
Introduction

A major challenge for oceanographers in the 21st
century will be to identify, quantify and understand
how the changing climate will impact ocean biota in
both coastal and offshore waters. Taking up the chal-
lenge will enable scientists to make better predic-
tions of how climate change will alter oceanic ecosys-
tems, biogeochemistry and resources, and hence
provide projections on the magnitude of changes to
ecosystem services, biogeochemical feedbacks to cli-
mate change, and food security.

Evidence about the nature and extent of changes
to the ocean has come from global ocean and
 coupled ocean−atmosphere modelling experiments
(Boyd & Doney 2002, Sarmiento et al. 2004), time-
series observations (Dore et al. 2009) and biologi-
cal manipulation experiments (Riebesell et al.
2000, Boyd et al. 2008). Together, these 3 strands
provide initial verification of changing oceanic
conditions (Roemmich et al. 2012); and insights
into how altered conditions will affect the phy -
siological performance of biota (Hutchins et al.
2009).
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To date, the focus of manipulation experiments has
been on perturbing one environmental property,
such as pH (Gattuso & Hansson 2011). These invalu-
able studies have helped to define the many rami -
fications of altering even just one component of the
ocean, along with the physiological, ecological
and biogeochemical consequences. However, it is
increasingly evident from more complex manipula-
tion studies that this traditional reductive approach
cannot capture a truly prognostic view of future
 ecosystem changes. Climate-change mediated shifts
in multiple environmental properties often exert
non-linear and counterintuitive controls over many
aspects of ocean biota (Fu et al. 2008, Rose et al.
2009a). To date, the implications of these complex
changes for ocean biota remain largely uninvesti-
gated (Boyd 2011).

Examination of freshwater, terrestrial, and ecotoxi-
cological studies reveals a diverse literature on
 multiple environmental stressors from the 1980s
onwards (Calow 1989), and which explore concepts
such as cumulative environmental stress (Breitberg
et al. 1998). Puzzlingly, with a few exceptions (Crain
et al. 2008), there has been little awareness in the
oceanographic community of this valuable repository
of ideas and concepts, and virtually no attempts to
link what marine scientists term global (climate
change), regional (e.g. atmospheric pollutants) and
local (e.g. point source runoff) anthropogenic ‘stres-
sors’ (hereafter referred to as ‘drivers’, see ‘Defini-
tions’ below) and their potentially combined effects
on ocean biota. There is much to be learnt from this
wider literature. For example, Breitberg et al. (1999)
concluded that:

While many approaches are similar to those used to
examine the effects of a single stress, studying the
effects of multiple stressors usually requires a more
complex experimental design and/or statistical meth-
ods to separate out often subtle and interacting effects.

In the present review, we first revisit and revise the
definitions used in the wider literature; summarise
the main concepts from the prior research on multi-
ple drivers; and explore the environmental hetero-
geneity of marine versus other systems across a
range of scales. We then discuss key topics such as
the differential susceptibility of organisms to envi-
ronmental drivers, and current approaches to multi-
ple driver research, before highlighting the findings
of the 7 papers — from phytoplankton to higher
trophic levels — that comprise this Theme Section.
Finally, we advocate new approaches to help de -
velop research into multiple drivers.

We offer this Theme Section to highlight both re -
cent achievements and remaining gaps in our
knowledge of how multiple environmental drivers
may affect future marine food webs. Inevitably,
there are important subjects that are not covered
here, including (but not limited to) environmental
effects on key groups such as heterotrophic bacte-
ria, zooplankton, and corals, as well as emerging
experimental and analytical methodologies includ-
ing molecular biology. In many cases, these subjects
have been addressed elsewhere (e.g. Steinberg
2012), as they are key components of our expanding
knowledge of how marine biota will respond to
global change.

Definitions

The literature on multiple stressors provides useful
definitions, for example Calow (1989), that can be
modified to better align them with the growing cli-
mate change issue. 

