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INTRODUCTION

Rising atmospheric CO2 concentrations affect the
marine environment directly via the uptake of CO2

that acidifies the oceans (Caldeira & Wickett 2003,
Doney et al. 2009b) and indirectly via global tempera-
ture increase that also results in sea-surface warming.
Ocean warming is particularly evident in the Arctic
(Wassmann et al. 2011) and in some Antarctic regions
(Schofield et al. 2010). Modeling simulations reveal
further effects of a changing climate, such as increas-
ing stratification that results in reduced upwelling
and wind-driven mixing (Doney 2006), changing wind
patterns (Tokinaga et al. 2012), expansion of the areal
extent of oxygen minimum zones (Gruber 2011), and
changes in the thermohaline circulation (Rahmstorf &
Ganopolski 1999, Boyd & Doney 2003).

Although there is a wealth of published information
on the importance of trace metals and their inputs and

cycling in marine systems (Morel & Price 2003, Boyd &
Ellwood 2010), the impacts of rising atmospheric CO2

on trace metal biogeochemistry are presently difficult
to foresee. The role of trace metals for oceanic carbon
sequestration, and thus their climate relevance, has
received much attention since the seminal work of
Martin (1990) and was recently highlighted again by
Smetacek et al. (2012). However, investigations into
the influence of rising atmo spheric CO2 on marine
processes and trace metal biogeochemistry still ap-
pear as isolated disciplines. This is puzzling, as pH
and temperature are 2 master variables in all chem -
ical and biological processes and therefore intimately
link the disciplines of trace metal biogeochemistry,
ocean acidification, and sea surface warming.

Dissolved metals in seawater are usually present at
low concentrations due to their low solubility (as in
the case of Fe) and/or because of adsorption onto par-
ticles. Seawater pH and temperature will affect both
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solubility and adsorption of metals, and thus likely
change the dissolved concentrations of metals in the
future ocean. The inorganic solubility of Fe is greater
in colder waters (Liu & Millero 2002) but also largely
depends on the organic content of seawater. Further-
more, increasing temperatures will increase the rates
of all chemical reactions, which should increase fer-
ric oxide and hydroxide precipitation as well as oxide
aging with negative effects for dissolved Fe concen-
trations. A clear dependency of metal solubility upon
temperature has not been established for many ele-
ments, and therefore quantifications of the effect of
rising sea surface temperature (SST) on metal solu-
bility in the future ocean are difficult. On the other
hand, the expected decrease in seawater pH from
pre-industrial 8.25 to 7.85 within this century, and of
up to 0.7 units by the year 2300 (Caldeira & Wickett
2003, Jacobson 2005), will significantly affect the
inorganic solubility of several trace metals, particu-
larly those forming strong complexes with hydroxide
and carbonate ions (Millero et al. 2009). The case of
Fe is the most multifaceted and is discussed here
briefly. When seawater pH falls below 8, changes in
the inorganic speciation result in an increase in the
thermodynamic solubility of Fe(III) hydroxide. Based
on measurements of Kuma et al. (1996) and Millero
(2001), the overall Fe(III) solubility may increase by
approximately 460 pmol kg−1 as a result of the
expected drop in seawater pH from currently 8.10 to
7.85 by the year 2100. In parallel, Fe(II) is much more
soluble than Fe(III) but is unstable at current seawa-
ter pH due to rapid oxidation. Ocean acidification
will slow Fe(II) oxidation rates significantly and thus
increase the residence time of Fe(II) (Kuma et al.
1996, Millero 2001, Breitbarth et al. 2010b).

Compared to the well-studied Fe redox reactions in
seawater, only a few studies have addressed Cu
redox reactions in the field (Moffett & Zika 1987,
1988). As for Fe, a shift in Cu speciation can be
expected (Millero et al. 2009). Cu forms strong car-
bonate complexes, and the decrease in CO3

2− ions
due to ocean acidification will result in an increase in
the free Cu(II) ion concentration (Millero et al. 2009).
In parallel, Cu(II) reduction will increase, while Cu(I)
complexation by chloride and reoxidation kinetics by
H2O2 remain largely unchanged (Millero et al. 1991).
It is unclear today whether these changes in the Cu
redox cycle will be of biological relevance. In con-
trast, Cd and Zn are not subjected to a dynamic redox
cycle in the surface ocean, and their solubility in sea-
water is much higher than for Fe(III). The effect of
ocean acidification on the in organic Cd and Zn solu-
bility may thus be negligible.

