough, we collected
two samples of the Pondaung Formation from northeast of Shwebo,
and one sample each from three Miocene units located south of
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Mandalay (Fig. 1). Three Oligocene-aged samples were collected from
the northern end of the Mimbu Basin near Monywa in the Western
Trough, and two more Miocene samples were collected west of Pyay
(Fig. 1). Different localitieswere required to collect the samples because
there is a widespread unconformity spanning the Oligocene in the East-
ern Trough of the CentralMyanmar Basin, and Eocene andMiocene sed-
imentary rocks are well exposed to the north and south of Mandalay,
respectively (Figs. 1, 2). More details of the samples are provided in
the Supplementary Materials.
2.2. Methods

We separated zircons from all samples and combined U/Pb and
Lu/Hf methods to discriminate between the potential source areas
for the Cenozoic sedimentary rocks of the Central Myanmar Basin.
Zircon is a common accessory mineral in felsic igneous rocks, and
its high crystallization temperature, hardness and inertness mean
that it is also found in metamorphic and sedimentary rocks. Zircon
contains up to 1% uranium and up to 2% hafnium, and the isotopes
of these elements are used in radiometric dating (U/Pb system) and
to quantify the contributions of the mantle to crustal rocks (Lu/Hf sys-
tem), thereby providing additional information on the source of the zir-
con (Bodet and Scharer, 2000). Detrital zircon geochronology is a
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well-established set of techniques primarily used for determining prov-
enance in sedimentary rocks. All U/Pb dating and Lu/Hf measurements
were made at the NERC Isotope Geosciences Laboratory (NIGL) in
Keyworth with a Nu Plasma Laser Ablation–Multi-Collector-Inductively
Coupled Plasma Mass Spectrometer (LA-MC-ICPMS) using high sensi-
tivity methods on imaged zircons and appropriate reference materials.
Sedimentary rock samples were prepared at the University of St
Andrews. They were crushed and zircons were picked from non-
magnetic sediment fractions after density separations on a Wilfley
table and in heavy liquid, and compositional separation using a Frantz
magnetic separator. Zircon crystals were mounted on tape, set in
epoxy resin, and polished. Both cathodoluminescence and backscatter
images were taken of all grains to aid identification of mineral zoning
and overgrowths, and to help with the selection of areas suitable for
laser ablation. U/Pb measurements were conducted first, followed by
Lu/Hf measurements on a sub-set of zircons for each sample. More
details on sample preparation and measurement, and the complete
U/Pb and Lu/Hf datasets are presented in Supplementary Materials
(Tables S1 and S2). All quoted ages are calculated using 206Pb/238U
with a 2σ uncertainty.

3. Results

In order to testwhether zirconsderived from theGangdese batholith,
or other Lhasa terrane rocks, are contained in the sedimentary rocks
of central Myanmar, and to establish whether a Yarlung Tsangpo–
Irrawaddy river existed during Eocene to Miocene time, we compare
our detrital zircon data with published U/Pb and Hf data for
Transhimalayan batholiths in the Lhasa terrane, the eastern syntaxis,
and within the current catchment of the Irrawaddy River in northeast-
ern Myanmar (Fig. 1). The U/Pb ages of detrital zircons from our
Cenozoic samples all contain relatively small proportions (b10%) of
Proterozoic- and Paleozoic-aged grains (Figs. 2, S2 and Table S1), but
the dominant age populations reflect large contributions of rocks in-
volved in the closure of the Tethyan seaway. Consequently, we focus
on data for the last 300 Ma. Our oldest Cenozoic sample (Pondaung-1;
Pondaung Formation) is Middle to Late Eocene in age and its youngest
concordant detrital zircon is 41.4 ± 0.9 Ma (Fig. 2), which provides
a maximum age for this sample. Absolute depositional ages for
the upper Pondaung Formation are based on a fission track date of
37–38 Ma for zircons extracted for an ash bed located southwest of
Monywa (Fig. 1), which is associated with primitive anthropoid fossils
(Tsubamoto et al., 2002; Beard et al., 2009). New LA-ICP-MS U/Pb ages
of zircons extracted from the same tuff bed (Khin Zaw et al., 2014) sug-
gest a slightly older timing for deposition (40.2 ± 0.5 Ma). Our detrital
zircon data for Pondaung-1 have three distinct age peaks and amode at
~45 Ma. The Oligocene samples from the Padaung Formation have a
broad range of U/Pb ages less than 100 Ma, and based on the youngest
concordant zircon has a minimum age of 27.6 ± 1.4 Ma (Fig. 2). The
Early Miocene Shwetaung Formation is dominated by U/Pb ages less
than 120 Ma, has a mode at ~50 Ma, and a minimum age of 18.2 ±
0.3 Ma. The overlying Miocene Taungtalon Formation and lower Moza
Formation have older minimum ages of 29.7 ± 0.6 Ma and 32.9 ±
0.7 Ma, respectively (Fig. 2), and their modal ages are slightly older
than that of the Shwetaung Formation. Thus, formations younger than
the Shwetaung Formation contain progressively older minimum zircon
ages such that the youngest age peaks shifts to being slightly older for
younger sedimentary units (Fig. 2). All the Oligocene andMiocene sam-
ples contain a small proportion of Jurassic-aged detrital zircons (Fig. 2).

