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Abstract Ant colony optimization (ACO) is a constructive
metaheuristic that uses an analogue of ant trail pheromones to learn
about good features of solutions. Critically, the pheromone representation
for a particular problem is usually chosen intuitively rather than by
following any systematic process. In some representations, distinct
solutions appear multiple times, increasing the effective size of the
search space and potentially misleading ants as to the true learned
value of those solutions. In this article, we present a novel system for
automatically generating appropriate pheromone representations,
based on the characteristics of the problem model that ensures unique
pheromone representation of solutions. This is the first stage in
the development of a generalized ACO system that could be applied
to a wide range of problems with little or no modification. However,
the system we propose may be used in the development of any
problem-specific ACO algorithm.
1 Introduction
For many years the operations research community has sought an efficient integer solver capable of
solving a range of combinatorial optimization problems (COPs) with little or no modification [1].
Traditional operations research techniques such as branch and bound have exponential worst case
running times, prompting the development of a small number of generalized metaheuristics, as
detailed in [38]. Recent years have also seen the emergence of hyperheuristics [10], metaheuristics that
are used to select, in a problem-independent manner, appropriate problem-specific heuristics to use
at each point during search. This article describes part of a larger effort to produce a generalized
constructive metaheuristic [33, 36], based on the increasingly popular ant colony optimization (ACO)
approach (see [15] and [17]). The work described herein is not, strictly speaking, part of a
hyperheuristic, as the approach proposed incorporates broad knowledge of a number of domains
to make decisions about how to adapt ACO. In effect, it concerns the development of a self-adapting
ACO algorithm rather than a higher level search of competing ACO algorithms.

The ACO approach belongs to the class of model-based search (MBS) algorithms [44]. In a MBS
algorithm, new solutions are generated using a parameterized probabilistic model, the parameters of
which are updated using previously generated solutions so as to direct the search towards promising
areas of the solution space. The model used in ACO is known as a pheromone representation, and is an
artificial analogue of the chemical used by real ants to mark trails from the nest to food sources.
In ACO, pheromone information is typically associated with the solution components used by
Artificial Life 11: 269–291 (2005)
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artificial ants to construct new solutions, guiding their decisions. The pheromone representation is
one of the most important design choices when adapting ACO to a given problem [7, 17]. Typically,
it is chosen in an ad hoc way, based on what appears to best suit a given problem. Intuitive choices
often work quite well in practice [17]. However, in a number of cases pheromones have been used
that represent solutions multiple times, increasing the apparent size of the search space and
potentially misleading ants as to the true learned value of solutions. For instance, the most common
pheromone representation used with shop scheduling problems associates pheromone with the
absolute position of scheduled operations in the solution vector, which in most instances allows the
same solutions to be represented by different sets of pheromone values. This pheromone is less
effective than an alternative pheromone that does not represent solutions multiple times [7]. A more
rigorous and systematic approach to selecting pheromones may be adopted that ensures unique
representation of solutions, improving the consistency with which ACO is applied and potentially
leading to better results. In this article, we describe a novel system for producing appropriate
pheromone representations based on the characteristics of the combinatorial problem to solve. This
system may be applied in a generalized solver as well as in the development of problem-specific
ACO algorithms.

In Section 1.1 we review the small number of studies that have compared alternative pheromone
representations. Section 2 contrasts the formal description of ACO with its application in practice.
Next, in Section 3, we introduce a formal notation for describing pheromone representations.
Sections 4 and 5 explore the requirement of unique solution representation and the role of
parsimony in the pheromone representation. Section 6 describes our approach to deriving
appropriate pheromone representations for different problems. Section 7 discusses important areas
of future investigation.
1.1 Comparative Pheromone Studies
There have been a small number of comparative studies on alternative pheromone representations.
In the main, these have used the observed performance of alternative intuitive pheromone choices to
infer the most appropriate pheromone representation. Hence, their results are restricted to those
problems studied and some closely related problems.