However, the influence of changing ocean acidity
and temperature on trace metal biogeochemistry is
more com plex than a direct pH/temperature rela-
tionship with solubility. Metal solubility is controlled
by the interrelationship of inorganic solubility, organic
complexation, redox chemistry, and the phytoplank-
ton− trace metal feedback mechanisms (Fig. 1). The
majority of the total concentration of bio-active met-
als such as Fe, Co, Cd, Cu, Ni, Zn, and Pb are not
in their inorganic form, but bound to organic com-
plexes. The ligand-bound fraction of metals can be
up to 100% for Co (Saito & Moffett 2001, Saito et al.
2005), >99% for Fe and Cu (Sunda & Hanson 1987,
Coale & Bruland 1988, Sunda & Huntsman 1991, Rue
& Bruland 1995), from 50 to 90 and >98% for Zn (Bru-
land 1989, Baars & Croot 2011), and >70% for Cd
(Bruland 1992). Possible effects of rising oceanic CO2

concentrations on or ganic trace metal ligands will
therefore play a major role in overall trace metal
bioavailability in the future ocean, but only very few
studies have addressed this topic so far. Assessments
of ocean acidification effects on marine trace metal
chemistry are still largely based on theoretical con-
siderations of inorganic and organic metal speciation
and therefore tell us little about potential effects on
metal uptake, requirements, toxicity thresholds, and
possible biological feedback mechanisms (Millero et
al. 2009, Breitbarth et al. 2010a).

In the last decade, an enormous amount of pub-
lished work on the influence of ocean acidification on
marine biota has been assembled (Gattuso & Hans-
son 2011). However, publications concerning the in -
ter actions of multiple factors such as seawater pH,
temperature, and trace metals are scarce but point
towards the significance and complexity thereof
(Boyd et al. 2010). For example, it has been demon-
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strated that N2 and CO2 fixation rates as well as
growth of the marine uni cellular diazotrophic cyano-
bacterium Crocosphaera only increased with increas-
ing pCO2 if Fe concentrations were not limiting (Fu
et al. 2008).

Temperature and Fe have synergistic effects on
phytoplankton growth rates in the Ross Sea (Rose et
al. 2009). Moreover, King et al. (2011) state that com-
plex feedback mechanisms between vitamin B12 and
pCO2 interactions affect the uptake and metal net
use efficiency of Fe, Co, Zn, and Cd by Atthyea sp., a
subarctic diatom. Under B12-replete conditions and
high pCO2, this diatom grew faster, had lower Fe, Zn,
and Cd quotas, and used the metals more efficiently
compared to low pCO2 conditions. Under B12 limita-
tion, however, diatom growth rate was much lower
and did not change with changing pCO2. Also, the
net use efficiency of Fe, Zn, Co, and Cd de creased
with increasing pCO2 under B12 limitation (King et al.
2011). At a higher trophic level, work by Lacoue-
Labarthe et al. (2009, 2011, 2012) suggests potential
ecotoxicological impacts of trace metals with sea -
water warming and decreasing seawater pH due to
altered permeability of egg shells and the embryonic
metabolism in the cephalopod species Loligo vul-
garis and Sepia officinalis. All of these examples
demonstrate the need to consider multiple factors
when trying to assess the implications of ocean acid-
ification and warming on the marine ecosystem.

The importance of a multivariate approach espe-
cially when investigating essential trace elements is
founded in Liebig’s law of the minimum (Salisbury &
Ross 1992). For example, changes in Fe bioavailabil-
ity may not result in increased phytoplankton growth
if another nutrient is ultimately limiting. Likewise,
ocean acidification effects on phytoplankton growth
and nutrient uptake may be masked if nutrient limi-
tation, which in the open ocean is often governed by
Fe, is elevated due to contamination artifacts associ-
ated with the ex perimental set-up. Acknowledging
this, some groups now have developed ‘trace-metal
clean’ experimental protocols for ocean acidification
work (Hoffmann et al. in press).

It seems that decreasing seawater pH and warming
will both influence trace metal−phytoplankton inter-
actions in various ways; however, robust predictions
of these interactions are not yet possible. In order to
assess the effects of ocean acidification and SST
warming on trace metal biogeochemistry in the future
ocean, we need to look at how trace metals are sup-
plied, cycled, and lost from the upper ocean. Table 1
summarizes how global change may affect metal in -
put in the future ocean on a global scale, as well as in
high- and low-latitude regions. In the following sec-
tions, we will discuss the primary factors that control
the interplay of temperature, ocean acidification, and
trace metals in the ocean and how they might affect
marine phytoplankton both globally and regionally.
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Table 1. Overview of potential global change effects on trace metal chemistry. TM: trace metal; DOM: dissolved organic matter
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GLOBAL EFFECTS OF CLIMATE CHANGE 
AND OCEAN ACIDIFICATION ON MARINE

TRACE METAL SUPPLY AND CYCLING

Metal sources

Climate change is likely to influence global trace
metal biogeochemistry by affecting both metal
sources and cycling in the future ocean. For surface
waters, the main global trace metal inputs are aerosol
particles from desert dust (Jickells et al. 2005), anthro -
pogenic sources (Sedwick et al. 2007, Sholkovitz et
al. 2009), and volcanic eruptions (Olgun et al. 2011).
In coastal regions, riverine inputs and upwelling of
trace metal-rich deep water play an additional impor-
tant role (Boyd 2009). Sediments are a major source
of trace metals in shelf waters (e.g. Laës et al. 2007,
Ussher et al. 2007), and the ‘island wake’ effect is of
local importance in remote ocean systems (Blain et
al. 2007). It has been suggested recently that trace
metals from deep-sea hydrothermal vents can poten-
tially reach surface waters via ocean circulation
allied to an excess of organic compounds that bind
to and stabilize the metals in hydrothermal fluids
(Sander & Koschinsky 2011).

