
structural communications

1032 doi:10.1107/S2053230X14012175 Acta Cryst. (2014). F70, 1032–1037

Acta Crystallographica Section F

Structural Biology

Communications

ISSN 2053-230X

The structure of a-haemoglobin in complex with a
haemoglobin-binding domain from Staphylococcus
aureus reveals the elusive a-haemoglobin
dimerization interface

Kaavya Krishna Kumar,a‡

David A. Jacques,a§ J. Mitchell

Gussa and David A. Gellb*

aSchool of Molecular Bioscience, University of

Sydney, Sydney, NSW 2006, Australia, and
bMenzies Research Institute, University of

Tasmania, Hobart, TAS 7000, Australia

‡ Current address: Walter and Eliza Hall

Institute of Medical Research, Australia.

§ Current address: MRC Laboratory of

Molecular Biology, Francis Crick Avenue,

Cambridge Biomedical Campus, Cambridge

CB2 0QH, England.

Correspondence e-mail: david.gell@utas.edu.au

Received 19 April 2014

Accepted 26 May 2014

PDB reference: human �-haemoglobin

complexed with the first NEAT domain of IsdH

from S. aureus, 3s48

Adult haemoglobin (Hb) is made up of two � and two � subunits. Mutations that

reduce expression of the �- or �-globin genes lead to the conditions �- or

�-thalassaemia, respectively. Whilst both conditions are characterized by

anaemia of variable severity, other details of their pathophysiology are

different, in part owing to the greater stability of the � chains that is conferred

through � self-association. In contrast, � subunits interact weakly, and in the

absence of stabilizing quaternary interactions the � chain (�) is prone to haem

loss and denaturation. The molecular contacts that confer weak self-association

of � have not been determined previously. Here, the first structure of an �2
homodimer is reported in complex with one domain of the Hb receptor from

Staphylococcus aureus. The �2 dimer interface has a highly unusual,

approximately linear, arrangement of four His side chains within hydrogen-

bonding distance of each other. Some interactions present in the �1�1 dimer

interface of native Hb are preserved in the �2 dimer. However, a marked

asymmetry is observed in the �2 interface, suggesting that steric factors limit the

number of stabilizing interactions that can form simultaneously across the

interface.

1. Introduction

The major form of adult haemoglobin (HbA) is a tetramer of two �

Hb (�) and two � Hb (�) subunits (Perutz et al., 1960). Each subunit

interacts with its non-identical partner through two different inter-

faces. The �1�1 (and �2�2) interface is extremely stable (Ka = �5 �

1011 Mÿ1; Valdes & Ackers, 1977b) and remains essentially

unchanged by oxygen binding. The �1�2 (and �2�1) interface

undergoes a reorganization coupled to oxygen binding involving a

�15� rotation of the two �� dimers.

Mutations that reduce expression of the �- or �-globin genes lead

to the condition �- or �-thalassaemia, respectively (Nathan & Gunn,

1966). Insufficiency of � or � production leads to anaemia that can

range from mild to fatal (Clegg & Weatherall, 1976). In addition to

the insufficient production of normal Hb, thalassaemia mutations

lead to a relative excess of the partner Hb chain, which has cytotoxic

effects. Free Hb chains are unstable compared with native Hb owing

to the absence of native quaternary interactions. Quaternary inter-

actions reduce chain unfolding and precipitation and reduce haem

loss (Hargrove et al., 1997), which is associated with the production of

harmful reactive species catalyzed by haem iron (Rifkind et al., 2004;

Rachmilewitz & Schrier, 2001). Notably, free globin chains undergo

self-association (Bucci et al., 1965) and differences in the self-asso-

ciation properties of � or � contribute different stabilities and

different pathologies in �- or �-thalassaemia.

In �-thalassaemia, excess � self-associates into stable �4 tetramers

(HbH). The dimer–tetramer association is more rapid than the

monomer–dimer interaction (Philo et al., 1988), giving the appear-

ance of a monomer–tetramer reaction (Ka =�4� 1016 Mÿ3; Valdes &

Ackers, 1977a, 1978). �4 tetramers exhibit noncooperative and high-

affinity O2 binding and therefore do not effectively release O2 to the

tissues. Formation of �4 achieves a 20-fold stabilization against haem
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loss compared with � monomers, and consequently HbA and �4 lose

haem from the � chains at comparable rates (Hargrove et al., 1996,

1997). Nevertheless, �4 protein slowly forms intracellular precipitates,

causing oxidative damage to the membrane cytoskeleton of circu-

lating red blood cells, which manifests as haemolytic anaemia

(Advani et al., 1992). In foetal development the foetal � chain, 
,

similarly forms 
4 tetramers (Hb Bart’s; Kidd et al., 2001).