Blum [4] studies two pheromone representations for the edge-weighted k-cardinality tree
problem in which a tree of k edges of minimum weight from some graph is sought. One
representation associates pheromone with the edges in the tree, while the other associates
pheromone with pairs of edges. Given the same amount of execution time, the latter produces
fewer solutions due to its increased computational overhead, leading to the conclusion that the
former is a better choice for this problem.

Roli, Blum, and Dorigo [39] describe a maximal constraint satisfaction ACO algorithm and
compare three pheromone representations that associate pheromone with the assignment of values
to variables, pairs of variable-value bindings adjacent in the solution, and all pairs of variable-
value bindings in a solution, respectively. The first and last performed similarly, but, due to the
increased computational overhead for the last, the first representation is promoted as the best suited
to this problem.

Socha, Knowles, and Sampels [41] consider two alternative pheromone representations for a
university course timetabling problem with the aim of minimizing a number of soft constraints. The
first representation associates pheromone with the assignment of an event to a time, while the
second considers pairs of events assigned to the same time. While the latter was considered to be
more appropriate for timetabling, the former was found to be more effective on this particular
problem. Possibly this is because this is not a classic timetabling problem in which clashes must be
minimized (only feasible timetables were constructed), but one where the actual times assigned to
particular events have an important effect on the solution cost (by affecting the soft constraints).

Blum and Sampels [7] compared four pheromone representations for a generalized scheduling
problem: three from the literature, and a novel representation chosen to closely match the schedules
Artificial Life Volume 11, Number 3270
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represented rather than the structure of ants’ solutions. Their novel pheromone representation
performed best. Indeed, in a later study, they found that one of the representations from the
literature introduces an unfavorable bias into the search [8].

The first two studies suggest that too much information in a pheromone representation reduces
its computational efficiency. The last two studies suggest that choosing a pheromone that models
some aspect of the problem that has a strong inf luence on solution quality may be the most effective.
Section 4 presents some of the reasons underpinning these results. Knowledge of these underlying
causes aids in the development of a systematic approach to the selection of pheromone representa-
tions. This systematic approach may then be used with problems to which ACO has not previously
been applied.
2 ACO, Construction Graphs, and the Pheromone

The earliest ACO algorithm, Ant System (AS) [16], was applied first to the traveling salesman
problem (TSP), which has a strong similarity in structure to the real world shortest path problem
faced by ants when foraging for food. A number of improved ant algorithms were inspired by AS,
and in the late 1990s the common aspects of these were combined into the formal description of the
ACO metaheuristic (see, e.g., [15]). ACO algorithms (instances of the ACO metaheuristic) are
intended to find minimum cost paths over a graph G = (C, L, W ) while respecting a set of
constraints V [14, 15]. In this formulation C = (c1, c2, . . . , cn) is a finite set of problem components,
L = (lci cj j ci , cj a C ) is a finite set of possible connections between the elements of C, and W is a set
of weights associated with the components C or the connections L or both. Hence, for the TSP C
is the set of cities, L is the set of links between cities, and W is the weighting of the links. This
definition admits pheromone representations that do not associate pheromones with the edges of
the graph. We broaden the interpretation of solution components in Section 3.

A recent effort to describe a generalized version of AS is the graph-based ant system (GBAS)
[23]. In GBAS, ants create walks over a construction graph that represents an encoded form of solutions
to a particular problem. The pheromone is associated with the edges of this graph. In essence, the
construction graph is an abstract form of the solution, encoding the solution construction process
rather than directly representing solutions. Walks in this construction graph are mapped onto feasible
solutions via a problem-specific function A. The GBAS is as yet only a theoretical system, and no
attempt has been made to describe how the function A may be input to the system, a critical step in
implementation.

Di Caro and Dorigo’s [13] AntNet for dynamic routing in telecommunication networks is
somewhat generalized in that it may be applied to any packet-switched network. As networks clearly
display a graph-based structure, it also associates pheromone with the links between nodes in the
network.