Climate change will potentially influence global
dust and riverine trace metal inputs into the ocean,
but accurate predictions are not yet possible (Boyd &
Ellwood 2010). Global dust models predict scenarios
that vary from a 60% decrease to a 3.8% increase in
dust emissions during the 21st century (Mahowald &
Luo 2003, Tegen et al. 2004, Woodward et al. 2005,
Stier et al. 2006), making robust projections about
future changes in dust as a trace metal source a major
challenge. Model predictions suggest an increase
in precipitation for the monsoon regimes, over the
tropical Pacific, as well as at high latitudes, while a
decrease in precipitation is predicted in the subtrop-
ics (Meehl et al. 2007). Therefore, riverine trace
metal inputs are likely to change significantly on a
global scale with large regional differences depend-
ing on a range of factors, such as complex inter -
actions of their terrestrial sources, redox processes,
and colloid chemistry in estuaries.

The supply of trace metals, in particular from
aerosols, will further be influenced by the projected
changes in CO2 and other anthropogenically-influ-
enced gases. Increasing atmospheric concentrations
of carbon dioxide, sulfur dioxide, and nitrogen oxides
decrease the pH of cloud water and result in acid rain
(Badr & Probert 1993, Bogan et al. 2009, Vahedpour
& Zolfaghari 2011). The direct contribution of sulfur
and nitrogen gases to ocean acidification will be neg-

ligible (Hunter et al. 2011), but the effect on atmos-
pheric trace metal inputs could be significant. As in
seawater, a lower pH of cloud water results in
increased solubility of trace metals from aerosol par-
ticles such as desert dust or volcanic ash with poten-
tially significant effects for the net flux of trace metals
from these sources to the future ocean (Desboeufs et
al. 2001). Mahowald et al. (2009) estimated that the
higher acidity in the atmosphere caused by human
activities may double the bioavailable Fe in the ocean
via increased solubility from desert dust.

On a global scale, model predictions suggest a
future increase in precipitation as well as water
vapor and evaporation, while regional variations are
pronounced (Meehl et al. 2007). Together, altered
patterns in wind and precipitation, as well as riverine
transport, will ultimately modify the supply of trace
metals to the open ocean. The effects of these physico-
chemical changes on marine productivity and bio-
geochemical cycling may be profound (Boyd &
Doney 2003, Feely et al. 2004, Jickells et al. 2005, Orr
et al. 2005).

Inorganic metal speciation

As mentioned above, the inorganic speciation of
metals will be altered by ocean warming and ocean
acidification. One example thereof is the observed
increase in Fe(II) concentrations and Fe(II) half-life
times under lower pH in a coastal mesocosm experi-
ment (Breitbarth et al. 2010b). In addition, changes in
surface ocean stratification will likely have effects on
particle residence times in the euphotic zone. When
stratifi cation increases, there is less mixing with
deeper waters, which means that particles in the sur-
face mixed layer may reside for longer in this stratum
(Doney 2006). This would increase the mean light
intensity to which particles in the surface mixed layer
are exposed, with possible implications for photo-
chemical metal redox dynamics. For example, in -
creased light and temperature increase Mn oxide
dissolution rates (Sunda & Huntsman 1994). Further-
more, the photoreduction of Fe(III) complexes in -
creases under higher light intensities, resulting in
higher Fe(II) concentrations (Kuma et al. 1995). In
addition, the photosynthetic apparatus of marine
phytoplankton is downregulated under higher light
intensities, resulting in lower Fe requirements (Sunda
& Huntsman 1997, Maldonado et al. 1999, Feng et al.
2010). However, stronger stratification will also lead
to increased warming of the surface waters, which
may decrease Fe(II) concentrations due to higher
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reoxidation rates, as observed in the Gulf of Aquaba
(Shaked 2008). Lower Fe requirements for marine
phytoplankton, as a result of elevated light intensi-
ties, are thus mainly to be expected in colder oceanic
regions (Sunda & Huntsman 2011). Likewise, ocean
acidification will affect the redox speciation of Cu,
yielding a larger Cu(I) fraction (Millero et al. 2009).
The potential biological implications thereof are
unknown today.

In general, even slight changes in the bioavailabil-
ity of Fe and Cu may have profound effects for mar-
ine ecosystems, as these metals are known to interact
with each other. Cu is needed by some marine phyto-
plankton for sufficient Fe acquisition (Peers et al.
2005, Wells et al. 2005, Maldonado et al. 2006, Annett
et al. 2008), and Cu requirements of natural phyto-
plankton communities increase under Fe limitation
(Semeniuk et al. 2009). On the other hand, Cu is
a potentially toxic metal whose toxicity to marine
phytoplankton is strongly regulated by organic lig-
and complexation.