Compared with �, � undergoes comparatively weak self-associa-

tion to form dimers (Ka = �5–9 � 103 Mÿ1; Valdes & Ackers, 1977a;

Windsor et al., 1992), coupled with a ~25-fold increase in haem loss

compared with HbA or �4 (Hargrove et al., 1997). As a result, �

precipitation and oxidative damage occur early in erythroid cell

development (Polliack et al., 1974). Damage to, and apoptosis of,

erythroid precursors leads to compensatory proliferation of erythroid

progenitors in the bone marrow, liver and spleen, with consequent

disruption to the structure and function of these organs (a condition

known as ineffective eythropoiesis; Rachmilewitz & Schrier, 2001).

In addition to its role in disease, globin chain self-association has

significance for the Hb assembly pathway. In normal erythropoiesis, �

is produced in a slight excess over � (Vasseur et al., 2011) and in this

way � can act as a chaperone for � by outcompeting the formation of

nonfunctional �4 (Miele et al., 2001). In turn, � is stabilized by its own

chaperone, � Hb stabilizing protein (AHSP; Kihm et al., 2002; Gell et

al., 2002). A moderately strong interaction between AHSP and

oxygenated � (Ka = 5 � 107 Mÿ1) out-competes weak �2 self-

association and prevents � precipitation, while at the same time

permitting rapid kinetics of � release to � (Mollan et al., 2012).

The structures of �4 and 
4 have been determined (Borgstahl et al.,

1994a,b; Kidd et al., 2001), allowing Kidd and coworkers to identify

features at the N- and C-termini of � and 
 that help to explain why

these chains form tetramers but � does not. Here, we present the first

crystal structure containing an �2 dimer and identify features at the �2
dimer interface that contribute to weak dimerization. The crystals

contain � bound to the first near-iron transporter (NEAT) domain of

iron-regulated surface determinant H (IsdH) from Staphylococcus

aureus (Pilpa et al., 2006), and were obtained during investigation of

Hb capture by this bacterium.

2. Materials and methods

2.1. Protein production

Hb was purified from blood as reported previously (Gell et al.,

2002). The splitting of carbonmonoxy-liganded Hb into � and �

chains was carried out using the well established p-hydroxy-

mercuribenzoate (PMB) method (Bucci & Frontice, 1965). The

resulting �PMB and �PMB chains were separated over DEAE

Sepharose resin (GE Healthcare). PMB was removed from � by

overnight incubation at 4�C with dithiothreitol followed by purifi-

cation on an SP Sepharose column and storage at ÿ80�C. For protein

crystallography, purified carbonmonoxy � was converted to the

oxygenated form by passing a pure stream of oxygen over a protein

solution held on ice and illuminated with a focused beam from a 50 W

halogen lamp. The oxygenated � was converted to ferric (met) � by

addition of excess potassium ferricyanide in 20 mM sodium phos-

phate pH 7.0. The reaction was monitored to completion by UV–

visible spectroscopy and � was isolated using a Sephadex G-25

column. The concentration of � was estimated from the concentration

of the associated haem group, measured at 390 nm, from unfolded

globin samples in 6 M guanidine hydrochloride (extinction coefficient

37 800 Mÿ1 cmÿ1).

IsdHN1 (IsdH residues 86–229) from S. aureus strain TCH1516 was

cloned into pET-15b (Novagen) for expression with an N-terminal

hexa-His tag. IsdHN1 was expressed and purified as described

previously (Pilpa et al., 2006) to yield a final product with the addi-

tional N-terminal sequence MGSSHHHHHHSSGLVPRGSHM.