Birattari, Di Caro, and Dorigo’s [3] ant programming is another notable effort to describe ant
algorithms in a generalized fashion. Ant programming combines ideas from ACO and dynamic
programming and thus emphasizes the role of the state graph (i.e., the decision tree) that describes
the chain of constructive decisions leading to each partial solution. In essence, ant programming is an
approach to describing any potential ant algorithm, including existing ACO algorithms, rather than a
specific approach to a generalized system. Although the role of the state graph is a central part of ant
programming, Birattari et al. suggest that a pheromone representation should actually be tailored to
suit the particular solutions represented, rather than the states and transitions in the state graph.

As ACO is based on the foraging behavior of ants—clearly a shortest path problem—it
may seem natural and even essential that the same restriction be imposed on applications of
ACO to various optimization problems. Certainly, the development of an appropriate graph
representation is considered to be of crucial importance in much of the ACO literature (e.g.,
[2, 11, 14–17, 20, 22, 39, 41, 43]). However, ACO algorithms have increasingly been applied to
problems that show a marked divergence from classic shortest path problems like the TSP.
Artificial Life Volume 11, Number 3 271
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Consequently, the graph representation of these problems offers little or no assistance in choosing an
appropriate pheromone representation. This has led to the ad hoc application of several novel
pheromone representations.

A typical approach to developing a graph representation for a COP involves identification of the
components from which solutions are constructed and then determining how those components
should be connected. This can be difficult for many COPs and often has lead to the development of
many ACO applications that diverge from the traditional construction graph approach.

The multiple knapsack (MKP), set covering (SCP), and set partitioning (SPP) problems,
collectively called subset problems, have the simplest solution structure of any problem type, consisting
of a set of items. A graph representation for these problems might use C as the set of items, with L
fully connecting the elements of C. Each node visited in a walk in this graph would be included in the
solution. However, as Leguizamón and Michalewicz [26] suggest, there is no real concept of a path in
these problems. Hence, even if pheromone is associated with the items (an intuitive choice used by
Leguizamón and Michalewicz), considering these problems in a terms of a graph is quite artificial.

For problems involving assignment of items to groups or resources, such as the quadratic
assignment problem (QAP), generalized assignment problem (GAP), and frequency assignment
problem ( FAP) [28], two distinct types of component may be identified, items and resources. For
instance, in the GAP, items represent various projects while resources represent the agents that may
work on projects. In a review of ACO algorithms for the QAP, Stützle and Dorigo [43] suggest that a
suitable graph representation for the QAP has C as the set of locations and facilities, with L fully
connecting these components.1 The graph representation of such problems would in fact be
bipartite, as facility-facility and location-location links are meaningless for such problems. Moreover,
given a walk in this graph corresponding to a feasible solution, only half the edges represent
assignments, while the other half are superf luous. Indeed, ACO algorithms for the QAP do not use
this graph representation [43], instead representing solutions as permutations of either facilities or
locations, where position indicates the location (or facility) to which they are assigned, and
pheromone is associated with the assignments. ACO algorithms for other assignment problems
such as the FAP and GAP use pheromone representations that also suggest an alternative solution
representation to the graph described above [27, 28].

Costa and Hertz [12] describe an ACO algorithm for the graph coloring problem (GRAPH), a
special kind of assignment problem, in which pheromone is associated with pairs of non-adjacent
nodes assigned the same color. The same pheromone is used for the bin packing (BIN) and cutting
stock (CSP) problems [18]. While this pheromone representation is intuitively appropriate for these
problems, it cannot be easily reconciled with walks in any graph representation of the problem.

Bauer, Bullnheimer, Hartl, and Strauss [2] describe an ACO algorithm for the single machine total
tardiness problem (SMTTP), which considers two alternative graph representations. The first, a
GBAS-inspired state-oriented construction graph, was not used on account of its enormous size,
that is, O(2n ) nodes when scheduling n operations, prompting the development of a greatly simplified
construction graph. Pheromone is associated with the absolute position of nodes in walks in this
simplified graph.