Organic metal speciation

Organic trace metal complexation in seawater is
controlled by the functional groups within dissolved
organic matter, including phytoplankton exudates,
siderophores produced by heterotrophic bacteria,
and bioremineralization products (Boyd & Ellwood
2010, Breitbarth et al. 2010a). To date, research on
trace metal bioavailability has focused on measure-
ments of ligand concentrations and ligand binding
strength in natural waters, and metal uptake in con-
trolled laboratory experiments using metal chelators.
Studies addressing ocean acidification effects on or -
ganic ligand binding are rare. In a first study, Shi et
al. (2010) investigated the effect of pH on Fe uptake
from 3 Fe-ligand complexes with different functional
groups. They found reduced Fe uptake by marine
phytoplankton under lower pH in EDTA- and DFOB-
buffered media but no pH effect on Fe uptake from
the siderophore Fe-Azotochelin. This was expected,
as the catechol groups of Azotochelin are protonated
in seawater and thus the free Fe concentration
should not be affected by changes in seawater pH
(Shi et al. 2010). In the case of EDTA, cellular Fe
acquisition decreases with decreasing seawater pH
as the dissociation of Fe-EDTA (and any chelator
with acidic binding groups that are not protonated in
seawater) becomes less favored at low pH due to
reduced competition with OH− for Fe chelation, and
thus the Fe’ concentration decreases (Stumm & Mor-

gan 1996). However, as acknowledged by Shi et al.
(2010), Fe’ uptake from Fe-EDTA is a simplistic sce-
nario in which Fe’ is the only bioavailable form of
Fe. Such an approach has limited applications to the
open ocean, as natural organic ligands possess a
variety of metal binding sites (Barbeau et al. 2003)
with different H+ stoichiometries (Sillén & Martell
1971, Breitbarth et al. 2010a). The observed decrease
in Fe uptake from Fe-DFOB under lower pH was not
caused by a pH effect on the dis sociation of the Fe-
DFOB complex, as this is not affected by seawater
pH (Shi et al. 2010). Rather, this was most likely due
to pH effects on the enzymatic cell surface reduction
of the Fe-DFOB complex (Shi et al. 2010). In addition,
a substantial body of work points towards the multi-
plicity of Fe uptake mechanisms in marine phyto-
plankton, which include models of ligand-bound Fe
(FeL) uptake, cell surface reduction of the FeL com-
plex, and direct uptake of Fe(II) (Hutchins et al. 1999,
Maldonado & Price 1999, Shaked et al. 2005, Salmon
et al. 2006, Morel et al. 2008). Therefore, the diverse
range of chemical and biological processes in marine
trace metal biogeochemistry, and how they each will
be altered by ocean acidification, is likely to be multi-
faceted and complex.

Short-term (1 to 2 h) Fe uptake experiments with
the coastal diatom Thalassiosira weissflogii in natural
seawater did not show significant differences be -
tween different pH/pCO2 treatments within the same
water mass (Shi et al. 2010). However, a body of liter-
ature is evolving on physiological effects of ocean
acidification on marine phytoplankton (Engel et al.
2004, Doney et al. 2009a, Hutchins et al. 2009, Boyd
et al. 2010). Therefore, experiments over periods
long enough for phytoplankton to grow could result
in significant impacts on organic Fe complexation.
Results from a coastal mesocosm CO2 enrichment
experiment show 2 to 3 nM higher dissolved Fe con-
centrations under lower pH compared to the mid-
and high pH treatments (Breitbarth et al. 2010b).
This large difference cannot be solely explained by
an increased inorganic Fe solubility under lower
pH (Millero et al. 2009), and thus pH effects on the
organic Fe complexation are one likely explanation
next to pH effects on colloid formation, Fe chelation,
and Fe hydroxide precipitation (Breitbarth et al.
2010b).

While the effect of ocean acidification on heterotro-
phic bacterial growth seems to be small (Liu et al.
2010, Weinbauer et al. 2011), bacterial enzymatic
activity and polysaccharide degradation increases
under lower seawater pH in coastal waters (Grossart
et al. 2006, Piontek et al. 2010). Increasing tempera-
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tures have been shown to in crease bacterial growth,
production, and respiration (Vaqué et al. 2009,
Kritzberg et al. 2010). The direct effects thereof upon
trace metal bioavailability have not been assessed at
present, but it is possible that these mechanisms will
also affect the sidero phore production by hetero -
trophic bacteria with consequent implications for Fe
bioavailability in the future ocean. Moreover, changes
in organic complexation, either via shifts in ligand:
H+/OH− stoichiometry or as an effect of ligand con-
centration changes, should also affect Fe retention
rates in  surface waters (Sunda 2010).