2.2. Crystallization

Ferric � at 5 mg mlÿ1 (20 mM sodium phosphate pH 7.0) was

mixed with one molar equivalent of IsdHN1 prepared in the same

buffer and crystallization screening was performed by the hanging-

drop vapour-diffusion method in 96-well plates using a Mosquito

nanolitre liquid-handling robot (TTP LabTech). Protein complex

(400 nl) was mixed with commercially available crystallization

screens (The JCSG+, PACTand Classics Suites, Qiagen) in a 1:1 ratio

and was incubated at 25�C. Crystals of ferric �–IsdHN1 appeared

within a week in 0.2 M sodium sulfate, 0.1 M bis-tris propane, 20%

PEG 3350 pH 6.5. On further optimization, single crystals appeared

in 0.2 M sodium sulfate, 0.1 M bis-tris propane, 16% PEG 3350 pH

6.5. A single crystal was transferred into a cryoprotectant solution

consisting of 30%(v/v) glycerol in the buffer from the crystallization

condition and flash-cooled in a nitrogen stream (ÿ173�C).

2.3. Data collection and processing

Data were recorded (over a ’ range of 180�) to a resolution of

3.05 Å using an ADSC Quantum 315r detector on the MX2 beamline

of the Australian Synchrotron at a wavelength of 0.95370 Å using the

Blu-Ice control system (McPhillips et al., 2002). X-ray diffraction data
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Table 1
Data-collection and refinement statistics.

Values in parentheses are for the highest resolution shell.

X-ray source Australian Synchrotron MX2
Wavelength (Å) 0.9537
Temperature (�C) ÿ173
Detector ADSC Quantum 315r CCD
Total rotation range (�) 180
Space group I41
Unit-cell parameters (Å) a = b = 115.4, c = 142.4
Resolution range (Å) 50.00–3.05 (3.13–3.05)
No. of observations 40834
No. of unique reflections 17737
Completeness (%) 99.5 (99.4)
Multiplicity 2.3 (2.2)
hI/�(I)i 12.9 (2.1)
Wilson B value (Å2) 119.3
Rmerge† 0.265 (0.635)
Reflections in working set‡ 16833 (1244)
Reflections in test set 904 (61)
Contents of the asymmetric unit 2 � + 2 IsdHN1

No. of atoms
Total (non-H) 4486
Protein 4398
Water§ 2
Others (haem) 86

Rcryst 0.242 (0.358)
Rfree 0.268 (0.369)
R.m.s.d., bond lengths (Å) 0.004
R.m.s.d., bond angles (�) 0.639
hBi (Å2)

IsdHN1(2), chain A 82
IsdHN1(1), chain B 249
Chain C 114
Chain D 93

Cruickshank’s DPI} (Å) 0.4
PDB code 3s48

† Rmerge =
P

hkl

P
i jIiðhklÞ ÿ hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Friedel pairs were kept

separate for scaling, but were merged by REFMAC5 during structure
refinement. § A single water molecule was placed in the distal haem pocket of each
globin chain, coordinating the haem FeIII. } Diffraction precision indicator as output
from REFMAC5.



were indexed and scaled using DENZO and SCALEPACK

(Otwinowski & Minor, 1997).

2.4. Structure solution and refinement

Molecular replacement (MR) was performed using the IsdHN1 and

� subunit (minus the haem group) of AHSP–�–IsdHN1 (PDB entry

3ovu, D. A. Jacques, K. Krishna Kumar, T. T. Caradoc-Davies, D. B.

Langley, J. P. Mackay, J. M. Guss & D. A. Gell, unpublished work) as

search models. An unique solution was found by Phaser (McCoy,

2007) in the tetragonal space group I41 with two molecules of IsdHN1

and two molecules of � in the crystallographic asymmetric unit. The

structure was refined using REFMAC5 (Murshudov et al., 2011), with

manual map inspection and model building being performed in Coot

(Emsley et al., 2010). The quality of the model was regularly checked

for steric clashes, incorrect stereochemistry and rotamer outliers

using MolProbity (Chen et al., 2010). All structural figures were

produced using PyMOL (Schrödinger, http://www.pymol.org).

Refined atomic coordinates and experimental structure factors have

been deposited in the Protein Data Bank (PDB entry 3s48). Data-

collection and refinement statistics are given in Table 1.