The largest plutonic complex in the Yarlung Tsangpo catchment is
the Transhimalayan Gangdese batholith of southern Tibet (Fig. 1) and
it has a magmatic history spanning from ~200 Ma to 15 Ma (Ji et al.,
2009). The Gangdese and the eastern Transhimalayan batholiths
(called Basu-Ramwu, Bomi-Ranwu and Chayu-Shama) of the eastern
syntaxis region, the Northern Magmatic Belt of the Lhasa terrane, and
the Dianxi Burma batholiths within the Mogok Metamorphic Belt and
Slate Belt (Fig. 1) have overlapping magmatic histories (Chu et al.,
2006; Liang et al., 2008; Chiu et al., 2009; Mitchell et al., 2012; Xu
et al., 2012). The detrital U/Pb ages shown in Fig. 2 are consistent
with the Gangdese, eastern Transhimalayan batholiths, or the Dianxi-
Burma batholiths and any of these could be the provenance for the
Central Myanmar Basin sediments (Fig. 1).

The application of U/Pb and εHf provides a tool for discriminating
between batholiths, and we have compiled the published U/Pb and
εHf data for the batholiths in the modern day Yarlung Tsangpo,
Brahmaputra, and Irrawaddy catchments (Figs. 1, 3) (Bodet and
Scharer, 2000; Mo et al., 2005; Chu et al., 2006; Liang et al., 2008; Chiu
et al., 2009; Chung et al., 2009; Ji et al., 2009; Mo et al., 2009; Zhu et
al., 2009a,b; Zhang et al., 2010; Chu et al., 2011; Guan et al., 2011; Guo
et al., 2011; Zhu et al., 2011; Guan et al., 2012; Guo et al., 2012; Ji et
al., 2012). The compiled dataset of these published Mesozoic–
Cenozoic plutonic sources reflect large variations in εHf from ~−25
to +20 (Fig. 3). Zircons from the Gangdese batholith of the Lhasa
terrane in the Yarlung Tsangpo catchment in Tibet have positive (ju-
venile mantle) εHf values until about 55 Ma (Chu et al., 2011), and
younger zircons with U/Pb ages between 55 Ma and 40 Ma have εHf
values as low as −7, although most values fall between +5 and
+15 (Fig. 3A). A suite of analyses between 35 Ma and 10 Ma have
εHf values between +3 to +12. The Northern Magmatic Belt of the
northern Lhasa terrane contains Jurassic to Early Cretaceous aged zir-
cons (90–210 Ma) and depleted mantle εHf values of −15 to −5
(Figs. 1; 3A). The Nyingchi metamorphic complex lies directly west of
Namche Barwa (Fig. 1) in the southern eastern Lhasa terrane and has
very mixed εHf values (−18 to +9) with quite discrete U/Pb ages
(Fig. 3A). The eastern Transhimalayan Basu-Ramwu, Bomi-Ranwu and
Chayu-Shama batholiths are located within the eastern syntaxis region
between the Bangong–Nujiang and Yarlung–Yarlung Tsangpo sutures
zones, and the Bomi-Ranwu batholith samples are taken from along
the strike of the Jiali Fault (Fig. 1). There are several clusters of zircons
ranging from 230 Ma to 40 Ma, and they have depleted mantle εHf
values of−20 to−5 (Fig. 3B). The Danxi Burma batholiths, and associ-
ated Tengliang and Yingjiang granitoids, represent the intra-Myanmar
magmatic arc and lie within the present-day Irrawaddy River catch-
ment (Fig. 1). They form two groups with similar εHf values ranging
in age from 100 to 140 Ma and 45 to 80 Ma and have similar values to
the Bomi-Ranwu. Data from the Gaoligong granites inWestern Yunnan
(Xu et al., 2012) are within the eastern Transhimalayan belt and are
identical in signature to the Bomi-Ranwu (Figs. 1, 3). U/Pb and εHf
values for a Cretaceous jadeite sample in upper Myanmar (Fig. 1)
have very high positive εHf values (Fig. 3B). In summary, the pub-
lished εHf data demonstrate that Gangdese batholith zircons older
than 60 Ma and younger than 40 Ma have positive εHf values, and a
small portion of Gangdese zircons with ages between 40 and 55 Ma
have negative εHf values. Zircons from the Northern Magmatic belt,
eastern Transhimalayan batholiths in the syntaxis (Bomi-Basu-Chayu
suite), and the intra-Myanmar Dianxi Burma batholiths (and associat-
ed granitoids) have negative εHf values (Fig. 3). The U/Pb and εHf
signatures of zircons from the above potential source areas can be
compared to the detrital zircon signatures of the Eocene to Miocene
Central Myanmar Basin sedimentary rocks, in order to determine their
provenance and evaluate whether a connection between the Yarlung
Tsangpo and Irrawaddy rivers existed during their deposition.