The Fe(III)-binding groups of marine siderophores
can be hydroxamate, catecholate, or α-hydroxy carbo -
xylate moieties (Barbeau et al. 2003). While hydroxa-
mate and catecholate groups are photochemically
resistant when bound to Fe(III), α-hydroxy carboxy-
late groups undergo light-induced ligand oxidation
and reduction of Fe(III) to Fe(II) (Barbeau et al. 2001,
2003). Increased mean light intensities in the pre-
dicted future shallower surface mixed layers (Doney
2006) would thus enhance the photolysis of some
organic Fe(III) complexes and increase reactive Fe(II)
in surface seawater. Cu-binding ligands differ from
Fe-binding ligands in that they can be directly pro-
duced by some marine phytoplankton species when
exposed to higher concentrations of Cu (and other
toxic metals such as Cd and Zn) (Ahner & Morel
1995, Moffett & Brand 1996, Croot et al. 2000, Ahner
et al. 2002, Dupont & Ahner 2005). Thereby, the
 ligand can be released into the water and bind Cu (or
other toxic metals such as Cd and Zn) extracellularly
(Moffett & Brand 1996, Croot et al. 2000, Dupont &
Ahner 2005), or the metals are taken up into the cell
and detoxified by intracellular binding to the ligand
(Ahner et al. 2002, Dupont et al. 2004). These thiols
are low molecular weight sulfhydryl-containing com-
pounds such as glutathione and phytochelatin. Both
glutathione and phytochelatin bind Cd, Cu, and
Pb via sulfhydroxyl coordination (Rabenstein 1989,
Stras deit et al. 1991). Louis et al. (2009) described a
decrease in the interaction between organic ligands
and Cu(II) when seawater pH fell below 8. As a re -
sult, the inorganic Cu fraction increased with de -
creasing pH, similar to what was described earlier
for fresh waters (Averyt et al. 2004). It is unknown
so far whether Cu ligand production will be affected
by ocean acidification and warming and what the
effects for Cu toxicity would be. Intracellular Cu
binding is unlikely to be directly affected by sur-
rounding seawater pH but could possibly be indi-
rectly affected via ocean acidification and warming
effects on phytoplankton physiology.

A recent study described the effect of pH on the
uptake of Zn and Cd in marine phytoplankton (Xu
et al. 2012). Here, short-term (3 to 4 h) Zn and Cd
uptake in natural phytoplankton assemblages de -
creased with decreasing pH in contrast to experi-
ments with single metal chelators in the laboratory.
The authors concluded that in natural systems, Zn
and Cd bioavailability is lower under lower pH,
which they explained by the potential interaction of
strong and weak ligands in natural waters. These
results illustrate that care must be taken when
extrapolating results from laboratory experiments
using artificial metal chelators to the field.

For future research, the interplay between SST,
pH, and dissolved organic matter (DOM) content of
seawater and their effects on metal bioavailability
needs to be established in order to better understand
the effect for metal uptake by marine phytoplankton
at a global level. In the context of ocean acidification
and ocean warming effects on trace metal biogeo-
chemistry, it is important to establish a holistic view
of the many facets of trace metal chemistry. Future
predictions of the nature of trace metal−phytoplank-
ton interactions are difficult, as most studies have
so far focused on Fe and neglected possible impacts
of other metals. Be cause of growing evidence that
the interplay of a particular metal with other metals,
as opposed to the bioavailable concentration of one
metal alone, will determine its biological impact
(Sunda & Huntsman 1983, 1996, 2000, Peers et al.
2005, Maldonado et al. 2006), we have to move away
from the dominant focus on Fe as a sole controlling
trace metal in marine biogeochemistry. In addition to
the importance of Cu for Fe uptake, the interplay
between Cd, Fe, and Zn might have important rami-
fications with regard to the effects of ocean acidifica-
tion. Zn is needed in the enzyme carbonic anhydrase
in marine phytoplankton and can be substituted by
Cd and/or Co under Zn limitation (Price & Morel
1990). Low Zn concentrations have been shown to
decrease HCO3

− uptake and thus limit phytoplank-
ton growth (Morel et al. 1994, Buitenhuis et al. 2003).
Higher pCO2 in a more acidic ocean should lower the
Zn requirements of marine phytoplankton and would
thus also lower the need for substitution by Cd
(Cullen et al. 1999).

The ‘kink’ in the Cd:PO4 relationship at intermedi-
ate PO4 concentrations (~1.3 µmol kg−1) and devia-
tions thereof are also associated with Fe chemistry
(Cullen 2006). Experiments have shown that Cd
interferes with the uptake of Fe(II) and that the Cd:C
and Cd:P ratios increase under Fe limitation and de -
crease with increasing Fe (Cullen et al. 2003, Lane et
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al. 2008, 2009). It is not clear, though, how important
phylogenetic differences in the Cd uptake are in this
context (Quigg et al. 2003), or what the interrelation-
ship of Cd, Fe, and Zn in a warmer, more acidic
ocean may be. Since changes in the biogeochemistry
of Fe and Zn may likewise affect Cd chemistry in sea-
water, this also complicates the use of Cd as a tracer
for past seawater nutrient concentrations (Cullen
2006). Furthermore, Cd and Zn appear to compete
for the same ligands in fresh water (Sander et al.
2007); however, investigations on this topic are lack-
ing for seawater.