2.5. Naming conventions

In addition to the usual convention of numbering amino-acid

residues sequentially from the N-terminus of a peptide, it is

conventional in the globin field to identify the amino-acid position

relative to the structure of sperm whale myoglobin. For example, F8

indicates a residue that is functionally equivalent to the eighth

residue in helix F of sperm whale myoglobin (the haem-ligating

proximal His). Within the HbA tetramer, interfaces between the four

subunits are designated using upper-case numerals according to

convention in the field, e.g. the �1 subunit contributes to the �1�1,

�1�2 and �1�2 subunit interfaces. The oligomeric state of globin

assemblies is designated using subscript numerals by convention, e.g.

�2�2 refers to a complex of two � and two � subunits (that is, the HbA

tetramer).

3. Results and discussion

3.1. Crystal structure of the a-IsdHN1 complex

The structure of �–IsdHN1 was determined to a resolution of

3.05 Å and refined to an Rcryst and Rfree of 0.242 and 0.268, respec-

tively. The crystallographic asymmetric unit contains an �2 dimer,

with each � monomer bound to one molecule of IsdHN1 (Fig. 1a).

One IsdHN1 domain [IsdHN1(1)] does not make any intermolecular

crystal contacts (Fig. 1b). Disorder in this region is reflected in

substantially higher B factors (Fig. 1b and Table 1, chain B) and the

relatively high Rmerge value.

The �–IsdHN1 interface is not significantly different from that

observed in a previous structure in which IsdHN1 is bound to an ��

dimer (PDB entry 3szk; r.m.s.d. of 0.2 Å for 141 C� atoms; Krishna

Kumar et al., 2011) and is not discussed further. The structure of the

�2 dimer has not previously been observed and reveals that the �2
dimer interface is equivalent to the �1�1 dimer interface in HbA.

Residues at, or close to, the �2 dimer interface have previously been

identified by NMR chemical shift perturbation (Fig. 1c; Dickson et al.,

2013), confirming that the crystal structure accurately represents the

�2 interaction in solution. In a recent analysis of 113 crystal structures

of protein dimers from the PDB (Chen et al., 2013), the weakest

interaction (between a bromodomain and an acetylated peptide from

histone H3) had a Ka of �1 � 103 Mÿ1 (VanDemark et al., 2007). A

number of electron-transport complexes have successfully been

crystallized; these typically display Ka in the range 103–106 Mÿ1 and

are notable as physiologically important ‘weak’ interactions. The Ka

of the �2 dimer interface is estimated at 5–9 � 103 Mÿ1 (Valdes &

Ackers, 1977a; Windsor et al., 1992), placing this at the weak-inter-

action end of the spectrum of crystallized protein complexes.

structural communications

1034 Kumar et al. � Structure of the �-haemoglobin dimerization interface Acta Cryst. (2014). F70, 1032–1037

Figure 1
The structure of the �–IsdHN1 complex. (a) Two �–IsdHN1 dimers are present in the
crystallographic asymmetric unit. (b) The crystal packing is shown. One complete
(�–IsdHN1)2 complex in the centre of the figure is represented as a tube (wider
tubes and hot colours indicate higher C�-atom B factors). Crystal contacts are
shown as magenta patches on the grey surface of symmetry-related molecules.
IsdHN1(1) projects into a cavity in the crystal and has substantially higher B factors.
Its nearest neighbours are other symmetry-related IsdHN1(1) subunits (also shown
in tube representation). (c) Residues close to the � dimerization interface identified
by NMR (Dickson et al., 2013) are shown in stick representation on the �(2) chain.



3.2. Buried His residues at the a2 interface

A highly unusual arrangement of four buried His side chains,

His103(G10) and His122(H5) from each chain, interdigitate across

the �2 dimer interface (Fig. 2a). Optimized hydrogen-bonding

patterns were investigated using MolProbity (Chen et al., 2010),

PDB2PQR (Dolinsky et al., 2004) and WHAT IF (Vriend, 1990).

These analyses show hydrogen-bond interactions between N�1 of

�(2)His103 and N�1 of �(1)His103 and between N"2 of �(1)His103

and N"2 of �(2)His122, forming a novel ‘histidine-zipper’ arrange-

ment (Fig. 2b).