There is a tendency to refer to alteration of envi-
ronmental properties as biological ‘stressors’ (Breit-
burg et al. 1998), as the studies in the wider litera-
ture often focussed solely on detrimental effects
such as acid rain. There is recent experimental
 evidence that climate change perturbations, such
as higher oceanic CO2 concentrations, may result
in beneficial effects for some organisms, e.g. dia-
zotroph N2 fixation rates (Hutchins et al. 2007), but
detrimental effects to others, e.g. coccolithophore
calcification rates (Riebesell et al. 2000). Indeed,
any major change in oceanic conditions will create
not only ‘losers’, but also ‘winners’ who can best
adapt to the altered environment (Nogales et al.
2011). Thus, the generic term ‘driver’ is a more
accurate descriptor than ‘stressor’ when discussing
the effects of global anthropogenic change on ocean
biota. Furthermore, the terms ‘synergism’ and ‘anta -
gonism’ are often used to describe the interplay
among multiple environmental drivers (MEDs), but
often their use without further qualification (see
‘Synergisms and antagonisms — what we have learnt’)
has caused confusion. Here, we present key defini-
tions to help clarify some of these issues:

(1) Driver—An environmental change that results
in a quantifiable biological response, ranging from
stress to enhancement.

(2) Stressor—An environmental change that de -
creases organismal fitness.

(3) Enhancer—An environmental change that in -
creases organismal fitness.
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(4) Additive—A biotic response to 2 or more inter-
acting factors that equates to the sum of their individ-
ual effects (sensu Folt et al. 1999).

(5) Multiplicative—A biotic response to 2 or more
interacting factors which significantly exceeds the
sum of their individual effects (sensu Folt et al. 1999).

(6) Synergism—A positive feedback interaction
between MEDs that is multiplicative, and requires an
intrinsic metric such as a quantitative measure of
organismal fitness or a physiological property.

(7) Antagonism—A negative feedback interaction
between MEDs that is multiplicative, and requires an
intrinsic metric.

(8) Acclimation—Short-term change resulting from
a physiological response at the individual organismal
level (sensu Falkowski & LaRoche 1991).

(9) Adaptation—Long-term evolutionary change
resulting from natural selection at the population
level (sensu Falkowski & LaRoche 1991).

These definitions must be employed in a context-
dependent manner. For example, at the cellular level
they may refer to effects on processes such as gene
transcription and translation, whereas at the commu-
nity level they may refer to effects on biodiversity,
and at the biome level to integrative properties such
as major biogeographical patterns.

It is also crucial to introduce appropriate qualifiers
when using these terms. The terms synergism
and antagonism are potentially confusing, since it
is essential to define whether they are being em -
ployed in a mechanistic- or an outcome-based sense.
In other words, are they referring to
mechanistic interactions between the
drivers, or to the resultant net outcome
for the organism? An example of the
former is the antagonistic interaction
between ocean acidification (OA) and
warming, whereby lowered CO2 solu-
bility at higher ocean temperatures
partially offsets CO2-driven increases
in OA (Hare et al. 2007). An illustrative
biological outcome-based antagonism
is evidence that increases in coral cal-
cification rates due to warming could
partially counter the negative effects
on calcification of decreasing carbonate
ion concentration due to OA (Lough &
Barnes 2000).

A related semantic issue with these
terms is the need to specify whether a
positive or negative connotation is in -
tended. For example, in discussing a hy -
pothetical antagonistic effect, A + B = C,

a negative connotation would be if C is a cumulative
deleterious outcome of the 2 detrimental factors A
and B. Crain et al. (2008) defined antagonism in this
sense when examining a collation of marine experi-
mental studies on what they termed ‘multiple stres-
sors’. However, if C is less detrimental (than A or B
alone) to the organism because of an ‘antagonism’
between the 2 negative factors A and B, then the net
effect is a positive one for the organism. This use of
‘antagonism’ was employed by Didham et al. (2007)
in a study of the cumulative effects of habitat loss and
invasive species.

Synergisms and antagonisms—
What have we learnt?