In summary, ocean acidification and ocean
warming will ultimately alter metal biogeochem-
istry on multiple levels, from affecting trace metal
sources, via primary chemical effects on inorganic
trace metal speciation, through to physiological
effects on microbial cellular metal acquisition, and
finally as a product of potential biological feed-
back mechanisms of heterotrophic bacteria and phy -
toplankton ecophysiology and altered community
structure.

INTERPLAY OF TRACE METAL SUPPLY, 
OCEAN ACIDIFICATION, AND TEMPERATURE

AT HIGH LATITUDES

The variability in the projections from recent global
dust and precipitation model simulations points to
the need for a more regional view to better identify
future changes in trace metal supply. In polar re -
gions, the main sources of trace metals to the ocean
are aerosol deposition and ice melting, as well as
riverine input in the Arctic (Wagener et al. 2008,
Shaw et al. 2011, Boyd et al. 2012, Klunder et al.
2012; Table 1). Asian dust fluxes that can reach the
North Pacific are expected to decrease markedly in
the future (Tsunematsu et al. 2011), but as mentioned
earlier, these fluxes are difficult to predict on a basin
scale because of regional differences in soil moisture
and vegetation (Ravi et al. 2011).

Ocean acidification and warming have already
resulted in distinct changes of the polar marine eco-
system. Sea ice cover and the areal extent of land ice
glaciers have decreased significantly in recent years
both in the Arctic and Antarctic (Anisimov et al. 2007,
Perovich & Richter-Menge 2009, Comiso 2012), and
this trend is expected to increase in the near future.
Further, in the Arctic Ocean, increasing pCO2 con-
centrations and sea ice melting have already resulted
in aragonite undersaturation (Yamamoto-Kawai et al.
2009).

The result of rapid ice melting in both regions is an
increased input of fresh water, which, together with
an increase in SST, will enhance stratification at high
latitudes and reduce the exchange with nutrient- and
trace metal-rich deeper waters with impacts on deep-
water formation and the thermohaline circulation
(Mars land et al. 2007, Wassmann & Reigstad 2011).
An additional consequence of melting ice in both
polar regions is an effect on the light climate of
the mixed layer. A reduction in Arctic sea ice cover
strongly increases the light penetration into surface
waters and thus will influence the photochemical re-
dox-processing of trace metals. In Antarctic waters,
where light limitation is mainly caused by deep mix-
ing, the effects will probably not be as pronounced as
in the Arctic. However, Boyd et al. (2008) predicted
a shoaling of mixed layer depths in the Southern
Ocean, which will also increase the mean light inten-
sity in surface waters. In the case of Fe, increased
 photochemical Fe(III) reduction will lead to a larger
pool of Fe(II) supported by a higher residence time due
to slower oxidation rates at lower pH and cold temper-
atures (Kuma et al. 1995, Sunda & Huntsman 2003).

A further consequence of increased melting of drift-
ing Arctic sea ice, which is formed in the shallow
coastal zones and contains entrained sediments, may
be a major input of Fe, other trace metals, and terres-
trial organic matter to offshore waters of the Arctic
Ocean. It is suggested that Fe incorporated in sea ice
and subsequently released with meltwaters may also
contribute to observed intense ice edge blooms
(Hölemann et al. 1999, Measures 1999, Fitzwater et al.
2000). Similar processes have been described for the
Antarctic (van der Merwe et al. 2011), and it has been
suggested that particularly the role of icebergs for
metal supply to the open ocean may increase with the
decline of Antarctic ice shelves (Lin et al. 2011). How-
ever, Lannuzel et al. (2011) suggested that seawater
is the main source for metal accumulation in Antarctic
sea ice and that seasonal melt mainly affects Fe input
into seawater. Hendry et al. (2008) showed increased
Cd in coastal Antarctic waters from terrestrial and con -
tinental shelf sediments with implications for the local
Cd:PO4 ratio. Their results suggest that sea ice cover
influences the metal content of Antarctic deep water.