The N"2 atom of �(2)His103(G10) is within hydrogen-bonding

distance of the � carboxylate of �(1)Asp126(H9). This interaction is

predicted to raise the pKa of �(2)His103(G10) such that it may be in

the cationic form at physiological pH (PROPKA; Bas et al., 2008). All

other buried His residues are expected to have low pKa (<5.6) and be

uncharged. �(2)Asp126(H9) does not make favourable electrostatic

interactions and therefore the partial burial of this unpaired negative

charge may be a significant factor in destabilization of the �2 inter-

face. In HbA, �Asp126(H9) accepts a hydrogen bond from

�Tyr35(C1). This interaction appears to contribute significantly to ��

dimer stability, as substitution of �Tyr35(C1) for Phe (Hb Philly)

produces an unstable Hb (Rieder et al., 1969).

As part of our structure-validation and interface analysis we also

used the PDB_REDO server, which performs an automated iterative

re-refinement and model-rebuilding procedure (Joosten et al., 2012).

PDB_REDO re-refinement relaxed the weighting towards standard

geometry, compared with the 3s48 refinement, and included

noncrystallographic symmetry and B-factor refinement. These

differences gave a moderate improvement in R and Rfree at the

expense of a greater number of rotamer, bond-length and Rama-

chandran outliers (Table 2). None of the outliers were at the �2
interface, although a number of �2 interface side chains did undergo

positional shifts with alternative hydrogen bonding (Fig. 2c). Most

notably, the guanadinium group of �(2)Arg31 was positioned within
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Figure 2
The �2 dimer interface. (a) The OMIT map electron density of the �2 dimer interface contoured at 1� (mesh), showing the four buried His side chains. The OMIT map was
calculated using the SFCHECK program from CCP4 (Winn et al., 2011). (b) Hydrogen-bonding interactions at the �2 dimer interface (PDB entry 3s48). (c) Comparison of
interfacial residues and hydrogen-bonding interactions in PDB entry 3s48 (violet) and the structure re-refined by PDB_REDO (yellow). (d) Hydrogen-bonding interactions
at the �1�1 interface of HbA (PDB entry 2dn3; Park et al., 2006). (e) A comparison of the hydrogen-bonding interactions at the �1�1-equivalent interfaces of �2, �4 and �2�2.
Double-headed arrows indicate hydrogen bonds where the donor/acceptor atoms could potentially be reversed, for example owing to protonation of �(2)His103 under the
influence of �(1)Asp126. Dashed lines indicate hydrogen bonds that appear in 3s48 or the PDB_REDO re-refinement of 3s48 but not both.

Table 2
MolProbity (Chen et al., 2010) evaluation of 3s48 and 3s48 re-refined by
PDB_REDO (Joosten et al., 2012).

3s48
3s48 re-refined
by PDB_REDO

R/Rfree 0.2420/0.2680 0.2218/0.2452
Poor rotamers (goal <1%) 1 (0.21%) 47 (9.67%)
Ramachandran outliers (goal <0.05%) 1 (0.18%) 4 (0.72%)
Ramachandran favoured (goal >98%) 521 (94.04%) 513 (92.60%)
C� deviations > 0.25 Å (goal 0) 0 (0.00%) 6 (1.11%)
Bad backbone bonds (goal 0%) 0/4611 (0.00%) 2/4650 (0.04%)
Bad backbone angles (goal <0.1%) 0/6301 (0.00%) 6/6351 (0.09%)



hydrogen-bonding distance of the � carbonyl of �(1)Phe117, and the

imidazole groups of �(1)His122, �(2)His103 and �(1)His103 were

rotated 20–50�, which resulted in the loss of a hydrogen bond

between �(1)His103 and �(2)His103 that is present in the 3s48

structure (Fig. 2c). Thus, experimental uncertainty in the atomic

coordinates is compatible with several hydrogen-bonding patterns,

one of these being an extended network involving �(2)His103,

�(1)His103 and �(2)His122 (Fig. 2b). Overall, the PDB_REDO re-

refinement did not improve the model and therefore the results were

not deposited.

A pair of buried His residues, hydrogen bonded through their N�1

atoms, is found in the bacterial ammonium transporter (AmtB;

Javelle et al., 2006; Liao et al., 2013; Zheng et al., 2004), but we are not

aware of structures that have three consecutive hydrogen-bonded His

residues, as may occur in the �2 dimer. However, it has previously

been speculated that a hydrogen-bonded His-zipper motif occurs at

the dimerization face of the bacterial protein RopE (repetitive

organellar protein E) from Plasmodium chabaudi (Werner et al.,

1998).