The logistical and interpretational issues of con-
ducting and then interpreting the findings of a study
in which MEDs are manipulated (Fig. 1) make
research into the cumulative influence of MEDs
daunting. The potential interplay between MEDs
and the likelihood of non-linearities due to amplifica-
tion and/or diminution, relative to the effects of a
 single driver, adds greatly to the potential complexity
of the study. Again, the prior literature has much to
offer: Folt et al. (1999) defined antagonism and syner-
gism and introduced the concepts of their additive
and multiplicative effects. This study emphasized the
difference between multiplicative effects that arise
collectively from MEDs, and effects that are largely
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the result of a single over-riding driver among many.
Crain et al. (2008) conducted a meta-analysis of a
suite of marine studies that had investigated the bio-
logical effects of MEDs, and reported that certain
experimental approaches are more likely to intro-
duce a skew towards either an antagonism or a syn-
ergism. For example, they found that studies employ-
ing 3 stressors exhibited about twice the frequency of
true synergistic outcomes compared to studies using
only 2 variables. Darling & Côté (2008) in a meta-
analysis of experimental studies in which mainly 2
drivers were manipulated, reported that the inci-
dence of synergisms and antagonisms was less than
expected. Both these studies suggest that the likeli-
hood of synergisms and antagonisms when 3 or more
factors are altered could be high indeed.

Environmental heterogeneity

The effects of MEDs on biota will be influenced by
environmental heterogeneity, the characteristics of
the terrestrial or aquatic systems they reside in.
Hence, any intercomparison of biological responses
to alteration of MED properties across systems must
examine their intrinsic differences. For example, the
size of the open ocean and its relative isolation due
to the ‘buffer’ of nearshore waters means that it is
unlikely to be impacted by allochtho-
nous materials such as terrestrial pol-
lutants, compared to coastal waters
and lakes. Thus, global and regional
drivers as opposed to local ones will
dominate in the open ocean (Fig. 2).
Ocean chemistry often differs in fun-
damental ways from that of fresh -
water, e.g. carbonate chemistry in the
ocean is highly buffered (Dickson
1992) and hence pH variability is less
than in most freshwater systems
(Toupin 2005, Hofmann et al. 2011).
Environmental heterogeneity differs
be tween the ocean and land, with im -
plications for how the biota will respond
to environmental change (Reusch &
Boyd in press).

The geographic realm of influence of
drivers will also influence environ-
mental heterogeneity, e.g. the overlap
of global and local drivers, as this sets
how many drivers are acting concur-
rently on the biota (Fig. 2). Our under-
standing of how MEDs can result in

cumulative stress for the resident biota (Fig. 1) has
mainly come from studies of local drivers, e.g. point
source disturbances such as warming (Schiel et al.
2004). Recently, increasing awareness of the many
ramifications of climate change has enhanced our
knowledge of how global anthropogenic drivers,
such as hypoxia, will influence the biota (Gruber
2011). However, only a few studies have considered
both local and global anthropogenic drivers and their
joint influence (Darling & Côté 2008).

Regional drivers are often associated with the role
of the atmosphere as a conduit between terrestrial
and aquatic systems (Fig. 2). Hence we have drivers
such as acid rain (Bouwman et al. 2002), nitrogen
supply to the coastal ocean (Seitzinger & Sanders
1997, Duce et al. 2008), and long-range delivery of
fossil-fuel pollutants to offshore waters such as the
western subtropical Atlantic (Sholkovitz et al. 2009).
The interplay among MEDs may alter environmental
heterogeneity and hence exacerbate the cumulative
stress on biota (Fig. 2). However, in some cases, the
interactions between local and global drivers may
partially negate each other (Fig. 2). 

The degree of environmental heterogeneity, and
how it varies spatially (Helmuth et al. 2010) and tem-
porally (Garcia Molinos & Donohue 2010), deter-
mines rates and modes of acclimation or adaptation
for the biota; for instance, highly variable environ-
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ments may place a premium on phenotypic plasticity.
Another fundamental environmental difference be -
tween land and ocean is that the latter is dominated
by microbes that are primarily free-drifting forms.
These microbial communities comprise a very di -
verse community which may have built-in redun-
dancy with respect to ecological and biogeochemical
functions in a changing climate—the so-called in -
surance theory (Sogin et al. 2006). Such differences
between systems in both environmental heterogene-
ity and ecosystem structure and function can make
comparing trends in responses of the biota to altered
MEDs problematic.