Socha, Knowles, and Sampels’ [41] ACO algorithm for a university course timetabling problem
represents solutions as walks in a construction graph where each node represents the assignment of
an event (e.g., a class) to a time slot. The simpler of the two pheromone representations they
consider (see Section 1.1) associates pheromone with the nodes of this graph and so is equivalent
to the pheromone representation used on assignment problems. The more complex pheromone
representation is highly similar to the one used for graph coloring. Neither of these requires nor
ref lects the graph representation of the problem.

Despite departing from the original construction graph approach in both the problem and the
pheromone representation used, the ad hoc application of ACO has often been highly effective [17].
Indeed, ACO is only an analogue of ant behavior, and non-graph-based models can still allow the
1 This approach may also be applied to other assignment problems.
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desired stigmergic behavior to emerge. However, the ad hoc approach has produced some com-
binations of COPs and pheromone representations with inherent f laws that may impair ACO’s
performance. Investigation of these problems can lead to a more systematic approach to the
selection of appropriate pheromone representations. The next section formalizes the description of
pheromone representations as background to the remainder of the article.

3 Pheromone Representations

An important foundation for the automated selection of pheromone representations is an
appropriate way of describing those representations, which we introduce here.

To guide ants as they construct solutions, a pheromone representation must map certain
identifiable features of solutions to pheromone values. Hence, the nature of a pheromone
representation is largely determined by the features it describes. In the following, C o Z is the
set of entities that may be combined to form a solution, called components by Dorigo, Bonabeau, and
Theraulaz [14]. This differs from more recent interpretations of the term solution component (see, e.g.,
[6]) that consider it to be a decision variable plus its value. For a given combinatorial optimization
problem, often several alternative sets of decision variables may be defined; the decision variables
referred to here are those that most closely ref lect the way ants construct solutions to the problem in
question. For example, in the TSP a variable xi, representing the city placed after city i, may take the
value j a C \ {i}, thereby representing the presence of edge (i, j) in the solution. This is the
interpretation of the solution component used here.

Using this definition of solution component, Blum and Dorigo [6] proceed to describe ACO
algorithms in terms of fully connected construction graphs, where each node corresponds to a
solution component.2 This definition requires that pheromone be associated with the nodes in such a
construction graph, that is, the solution components. However, a distinction must be made between
the component(s) added at each constructive step in an ACO algorithm and the nature of the decision
variable(s) involved and the pheromone representation required to model the resultant binding of a
value to a decision variable.

Some problems involve a number of different entities (such as facilities and locations in the
QAP), in which case C consists of a number of subsets, C1, . . . , Cn, representing each of these
entities, and which form a cover of C. A solution component can be constructed by combining
elements of these subsets. For instance, given a set of cities C, C � C could represent the set of edges
in the TSP, while given a set of facilities C1 and a set of locations C2, C1 � C2 could represent the set
of facility-location assignments in the QAP. Where a pheromone representation makes use of the
absolute position of elements from C in a solution vector, the set of solution positions is denoted
by P.

We further expand the notion of a solution component to the more general concept of a solution
characteristic. An individual characteristic may correspond to the presence of a particular solution
component, or to some broader feature of solutions produced by a number of solution components.
For instance, in the TSP, (i, j) a C � C is a solution component that is identical to the solution
characteristic represented by the pheromone used for the TSP. An example of the latter kind of
solution characteristic is found in a pheromone representation used for the graph coloring problem
[12], where the solution characteristics modeled are pairs of nodes being assigned the same color,
while the solution components are node-color assignments. Hence, the definition of a solution
characteristic may correspond to an alternative set of decision variables for the problem being
solved. In the case of the graph coloring problem, solutions are produced by the assignment of
colors to nodes, which suggests that decision variables have the form xi, representing the color
assigned to node i. Yet a pheromone representation that models pairs of nodes being assigned the
same color defines decision variables with the form xij , which is 1 if nodes i and j are assigned the
2 When alternative bindings of the same decision variable to different values appear in such a construction graph, the graph cannot be
fully connected, as that would imply that an ant may select more than one value for a decision variable.
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same color, and 0 otherwise. These two alternative definitions of the decision variables are not
contradictory. Indeed, pheromone information associated with the latter decision variables is used
to decide the value of the former kind, and represents a higher order representation of solutions to
the problem.