3.3. Asymmetry of the a2 dimer

In native Hb, the largest contribution to subunit interactions, based

on structure and thermodynamic measurements, comes from hydro-

phobic contacts, with a smaller number of electrostatic interactions

(Mrabet et al., 1986; Perutz et al., 1968; Valdes & Ackers, 1977a). The

total surface area buried on formation of the �2 dimer interface is

1473 Å2, which is a reduction of 18% compared with the �1�1

interface in Hb. The reduction in nonpolar buried surface is only

slightly greater at 24% (Table 3). Systematic analyses show a rela-

tionship between buried surface area and affinity, but also that

dissociation constants can vary over four orders of magnitude for the

same buried surface area (Chen et al., 2013). Remarkably, the

stability of the �1�1 and �2 dimers differs by almost eight orders of

magnitude indicating that, in this case, buried surface area is an

extremely poor indicator of affinity. Analysis of interface packing

using the program SC from the CCP4 package (Winn et al., 2011)

indicated lower shape complementarity for the �2 dimerization

interface; however, this may reflect the low resolution of data in

addition to intrinsic properties of the interface (Lawrence & Colman,

1993).

The arrangement of the two � chains deviates notably from the C2

point-group symmetry that is expected for a homodimeric complex:

the atoms in one subunit deviate on average by �2 Å from the

position expected in a truly symmetrical dimer. By comparison the

�1�1-equivalent dimers in �4 and 
4 are highly symmetric. At the

native �1�1 interface, the G helices of the two chains are in close

proximity across the dimer axis, raising the possibility that steric

clashes could potentially occur in this region in a homodimeric

complex. There is evidence of this in the �4 structures, where the side

chains of �Cys112(G14) adopt two different rotamers to avoid

clashing (Borgstahl et al., 1994a,b). In �, residues at positions G10,

G13 and G14 are larger side chains (His, Leu and Val) than their

counterparts in � (Asn, Val and Cys), potentially introducing steric

clashes that prevent symmetrical packing of the � monomers. It has

been shown that substitution of �His103(G10) with the more bulky

Tyr destabilizes the native dimer interface (Hoyer et al., 2002), indi-

cating that the side chain at G10 does not reorient to relieve the steric

clash. Overall, symmetric homodimers have been postulated to be

more stable (Blundell & Srinivasan, 1996).

A comparison of hydrogen-bonding interactions at the �1�1-

equivalent interfaces of �2, �4 and HbA highlights the asymmetric

nature of the �2 contacts (Fig. 2e). The asymmetric interactions of His

side chains and unpaired negative charge on �(2)Asp126(H9) have

already been discussed. In addition, bilateral interactions of

Arg(B12) with the backbone carbonyl of Phe(GH5) occur in �4 and

HbA, but only one of these interactions is present in 3s48. Disruption

of this interaction in Hb Prato, in which �Arg31(B12) is replaced by

Ser, leads to an unstable Hb (Marinucci et al., 1979). The

PDB_REDO re-refinement of 3s48 permits bilateral interactions of

�Arg31(B12), but disrupts symmetrical interactions of �Ser35(B12).

4. Conclusion

The structure reveals the �2 dimer interface, through which � self-

associates weakly in solution. The �2 dimer interface reveals a novel

hydrogen-bonding network involving up to three of the four buried

His side chains. To our knowledge, such a ‘histidine zipper’ has not

been described previously. Marked asymmetry in the interface

contacts suggests that steric factors reduce the number of stabilizing

contacts that can be formed by � homodimers compared with �

homodimers or �� heterodimers, with the consequence of reduced �

stability in �-thalassaemia.
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Nonpolar buried area upon complex formation† (Å2) 478 630 516 518
No. of residues at the interface† 38 49 44 45
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† Calculated using COCOMAPS (Vangone et al., 2011). ‡ Calculated using SC from
CCP4 (Lawrence & Colman, 1993).
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Zheng, L., Kostrewa, D., Bernèche, S., Winkler, F. K. & Li, X.-D. (2004). Proc.

Natl Acad. Sci. USA, 101, 17090–17095.

structural communications

Acta Cryst. (2014). F70, 1032–1037 Kumar et al. � Structure of the �-haemoglobin dimerization interface 1037