Interactive environmental controls on ocean biota

The control of primary producers by physical and
chemical factors has historically been a major oceano -
graphic research theme. The potentially  growth-
limiting environmental factors include nutrient sup-
ply, temperature, iron availability, and light. Early
studies implicitly assumed that only a sole limiting
factor was operative at a time, a concept known as
the Liebig limitation (de Baar 1994). It is now re -
cognized that multiple factors often simultaneously
co-limit primary production (Arrigo 2005) and
include iron and light (Sunda & Huntsman 1997), and
iron and silicate (Hutchins et al. 2002). In the last
decade, studies have tested how MED’s such as
pCO2, warming, and changing iron availability may
affect the base of pelagic food webs, and importantly,
explicitly interpreting these multivariate interactions
in a global change context (Fig. 3). Warming and
iron-enrichment are shown to synergistically amplify
the growth and productivity of antarctic phytoplank-
ton communities (Rose et al. 2009a). Similarly, raising
CO2 and temperature together strongly stimulates
coccolithophore growth in the North Atlantic, but
concurrently depresses calcification (Feng et al. 2009),
confounding the wider biogeochemical implications.

Such interactive global change effects are less
well-documented for higher trophic levels in pelagic
systems, partly because large, active animals are
often more difficult to manipulate experimentally
than the phytoplankton. However, Rose et al. (2009b)
observed that warming and OA together had a nega-
tive effect on microzooplankton grazer abundance in
North Atlantic waters. Rossoll et al. (2012) found that
diatom cells grown at high pCO2 inhibited growth
and reproduction in copepod grazers, due to a
severely reduced essential fatty acid content. Rosa &
Seibel (2008) demonstrated a negative interaction

between OA, warming, and hypoxia, on the physiol-
ogy and distribution of a top predator, the jumbo
squid Dosidicus gigas. A major difference between
biota at low and high trophic levels is that the former
are subject to a wider range of MEDs (Fig. 3).

Differential susceptibility to drivers across 
trophic levels

Most research to date, on the effects of MEDs has
focused on species or strains within a sole trophic
level (Crain et al. 2008); for example OA studies have
largely been conducted on calcifying primary pro-
ducers (Gattuso & Hansson 2011). Such findings
need to be put into a wider context by addressing
how the concurrent alteration of MEDs influences
dif ferent trophic levels and ecosystem structure and
functioning. This will introduce a further level of
complexity to what are already challenging experi-
ments; nevertheless, a continued emphasis only on
one trophic level is inadequate to further our under-
standing of this topic at the ecosystem level (for
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recent thematic reviews, see Brose et al. 2012 and
Caron & Hutchins in press).

Several studies have revealed differential suscepti-
bility to MED’s both within trophic levels (different
species, e.g. coccolithophores, Langer et al. 2006; N2

fixers, Hutchins et al. unpubl.) and across trophic
 levels (e.g. temperate coastal calcifiers, Hurd et al.
2011). The ecological influence of such differential
susceptibility amongst primary producers on higher
trophic levels is difficult to gauge (Smayda 2011),
whereas studies that include several trophic levels
provide a more holistic view of the potential tropho-
dynamic effects of a changing climate (Helmuth et al.
2010). Such differential vulnerability to change may
result in counter-intuitive findings. For example, the
ecological outcome of increased UV stress was en -
hanced primary productivity of benthic diatom com-
munities, due to their grazers being more susceptible
to UV damage (Bothwell et al. 1994). Marine ecolo-
gists can learn much from how entire ecosystems are
perturbed across entire lakes (Carpenter et al. 2011),
or in coastal waters using mesocosms (Riebesell
2004). Such studies enhance our understanding of
the extent and nature of the ‘ecological surprises’
that may result from a changing climate (Linden-
mayer et al. 2010). Other ecologically relevant topics
which may influence or result from differential vul-
nerability across trophic levels, but which are beyond
the scope of this Introduction, include:
biodiversity and ecosystem dynamics
(Vinebrooke et al. 2004); altered species
distributions through migration (Parme-
san et al. 1999) and invasion (Jaspers et
al. 2011); and the nature of competitive
versus facilitative relationships between
organisms (Bulleri 2009).