We compare the U/Pb and εHf data for the detrital zircons to these
published bedrock datasets, using only zircons less than 300 Ma old
(Figs. 3C and 4, Tables S1 and S2) in order to assess if the Eocene to
Miocene sedimentary rocks of the Central Myanmar Basin display a
provenance signal that is compatible (or not) with the existence of
a former Yarlung Tsangpo–Irrawaddy system. The majority of the
Late Eocene Pondaung and Middle Oligocene Padaung Formation zir-
cons (89% and 82%, respectively) have εHf values that plot within the
Gangdese field (+εHf values between 40 and 120 Ma), and most of
the remaining values plot within the eastern Transhimalayan
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representing the batholiths are outlined to highlight potential provenance areas. Sampling locations are shown in Fig. 1. See Tables S1 and S2 for the full tabulated datasets.
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(Bomi-Ramwu, Chayu Shama), Nyingchi complex west of Namche
Barwa, or Dianzi Burma fields. The youngest detrital zircon (41.4 ±
0.9 Ma) in the stratigraphically lowest Pondaung Formation sample
has an εHf value of +8.6 (Table S2). The proportion of Early Miocene
Shwetaung Formation detrital zircons plotting within the Gangdese
field is 64%, and the youngest zircon (18.2 ± 0.3 Ma) has an εHf value
of +9.4; the remaining zircons plot within the Northern Magmatic
Belt, eastern Transhimalayan (Bomi-Ramwu, Chayu-Shama) or Dianxi-
Burmafields (Figs. 1, 3, 4). The proportion ofMiddleMiocene Taungtalon
Formation zircons plotting within the Gangdese field is 47% and most of
the remaining zircons plot outside any of the values covered in the avail-
able bedrock εHf datasets. The youngest two zircons are the same age
(29.7 ± 0.6 Ma and 29.7 ± 0.7 Ma) and have εHf values of −7.9 and
+2.4. Finally, 56% of εHf values for the Middle–Late Miocene lower
Moza and Obogon Formations plot within the Gangdese field and
most of the remaining zircons plot in eastern Transhimalayan (Bomi-
Basu-Chayu) and Dianxi-Burma fields (Figs. 1, 3, 4). The youngest
zircon from the Obogon Formation (31.1 ± 0.7 Ma) has an εHf value
of −2.2.