An important factor that will most likely influence
the organic trace metal complexation in the Arctic
Ocean is permafrost melting. A significant reduction
of the permafrost regions around the Arctic Ocean is
expected by the end of this century (Delisle 2007,
Lawrence et al. 2008). In its 2007 report, the Intergov-
ernmental Panel on Climate Change emphasized that
‘[t]he most sensitive regions of permafrost degrada-
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tion are coasts with ice-bearing permafrost that are
exposed to the Arctic Ocean’ (Lemke et al. 2007,
p. 372). However, no information about potential ef-
fects of meltwater runoff on marine ecosystems is
given. Permafrost melting will introduce nutrients,
organic substances, and trace metals from land into
the sea in a manner that is comparable to spring
snowmelt (Rember & Trefry 2004). As the Arctic
Ocean is N limited as a result of denitrification in
the Pacific Ocean (Yamamoto-Kawai et al. 2006), the
input of nitrate will likely have a significant effect on
Arctic primary productivity. Further, an increased in-
put of organic substances could increase or de crease
the bioavailability of trace metals in the Arctic Ocean
via changes in their organic complexation. This could
further affect the productivity of coastal ecosystems
and thus may have serious consequences for the
arctic marine biogeochemistry. Arrigo & van Dijken
(2011) reported that the total annual net primary pro-
duction (NPP) in the Arctic increased by 20% be-
tween 1998 and 2009, and the authors concluded that
this was mainly caused by a reduction in sea ice cover
and a subsequent increase in light intensity. The pos-
sibility that at least part of this increase in NPP could
also be influenced by an increase in metal supply was
not discussed, but the authors stated that: ‘[n]utrient
fluxes into Arctic surface waters need to be better un-
derstood to determine if these projected increases are
sustainable’ (Arrigo & van Dijken 2011, p. 1).

Trace metal cycling is further strongly affected by
the metal uptake and downward export of biota. Cli-
mate-change driven alterations in polar phytoplank-
ton and bacterial species composition as reported by
Tortell et al. (2008) and productivity might therefore
have significant implications for marine trace metal
cycling in the future. Phytoplankton growth is limited
by Fe supply (and light) in the Southern Ocean and
the subarctic Pacific. When Fe is not limiting, tempera -
ture can have a significant additional effect on dia -
tom growth (Rose et al. 2009). Climate-related changes
in the bioavailability of Fe (and other trace metals) as
discussed above might therefore have strong impli-
cations for the phytoplankton community at high lati -
tudes, especially in combination with increasing SST.

INTERPLAY OF TRACE METAL SUPPLY, 
OCEAN ACIDIFICATION, AND TEMPERATURE

AT LOW LATITUDES

At low latitudes, coastal upwelling, aerosol deposi-
tion, and riverine input are the major sources of trace
metals to the surface oceans (Landry et al. 1997,

Mackey et al. 2002, Mahowald et al. 2005, Tovar-
Sanchez et al. 2006). Riverine trace metal inputs are
likely to change significantly as a result of climate
change-driven effects on rainfall in these areas. In
general, models predict a decrease in rainfall in sub-
tropical regions and an increase in some equatorial
regions of east Africa and Asia (Meehl et al. 2007).

Coastal upwelling brings nutrient- and trace metal-
rich deep water to the surface ocean at low latitudes.
Due to climate change, upwelling events are ex -
pected to become less frequent but stronger and
longer in duration (Bakun 1990, Iles et al. 2012). Tem-
perature and seawater pH shifts are expected to be
less extreme at low latitudes versus high latitudes
(Gruber 2011). Therefore, ocean acidification and
ocean warming effects on the inorganic metal solu-
bility are likely to be less important at low latitudes.
On the other hand, the areal extent of oxygen mini-
mum zones at high and low latitudes has already
expanded (Whitney et al. 2007, Stramma et al. 2008).
Future modeling predictions indicate that this pro-
cess will be more pronounced in the low-oxygen
regions at low latitudes (Gruber 2011), which will
play an important role for nutrient and metal cycling
in these regions. Oxygen minimum zones harbor a
large amount of Fe in its reduced form Fe(II) that
would otherwise rapidly precipitate as Fe(III) and
thus get lost from the upper ocean Fe cycle (Fig. 2).
Oxygen minimum zones could be a source of Fe(II)
for surface waters as discussed for the Baltic Sea
(Breitbarth et al. 2009). Paralleled by their role for
P and Mn cycling (Turne witsch & Pohl 2010), the
regional importance of oceanic oxygen minimum
zones for Fe cycling could therefore increase in the
future. Similar to Fe, Cu reduction is higher under
low oxygen conditions, and therefore Cu(I) concen-
trations could be higher here.

The reduced freshwater input into the future
oceans in subtropical regions will ultimately also
reduce the amount of DOM that is transported to the
oceans. Therefore, organic trace metal complexation
may decrease here. Whether phytoplankton/ bacterial
feedback mechanisms could counteract this, e.g. by
an increased production of metal-binding ligands,
remains speculative, but these mechanisms could
play a role if the bioavailable fraction of essential
metals becomes limiting.

A reduced input of DOM could also reduce the
substrate availability for marine bacteria and subse-
quently their trace metal ligand production. On the
other hand, ocean acidification has been shown to
increase the activity of some microbial enzymes,
which might result in enhanced polysaccharide pro-
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cessing in the future surface ocean (Piontek et al.
2010). However, effects of ocean acidification for ma -
rine microorganisms are often contradictory (Wein-
bauer et al. 2011), and implications for future trace
metal cycling are thus difficult to predict.