Where solution characteristics correspond to solution components, a pheromone representation
is said to be first order [7]. In such cases, a single pheromone value from the representation is used to
inf luence an ant’s decision regarding a single solution component. Higher order representations
involve subsets of solution components. For instance, a second order pheromone representation
often indicates the utility of having a pair of solution components in the same solution. Higher order
pheromone representations may emerge in two ways. Given an existing first order pheromone M,
the nth order pheromone representation may be obtained by transforming it into Mn. Alternatively,
when the solution characteristics we wish to model relate many parts of the solution to each other, a
higher order pheromone forms naturally as a consequence of having to combine information from
each of these relationships. In the latter case, unlike the former, it is often impossible to use the
underlying first order representation independently. In both cases, the resulting representation is
denoted by X � M; Mn, where X represents the set of all partial solutions. The first part describes
the observed pheromone representation, where the pheromone associated with adding a solution
characteristic from M is contingent on a partial solution from the set X. The observed pheromone
representation provides a single pheromone value for each candidate solution component and hence
is equivalent to a first order representation. Therefore, ants make decisions based on the values in
this observed pheromone representation. The second part describes the underlying pheromone
representation Mn, from which pheromone values are aggregated3 to produce the observed
pheromone representation. An example appears below. Strictly speaking, the nth order pheromone
representation generated from M includes only higher order solution characteristics (and hence
pheromone values) for n-tuples consisting of n distinct elements from M, although this is denoted by
Mn.4 The structure of a typical nth order pheromone is described formally in Definition 1.

Definition 1: The nth order pheromone representation derived from the first order pheromone representation M
is {( i1, . . . , in) j i1, . . . , in a M, i1 ����� in} o Mn, where ij a M is a solution component from M, and
� is an arbitrary but fixed order imposed on the elements of M. This is denoted by X � M; Mn.

An example of a naturally occurring second order pheromone is that used for the graph coloring
problem [12]. For this problem, a X � C1 � C2; (C1)

2 pheromone is used, where (C1)
2 represents

a pair of nodes being assigned the same color. Hence, the pheromone representation naturally
relates a number of solution components. Although Definition 1 cannot be applied directly to this
second order pheromone, the standard M–M2 relationship can still be seen by considering a typical
second order pheromone where solution characteristics are pairs of node-color assignments,
X � C1 � C2; (C1 � C2)

2, that is, where solution characteristics correspond to the solution
components used to build solutions. Given that the actual colors assigned to nodes do not affect
the cost of solutions—only what nodes are in the same color group—all references to actual colors
in the underlying (C1 � C2 )2 pheromone may be removed, producing the simpler (C1)

2 pheromone.
We refer to this second order pheromone as a grouping pheromone.

Define the set of allowable pheromone values by T o R+, with individual pheromone values
denoted by H (i ), where i is the solution characteristic being modeled. We abbreviate M i T to M.
Table 1 summarizes a number of commonly used pheromone representations.

Where the solution characteristic described by M is potentially ambiguous, it may be necessary to
specify its proper interpretation. Consider representation 3 from Table 1, X � C; C2, where (i, j ) a
C 2 can represent i and j being copresent in a solution or that i appears before j in the solution. These
3 Various methods may be used, such as taking the mean or minimum value.

4 This corresponds to the use of matrices to implement such representations, because of their fast access properties not possessed by
sparse representations.
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Table 1 . Common pheromone representations. Example problems represent a sample of how representations have been
used in the literature. In some cases different pheromones have been used with the same problem.