4. Interpretation and discussion

We propose that a Yarlung Tsangpo–Irrawaddy connection existed
as far back as Late Eocene time (at least 40 Ma), based on our compar-
ison of the available bedrock εHf data and the identification of predom-
inately Gangdese-like sources for the detrital zircons in the Pondaung
Formation (Fig. 4). Similarly, the Oligocene deposits are also dominated
by zircons with Gangdese-like εHf signatures. In contrast, the propor-
tion of Gangdese-like zircons drops in the Miocene, and the eastern
Transhimalayan- and intra-Myanmar Dianxi-Burma-derived zircons in-
crease in the Middle and Late Miocene-aged formations. The youngest
detrital zircon in the Early Miocene Shwetaung Formation has a
Gangdese-like εHf value. The εHf values for zircons from the Myanmar
jadeite of theWuntho region in the north (Shi et al., 2009) are plotted in
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Fig. 3. They have positive (+16–+17) εHf values, and are Late Jurassic
to Early Cretaceous in age; only one detrital zircon plotswithin the jade-
ite belt field (Fig. 3B) and this is from the Miocene Taungtalon Forma-
tion. There are volcanic and magmatic events that occurred within the
current catchment of the Irrawaddy and Chindwin rivers which span
the Jurassic to Miocene timeframe of interest here, for which no εHf
values currently exist. However, whole rock Sr–Nd isotopic data have
been published with U/Pb ages of zircons for a suite of magmatic
rocks in the Shan Scarp and Wunto-Popa arc regions (Mitchell et al.,
2012), and the majority (16 out of 19 sets of values) plot within an
S-type granite field (εNd values of−5–−12) which would be equiva-
lent to negative εHf values. Three of the nineteen values are I-type
(Gangdese-like) granites (εNd values of +3–+12), and of those only
one has a U/Pb age that we observe in our detrital zircon age popula-
tions. This is the Mokpalin diorite which is located 110 km east of
Yangon and has a U/Pb zircon age of 90.8 Ma (Mitchell et al., 2012); it
is possible this batholith accounts for a small population of zircons in
the Eocene and theOligocene deposits (Fig. 3C). To the south ofMokpalin
lie the granite suites of SW Thailand and southeastern Myanmar, and
these have been recently dated by Searle et al. (2012). If Western
Burma is restored to its pre-Miocene position by removing between
330 and 1000 km of right lateral offset along the Sagaing Fault
(Fig. 1), these regions are potential source areas for the Eocene and
Oligocene rocks in the Central Myanmar Basin. However, this province
is composed of Triassic I-type and Paleogene S-type granites, and
given our detrital age populations and εHf values, neither are large con-
tributors of zircons to the Eocene and Oligocene deposits of the Central
Myanmar Basin.We therefore conclude that based on the available bed-
rock data, the Gangdese batholith is themost likely source for the I-type
zircons in the Eocene and Oligocene deposits of the Central Myanmar
Basin. In contrast, the increase in the proportion of negative εHf values
for detrital zircons in theMiocenedeposits reflects an increase in contri-
butions from S-type granites, and therefore the eastern syntaxis,
intra-Myanmar Mogok Belt, Shan Scarp, and Wuntho-Popa arc, as well
as the Paleogene granites of southeastern Myanmar and SW Thailand,
are all potential source areas during the Miocene (Mitchell et al.,
2012; Searle et al., 2012).

We consider the change in provenance as a signal of an EarlyMiocene
disconnection between the Yarlung Tsangpo–Irrawaddy and re-routing
of Gangdese-derived sediment into the proto-Brahmaputra. Two lines
of independent evidence support this interpretation. Firstly, a major
increase in sedimentation started in the Bengal Basin in Assam in the
Early Miocene with the sediment being derived from the northeast
(i.e. the syntaxis) (Alam et al., 2003; Uddin and Lundberg, 2004),
and secondly, phylogenic modeling of mitochondrial and nuclear
DNA of small freshwater fish in the Yarlung Tsangpo, Irrawaddy and
Brahmaputra rivers places species divergence from Yarlung Tsangpo–
Irrawaddy clades into Yarlung Tsangpo–Brahmaputra clades at
19–24 Ma (Ruber et al., 2004; Britz, 2009). Our interpretation is consis-
tent with Bengal Fan sediments having a Transhimalayan batholith
source for at least the last 12 Ma (Galy et al., 2010). Although
Gangdese-derived zircons are present in all the Miocene samples we
have studied, and are present in the Miocene samples from the Central
Myanmar Basin that Liang et al. (2008) analyzed, we attribute this to
Miocene reworking of the Oligocene and Eocene sedimentary succes-
sions which are dominated by Gangdese-like zircons.