Present day approaches to multiple-
driver research

Current approaches focus mainly on
perturbation studies in which MEDs are
manipulated, e.g. temperature, CO2

and light (Feng et al. 2009). This com-
plex approach arises from prior simpler
studies in which a sole driver was
manipulated, such as pH (Riebesell &
Tortell 2011). MED experiments require
additional diagnostics (Fig. 1), relative
to single-driver manipulations, to en -
hance the interpretative skills needed
when several MEDs are being manipu-

lated concurrently. Such studies are beginning to
reveal the complex interplay and feedbacks between
what have previously been considered to be rela-
tively simple relationships between an individual
driver and a particular physiological process, e.g. OA
and phytoplankton calcification (Fig. 4).

Other studies are using the diagnostic power of 
‘-omics’ to probe changes resulting from such MED
manipulations (Matallana-Surget et al. 2012) but so
far they have mainly focused on the effects of chronic
stress responses to toxins. A few such studies have
been able to link multiple ‘omics’—transcriptomics,
proteomics or metabolomics via bioinformatics and
modelling (Steinberg 2012). These provide a more
complete picture of how environmental manipula-
tions affect the biota, and also address issues such
as acclimation to altered environmental conditions
(Dyhr man et al. 2012). Other recent developments
in manipulation experiments are studies conducted
with microbes over many generations (i.e. years), as
opposed to the brief span (weeks) normally em -
ployed in such ex periments. Lohbeck et al. (2012)
used a long-term approach to reveal that coccolitho-
phores can adapt micro-evolutionarily to altered
CO2/pH conditions. Another approach has focused
on competitive exclusion experiments by comparing
short-term (weeks) competitive dominance experi-
ments using a ‘naïve’ natural dinoflagellate commu-
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nity with the outcome of competition between the
same species in analogous artificial communities
after conditioning each species in clonal cultures
under high CO2 con ditions for ~1 yr (Tatters et al. in
press). Below, in ‘The future, new approaches’, we
examine how today’s  methods can be supplemented.

Summary of the Theme Section

For this Theme Section on ‘Biological responses in
an anthropogenically modified ocean’, we have
assembled a group of papers that examine how
MEDs influence and affect key organisms and pro-
cesses in the marine environment. The authors have
taken on the difficult task of assembling and synthe-
sizing the (often fragmentary) knowledge about how
the effects of MEDs simultaneously in flux may differ
from marine science’s traditional reductionist empha-
sis on one factor at a time.

The coccolithophores have been at the forefront of
both research advances and controversy in the study
of the effects of OA. However, arguably less is known
about their potential responses to MEDs than for any
other phytoplankton group (Boyd et al. 2010). Raven
& Crawfurd (2012, this volume) tackle this topic by
examining how MEDs affect this keystone functional
group to global change. To do this, they draw on evi-
dence from sources ranging from paleo-oceanography,
through field-oriented process studies, to laboratory
investigations using molecular and physio logical
methods. They conclude that more studies incorpo-
rating multivariate experimental designs and genetic
methods of assessing the potential for adaptation are
needed before we can fully understand the responses
of the coccolithophores to MEDs.

Gao et al. (2012, this volume) address a topic that
has, surprisingly, not been widely examined previ-
ously: How will rising CO2 and OA interact with solar
radiation to affect phytoplankton? They review the
literature on the individual effects of OA, warming,
and changes in irradiance (i.e. photosynthetically
active- and ultra violet-radiation). Next they describe
the few studies that address interactions between
these MEDs, and conclude with suggestions to move
this field forward in the future.