At low latitudes, diazotrophic phytoplankton are a
major group within the phytoplankton community
(Boyd et al. 2010). Both carbon and nitrogen fixation
rates of the dominant nitrogen-fixing cyanobacter-
ium Trichodesmium are higher under lower seawater
pH (Barcelos e Ramos et al. 2007, Hutchins et al.
2007, 2009, Levitan et al. 2007). Increasing growth
rates will further increase the cellular Fe demands of
nitrogen fixers, which are already higher compared
to other phytoplankton groups (Kustka et al. 2003).
This could result in a further increase in Fe limitation
of N2 fixation in the future ocean. This is supported

by observations that nitrogen fixation rates do not
increase under high pCO2 when Fe concentrations
are depleted (Fu et al. 2008, Law et al. 2012).

Overall, increased upwelling, changes in dust
 deposition, and reduced riverine input will expose
marine ecosystems at low latitudes to a multitude of
environmental stressors in the future. Today, it is
impossible to predict how these will influence the
trace metal budget of these waters, but their implica-
tions for marine productivity are highly likely.

CONCLUSIONS

Understanding the potential effects of global change
on trace metal biogeochemistry requires an inte-
grated, multidisciplinary approach combining tra -
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Fig. 2. Direct effects of ocean acidification (red) and ocean warming (blue) on Fe chemistry in seawater. Ocean acidification
and ocean warming both influence phytoplankton and bacterial physiology with possible effects for biological Fe uptake and
ligand production. Further climate change factors that may influence the marine Fe cycle are (1) changes in stratification and
the effects thereof upon light climate, (2) changes in the input of dissolved organic matter, (3) changes in the input of Fe from
aerosol particles, and (4) riverine inputs. FeL: ligand-bound iron; L: ligand; Fe(III)’: sum of all  inorganic Fe(III) species; OMZ:
oxygen minimum zone; ROS: reactive oxygen species. Iron cycle redrawn after Sunda (2001), Croot et al. (2005), and 

Breitbarth et al. (2009)
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ditionally segregated fields of geochemistry, physi-
cal oceanography, biology, and marine trace metal
chemistry. The abiotic effects of ocean acidification
and warming cascade into interwoven basic pro-
cesses of marine biogeochemistry which need to be
addressed individually as well as on a system level.
These are as follows: (1) seawater pH and tempera-
ture effects on inorganic trace metal complexation,
redox reactions, precipitation, and oxide aging; (2)
seawater pH and temperature effects on organic
metal complexation and redox cycling; (3) seawater
pH and temperature effects on microbial community
composition, growth, organic ligand production, phy -
to plankton metal up take, requirements, and toxicity
thresholds; (4) changing bioavailability of trace met-
als to marine primary producers as a result of (1), (2),
and (3); and (5) potential biological feedback mecha-
nisms on all of the above (Fig. 1).

We have illustrated how several environmental
factors at high versus low latitudes may affect trace
metal biogeochemistry in the future and how large
the uncertainties of these estimations still are. How-
ever, studying these aspects results in significant
methodological challenges. While recent ad vances in
multi-element trace metal analytical protocols allow
for a much improved sample through put with excel-
lent accuracy and precision (Milne et al. 2010, Biller
& Bruland 2012), detailed metal speciation studies
still require manual titrations of the metal of interest
versus a competing ligand added to the seawater
sample. Some working groups have developed auto-
mated protocols (S. Sander pers. comm.), which rep-
resent a great advance for sample processing of the
essential organic speciation measurements. How-
ever, trace metal concentration and speciation meth-
ods still have in common the approach that the
 analytical solution is buffered to a standard measure-
ment pH and measurements are performed at room
temperature, making their application for ocean
acidification re search difficult. Refined protocols are
thus needed to determine metal−organic interactions
at different seawater pH and temperatures.

During its emerging phase, the ocean acidification
research field was hindered by a lack of consensus
on methodo logical issues, which has now been over-
come by a community agreement in the form of
a ‘Guide to best practices for ocean acidification
research and data reporting’ (Riebesell et al. 2010). It
would be unfortunate if the evolution of the interdis-
ciplinary ocean acidification field (or in a broader
context, multiple ocean change effects) and trace
metal biogeochemistry, have to under go a similarly
redundant process. As an ex ample, while performing

constant pH monitoring during a trace-metal-clean
phytoplankton incubation experiment, we observed
that the acid cleaning treatment of the incubation
bottles had lowered the seawater pH by ~0.2 units in
the control treatment (Hoffmann et al. in press). A
bottle pre-conditioning step with seawater was re -
quired, even though the material (LDPE) was rigo -
rously rinsed with purified water after the last acid
cleaning step. This effect likely went unnoticed and
provided an accidental ocean acidification treatment
in many previous trace metal clean sea water incuba-
tions. A full characterization of the sea water carbon-
ate system throughout experiments is advised in the
aforementioned guide (Riebesell et al. 2010). A com-
munity-based agreement for interdisciplinary ocean
acidification−trace metal biogeochemical research
that adapts this guide is needed to define suitable
standards for future studies.
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