Cina et al. (2009) present U/Pb and Hf data for detrital zircons
from the Upper Miocene Dafla and Subansiri formations near Itanagar
in the foothills of the Arunachal Himalaya; the modern Subansiri river
is a tributary to the Brahmaputra (Fig. 1). They conclude that the zircons
are of Gangdese affinity and are evidence for two river capture events
of the Yarlung Tsangpo by the Subansiri (at 10–3 Ma) and Siang (at
~3–4 Ma) rivers. More recently, Chirouze et al. (2013) have demon-
strated that the modern Yarlung Tsangpo–Siang–Brahmaputra connec-
tion developed around 7 Ma, and that sedimentation in the foothills
region of the Arunachal Himalaya is influenced by uplift of the Shillong
Plateau 14–8 Ma (Clark and Bilham, 2008) and the potential northwards
migration of the Brahmaputra braid plain (Fig. 1). The sections studied
by Cina et al. (2009) and Chirouze et al. (2013) are located at the north-
ern edge of the proto-Brahmaputra braid plain which would have
extended right across to the Indo-Burman Ranges (Fig. 1). Based on our
results, we suggest that the precursor event to the Yarlung Tsangpo–
Siang–Brahmatura capture around 7 Ma occurred in the Early Miocene
(Yarlung Tsangpo–Lohit–Brahmaputra) associated with the breakdown
of the Yarlung Tsangpo–Irrawaddy system, but this requires further test-
ing of the provenance of Oligocene–Miocene age deposits in the deposi-
tional center of the proto-Brahmaputra system (Fig. 1).

Allen et al. (2008) noted that the Paleogene sedimentary rocks in the
Indo-Burman Ranges contain significant arc-derived detritus. They con-
sidered that source to be derived from the east (in Myanmar), rather
than the north or west (i.e. a Transhimalayan source transported by
the Brahmaputra), because of the paleogeographic constraints imposed
by Oligocene sedimentary sequences in the Bengal Basin which lack
Transhimalayan-sourced material. Based on our U/Pb and εHf data
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and interpretations for the Paleogene deposits of the Central Myanmar
Basin, we consider that the requirement for an eastern source area for
the Paleogene deposits of the Indo-Burman Ranges is readily satisfied
with a Yarlung Tsangpo–Irrawaddy River transporting Gangdese detri-
tus through the Western and Eastern Troughs to the Indo-Burman
Ranges depocenter. New εHf data for the detrital zircons of the Paleogene
sequences of the Indo-Burman Ranges could provide a further test of
this hypothesis. The Neogene deposits of the Indo-Burman Ranges
have most affinity to the Himalayan foreland basin deposits (Allen et
al., 2008), and therefore, both the Indo-Burman Ranges and the Central
Myanmar Basin show provenance shifts between the Paleogene and
Neogene. A possible mechanism that explains the shifts observed in
both the Indo-Burman Ranges and the Central Myanmar Basin is that
the Yarlung Tsangpo–Irrawaddy river fed sediment into the Central
Myanmar Basin and the Indo-Burman Ranges in the Middle–Late
Eocene and Oligocene, until uplift, extension and normal faulting in the
Central Myanmar Basin and deformation in the early Miocene (Pivnik
et al., 1998; Bertrand and Rangin, 2003) caused compartmentalization
of the Central Myanmar Basin from the Indo-Burman Ranges. The
connectivity between the Paleogene systems of the Central Myanmar
Basin and Indo-Burman Ranges is in agreement with Chhibber (1934)
andMitchell (1993), who considered the Paleogene Indo-Burman Ranges
to be an extension of the Western Trough forearc sediments.