Hoffmann et al. (2012, this volume) use the large
body of research on trace element biogeochemistry
from the last 20 years to predict future trends in the
cycles of iron, zinc, copper, and other metals. They
note that although single drivers affecting trace
metal sources, speciation, solubility and biogeo-
chemical cycling have been investigated to some

extent, little information exists on the cumulative
effects of a suite of MEDs comprising OA, warming,
and hypoxia. They discuss the potential interplay
between these MEDs in both high- and low-latitude
regimes, and advocate the need for careful scrutiny
and standardization of methodology in experiments
combining both trace metal and MEDs. 

Fu et al. (2012, this volume) consider the interactive
effects of MEDs on environmentally destructive toxic
and harmful algae. Due to worldwide human health
impacts and economic damage caused by harmful
algal bloom groups such as dinoflagellates, the
effects of many individual factors including nutrients,
light, temperature, CO2, and salinity have been
examined in a well-established literature. However,
oceanographers are just beginning to consider how
coincident shifts in such MEDs may affect harmful
algal blooms in the context of changing estuarine,
coastal and oceanic environments.

Litchman et al. (2012, this volume) highlight the
utility of the ecological niche concept in understand-
ing the long-term responses of phytoplankton to
global change. They make the case that trait-based
niche models can be extended into multiple dimen-
sions in order to describe the adaptation of algal
functional groups to a changing matrix of MEDs.
Development of such new trait-based models may
have the ability to better predict the adaptive trajec-
tories of key phytoplankton species in response to
selection by MEDs, and Litchman et al. (2012) make
a convincing case for their application to future
 studies in a variety of conceptual and experimental
contexts.

A major question about global-change impacts is
how the critical global biogeochemical processes
may respond to simultaneous forcing from MEDs.
Passow & Carlson (2012, this volume) address this
question for a key component of of the carbon cycle,
the storage of carbon in the deep ocean by sinking
biogenic particles. They argue that current knowl-
edge gaps concerning the combined impacts of
MEDs preclude firm predictions of whether oceanic
carbon storage via the biological pump will increase
or decrease in the future. They offer a way forward,
though, by suggesting that better-constrained regional
models of the biological pump can be integrated to
obtain a holistic picture of global trends in future
ocean carbon uptake..

The review by Pörtner (2012, this volume) uses the
concept of oxygen and capacity dependent thermal
tolerance (OCLTT) as a tool to understand the inte-
grated responses of organisms to MEDs. Pörtner
argues that OCLTT can be applied broadly enough
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to address the impacts of climate change and other
anthropogenic drivers like pollution over scales
ranging from physiological to ecological. The linkage
between aerobic capacity and the thermal tolerance
range of organisms in a variety of habitats may offer
unique insights into their climate change responses
as individuals and populations, as well as their roles
in ocean  ecosystems.

The future—New approaches

To begin to understand how an anthropogenically
modified ocean affects the biota, we should learn
from the last decade of studies into climate change
effects on biota, in particular the research stemming
from the OA research community, which to date has
been the vanguard (Boyd 2011). OA research has
advanced many facets of an acidifying ocean, but in
comparison, the MED research represents a major
logistical challenge (see Fig. 4), due to the numbers
of permutations that must be explored for a wide
range of species and trophic levels. There is a strong
likelihood that individual labs will develop tan -
gential research trajectories unless there is  well-
implemented international coordination, e.g. the
complex nature of carbonate chemistry and its
manipulation resulted in many studies being con-
ducted using different protocols (Hurd et al. 2009)
and hence, obtaining a consensus view is difficult.

The production of a best practice guide, e.g. by OA
researchers (Riebesell et al. 2010) is one way to
tackle this major challenge for the MEDs community.
A complementary approach is to use the resources of
a relatively large scientific community to conduct
experiments in a systematic manner, as has been
done for some major projects (Human Microbiome
Project Consortium 2012). Boyd et al. (unpubl.) have
recently conducted such a community-wide study
using a pre-agreed experimental protocol for a study
(across 8 laboratories) on thermal reaction norms for
phytoplankton species spanning the global ocean.
There have been calls for similar community-wide
initiatives to look at the ecological ramifications of
climate change in the ocean (Nogués-Bravo & Rah-
bek et al. 2011).