4.1. Discussion

We link the breakdown of the Irrawaddy–Yarlung Tsangpo river
system primarily to tectonic forcing for the following reasons.
Diachronous cooling occurs in the Mogok Metamorphic Belt (Mogok
Metamorphic Belt) from ~30 Ma in the south of Myanmar to 18 Ma
in the syntaxis region (Bertrand et al., 2001), following high grade
metamorphism from 49 to 29 Ma (Searle et al., 2007). By the Early
Miocene, there is evidence for exhumation in the syntaxis (Booth et
al., 2004) and onset of right-lateral movement on the Jiali–Parlung,
Gaoligong and Sagaing faults (Gilley et al., 2003; Gururajan and
Choudhuri, 2003; Booth et al., 2004; Lin et al., 2009), as well as exten-
sion in the Central Myanmar Basin (Pivnik et al., 1998; Bertrand and
Rangin, 2003) (Fig. 1). The onset of deformation along the Jiali–
Parlung shear zone is significant as it is the most likely location for
the Yarlung Tsangpo–Irrawaddy River (Fig. 1). An Early Miocene age
of river re-organization in the eastern syntaxis is coincident with
the final stages of southeast extrusion of the Burma block (Leloup
et al., 2001; Replumaz et al., 2010) and a period of widespread
leucogranite genesis and exhumation in the Himalayan orogen
(Harrison et al., 1992; Harris, 2007; Searle et al., 2010). Further east,
the establishment of the modern route of the Yangtze River has re-
cently been constrained to be sometime before 23 Ma, and younger
than Eocene time (Zheng et al., 2013), and reflects slightly earlier
river re-organization associated with uplift of the Tibetan Plateau
and strike-slip motion along the Red River Fault zone. There is grow-
ing evidence that the Asian monsoon intensified in the Early Miocene
(Clift et al., 2004, 2008; Wan et al., 2010) and therefore elevated rain-
fall could have influenced headward erosion and river capture by the
proto-Brahmaputra and its tributaries.

We propose that the breakdown of the Yarlung Tsangpo–Irrawaddy
river occurred in the Early Miocene, and since the depositional age of
theMiocene sedimentary rocks is not well constrained, we tentatively
place the timing of the event to around 18 Ma based on the age of the
youngest zircon in the dataset (the Shwetaung Formation) which also
has a Gangdese provenance. The age of the youngest zircons in the
Middle–LateMiocene deposits becomes progressively older, reflecting
exhumation and recycling of older sedimentary units and source ter-
rains in the syntaxis and upper Myanmar. We propose that the early
collisional (Eocene) phase of the Himalayan orogeny involved erosion
by an orogen-parallel river system which transported sediment along
the Indus–Yarlung Tsangpo suture zone (and onto the West Burma
block) as India collided with Asia. When the post-Miocene strike slip
offset along the Sagaing Fault is restored (Mitchell, 1993), the river
system draining southern Tibet would have been comprised of the
modern Yarlung Tsangpo, Irrawaddy and Chindwin rivers (Figs. 1,
5). The Yarlung Tsangpo–Irrawaddy–Chindwin river system contin-
ued to be connected through the Oligocene. Our data demonstrate
that, by Early Miocene time, provenance changed and the Gaoligong
and intra-Myanmar Dianxi-Burma batholiths, and potentially other
S-type batholiths along the western section of the Sibumasu block
(Figs. 1, 5), became the dominant provenance areas for the Central
Myanmar Basin, and older sedimentary units within the basin were
recycled. We propose that exhumation and deformation along the
Jiali–Parlung and Gaoligong shear zones (and associated headward
erosion by a tributary of the paleo-Brahmaputra) and along the
Mogok Metamorphic Belt caused the Yarlung Tsangpo–Irrawaddy
connection to fail and provenance areas to change. An approximate
18 Ma timing for the establishment of the paleo-Brahmaputra pro-
vides a constraint on the length of time required to develop the mod-
ern day Yarlung Tsangpo–Brahmaputra, thought to be in its current
position by 7 Ma (Chirouze et al. (2013)).

The results frommolecular phylogenetic modeling of Badidae fresh-
water fish found in themodern Yarlung Tsangpo–Brahmaputra, Ganges
and Upper Irrawaddy rivers suggest an Eocene origin for the family, and
the divergence of two species into Irrawaddy and Yarlung Tsangpo–
Brahmaputra clades occurred around the Oligocene–Miocene boundary
(Ruber et al., 2004). Our data allows us to refine this species divergence
to around 18 Ma, and to provide further evidence for the coupling
between tectonic and surface processes, and how these affect the evolu-
tion of fish species. Finally, there are other biological evolution implica-
tions arising from our results. Myanmar has a rich fossil mammal
inventory chiefly from theMiddle Eocene Pondaung Formation. Intrigu-
ingly, the establishment of a Yarlung Tsangpo–Irrawaddy–Chindwin
river corridor opens up the possibility that this route was used in the
earliest anthropoid radiation, alongside the migration of primitive
wolves (Proviverrine hyaenodontids), from Africa and Europe into SE
Asia. Cladistic analysis of a species of Proviverrine found in the Pondaung
Formation, and also in Europe, Pakistan, and Africa, suggests that it orig-
inated in Europe in the early Eocene and dispersed into southeast Asia
by Late Middle Eocene time (Egi et al., 2005).

5. Conclusions

Our U/Pb and εHf data demonstrate that zircons which originated in
the Gangdese batholith in Tibet are contained in the Middle–Late
Eocene sedimentary rocks of central Myanmar. It is possible that one
of the longest records of erosion of the eastern Himalayas is stored in
the Central Myanmar basin, which may be of similar duration to the
Indus Fan sedimentary rocks that record erosion of Transhimalayan
rocks in the Middle Eocene (Clift et al., 2001). We have determined
that a major orogen-parallel river system, the Yarlung Tsangpo–
Irrawaddy, drained the Indus–Yarlung Tsangpo suture zone as an ante-
cedent river system during the early stages of the Himalayan orogeny.
When the post-Miocene strike-slip offset along the Sagaing Fault is
restored (Mitchell, 1993), the river system draining southern Tibet
would have been comprised of themodern Yarlung Tsangpo, Irrawaddy
and Chindwin rivers (Figs. 1, 5). Our geochronology constrains the
timing of major reorganization of rivers in the eastern syntaxis, and
we suggest that this reorganization was a response to the northward
migration of uplift and exhumation in Myanmar and increased defor-
mation in the eastern syntaxis. We postulate that the earliest Yarlung
Tsangpo–Brahmaputra linkage around 18 Ma was through the Lohit
River and that a succession of anti-clockwise capture events (Lohit,
Dibang, Siang) followed, reflecting the final northward migration of
uplift and deformation in the syntaxis (Figs. 1, 5).

Our paleogeographic reconstruction emphasizes the role that
strike-parallel (longitudinal) rivers play in the early life of orogens
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Fig. 5. Paleogeographic reconstruction. A. Schematic reconstruction of rivers and suture zones for Late Eocene time (c. 40 Ma). Note the major rivers, including the Tsangpo–Irrawaddy
system, run parallel to the orogen. The continuous Transhimalayan arc includes the Gangdese batholith, eastern Transhimalayan batholiths and the Mogok Metamorphic Belt and Slate
Belt of Myanmar. B. During Early Miocene time (c. 20 Ma), the Tsangpo–Irrawaddy river keeps pace with deformation around the syntaxis. C. By the Middle Miocene (c. 15 Ma), the
Yarlung Tsangpo–Irrawaddy river has disconnected, and the Yarlung Tsangpo has been captured by the Lohit River (a tributary of the modern Brahmaputra). Namche Barwe is only
shown to locate position of the syntaxis. Tectonic reconstructions and position of theWest Burmablock relative to theLhasa terrane and SEAsia are based onHall (2002) andMetcalfe (2011).
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and in the evolution of sedimentary systems and landscapes during oro-
genesis. The modern Mekong, Salween and Yarlung Tsangpo rivers are
antecedent on major suture zones (Fig. 1) and the pre-Himalayan colli-
sion between Asia and the Songpan Ganze and Qiangtang terranes is
recorded in the detrital sediments of the modern Red, Mekong and
Salween (Bodet and Scharer, 2000; Clift et al., 2006; Hoang et al.,
2009). The Eocene sedimentary rocks in central Myanmar contain a
record of the early phases of the Himalayan orogeny, and notably, this
early detritus is not found in the foreland basin. For theHimalayanorog-
eny, the Eocene–Oligocene sedimentary molasse is deposited in basins
originally aligned parallel to the strike of the orogen.

Finally, we are able to address key questions about the evolution of
some of the great Himalayan river systems and the timing of river cap-
ture events. Our data supports the Yarlung Tsangpo–Irrawaddy linkage
proposed by Burrard and Hayden (1907), Seeber and Gornitz (1983),
Brookfield (1998) and Clark et al. (2004), and demonstrates that the
Yarlung Tsangpo–Irrawaddy system existed as far back as 40 Ma (and
possibly longer). Clark et al. (2004) proposed that the Yarlung Tsangpo
was originally connected to the Red River, but we have demonstrated
that it is very unlikely that the Yarlung Tsangpo was ever connected
to the Red River, which supports the findings of Hoang et al. (2009),
or the Salween. The major river diversion that provides the linkage
between Transhimalayan rocks, the foreland basin and the Bengal Fan,
and sets up the precursor drainage system to the modern Tsangpo–
Siang–Brahmaputra, occurred around 18 Ma.
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