Experimental evolutionary biology is another po -
tentially powerful tool in MED research to better
tackle issues such as acclimation (plasticity) versus
adaptation to global change in aquatic organisms
(Piersma & Drent 2003). This tool is increasingly
being applied to understand long-term responses
of organisms to selection by single factors such as

warming (Huertas et al. 2011) and CO2 (Collins &
Bell 2004). This new oceanographic research empha-
sis by experimental environmental biology has, how-
ever, yet to attempt to address multivariate global
change issues. The difficulties of understanding the
short-term physiological responses of marine species
to multiple drivers relative to single drivers pale in
comparison to the bewildering complexities of dis -
entangling long-term evolutionary responses to many
simultaneous changes to MEDs. Rigorous attribution
of ob served adaptive trends with their own syner-
gisms and antagonisms, and prediction of the
 con sequences for organismal reproductive and com-
petitive success, will require marine global-change
scien tists to make a quantum leap forward conceptu-
ally and logistically. Fortunately, a new toolbox of
genomic, transcriptomic, and proteomic methods
(Dyhrman et al. 2012, Steinberg 2012) is revolutionis-
ing our science by allowing us to capture and under-
stand holistic organismal responses to a changing
ocean.

Climate-change modelling approaches will also be
powerful tools to inform the experimentalists of the
zones in which the overlap of local, regional and
global anthropogenic change will be particularly
large. Specialised modelling of ecosystem structure
and interactions, cellular physiology, and evolution-
ary adaptation to change will also play an essential
role in directing research. Close collaborations be -
tween experimentalists, observationalists and bio-
geochemical modelers can greatly improve our pre-
dictions of the global (e.g. Hutchins et al. unpubl.)
and regional (Boyd et al. 2011) consequences of
MEDs.

For MED research on phytoplankton, there is the
issue of the thousands of phytoplankton species
(Smayda 2011), and strains (Iglesias-Rodriguez et
al. 2006), and the impossibility of investigating how
each will respond to complex patterns of environ-
mental change. OA research has revealed that differ-
ent coccolithophore species have markedly different
responses to lowering pH (Langer et al. 2006), as do
strains of some of these calcifying species, such as
Emiliania huxleyi (Langer et al. 2009). Strain-specific
responses are also documented for CO2 effects on
N2-fixing cyanobacteria Trichodesmium and Croco -
sphaera (Hutchins et al. unpubl.), as well as on the
widely distributed eukaryotic picoplankton species
Ostreococcus tauri (Schaum et al. unpubl.). Taxon-
specific differences in the ability to adapt to warming
have been demonstrated across a range of phyto-
plankton species (Huertas et al. 2011). These find-
ings point to the difficulty in selecting a phyto -
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plankton functional type, as has been the approach
traditionally used in biogeochemical models (Hood et
al. 2006). Alternatively, these results may indicate
that there is sufficient redundancy across the phyto-
plankton assemblage that will make the assemblage
malleable to such complex patterns of environmental
change. However, the ecological and biogeochemi-
cal ramifications of such redundancy—for example a
small calcifier or N-fixer being replaced by a larger
one—are issues that still need to be resolved (Joint et
al. 2011).

One approach to circumvent the ‘paralysis of the
plankton’ in research terms would be to examine a
subset of species/strains (or in the case of microbes,
using metabolic functions, Dinsdale et al. (2008),
Burke et al. (2011)), across a range of biomes to
explore how such functionality responds to environ-
mental change This has been attempted for the
higher trophic levels with respect to temperature by
Pörtner & Knust (2007) and Helmuth et al. (2010).
Such a unifying theory might be built around the
physicochemical constraints that impose as to how
far cell physiology (for example diffusion rates of
nutrients, Kiørboe 2008), phytoplankton functional
traits (Litchman et al. 2012) or cell biochemistry
(Makarieva et al. 2008) can be altered by a complex
matrix of changing conditions. These approaches
would link well with the outputs from climate change
models. By thoughtfully debating and subsequently
adopting such research guide- and time-lines, in the
coming decade a coordinated and integrated ocean
global change research community should be able to
significantly advance these themes studying the
responses of the biota in an anthropogenically modi-
fied ocean.
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