No. Pheromone Pheromone associated with: Example problems

1 C items present in solution Knapsack, set covering

2 C � C one item succeeding another TSP, shop scheduling

3a X � C; C2 pairs of items present

in solution

Maximum clique

3b collection of items

preceding another

Shop scheduling

4 X � C1 �
C2; (C1)

2

pairs of items in same/

different group

Graph coloring

5 C � P position of item in solution Shop scheduling

6 C1 � C2 assignment of resource in C2

to item in C1

Generalized and

quadratic assignment
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can be specified more clearly by denoting the representations as X � C; C 2 (copresent ) and X � C;
C 2 (preceding), respectively.

The notation introduced in this section is best suited to describing pheromone representations
associated with solutions which are collections of solution components. That is, the pheromone
representation may support a number of constructive algorithms for the problem in question, not
just those that build solutions from a sequence of solution components. For instance, solutions to
the TSP may be built as collections of links while still using a C � C pheromone.5 The notation is
thus suited to the majority of pheromone representations used in practice. However, in some ACO
algorithms the pheromone representation and constructive process used are inextricably connected,
and in such situations our notation is not easily applied. For instance, the shortest common
supersequence problem (SCSP) [32] consists of creating a minimum length string of characters from
some alphabet A (e.g., representing genes on a chromosome or machines in a production line) in
such a way that it is a supersequence of a set L of other strings (i.e., any of the other strings may be
produced by deleting characters from the solution). An ACO algorithm for this problem developed
by Michel and Middendorf [32] constructs solutions in the following way. Throughout the solution
construction process, the algorithm keeps track of how many characters from the start of each string
in L have been included in the partial supersequence. At each step, the set of candidate characters
consists of the next character to include from each string. A pheromone value is associated with each
character in each string, suggesting a pheromone representation of L � I, where I is the set of indices
of characters within the strings of L. However, the decision to include a candidate character c a C,
where C is the set of characters, is based on a single pheromone value derived by summing
pheromone values for each (l, i ) a L � I, where i is the position of the next available character from
the string l, such that the i th character of l is c. The pheromone representation is therefore most
closely denoted by X � C; L � I. This differs from more typical pheromone representations in that
5 Clearly, building solutions to the TSP in this manner may not be desirable, as feasible solutions are no longer guaranteed; but it is
certainly possible.
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individual pheromone values have no meaning outside of the constructive process used, as each will
contribute to the inclusion of a character at some point in a single solution’s construction. In more
typical pheromone representations the pheromone value associated with each solution component
may be considered without that solution component being added to the solution.
3.1 Representation-Oriented and Identity-Oriented Pheromones
Broadly two approaches may be taken to derive a pheromone representation from the problem
model used by ants to build solutions: representation-oriented or identity-oriented. The former
produces pheromones that ref lect some aspect of how solutions are represented (i.e., the
arrangement of solution components), while the latter results in pheromones that describe what
solutions are represented. Knowing the arrangement of solution components may identify solutions
in some problems, but in many cases only indirectly indicates the identity of the solutions
represented. For example, representing solutions to a subset problem as a linear list of items, a
C � P pheromone may be used to learn where to place items in the structure. Hence, a decision
variable xi implied by this pheromone represents the item placed at location i. This indirectly
indicates which items should be chosen. Using a C pheromone for a subset problem represents the
identity of solutions quite separately from how they are represented and built by ants. The decision
variables implied by this pheromone indicate whether an item is in the solution or not.

The two kinds of pheromone are not mutually exclusive. When a given solution structure
represents each solution only once, any pheromone used with or derived from that structure will
ref lect both solution representation and identity. For instance, the C � C pheromone for the TSP
represents both how solutions are represented (i.e., as permutations) and the identity of solutions as
sets of edges.

A number of pheromone representations described in the literature are derived from structural
aspects of solutions (see, e.g., [2, 11, 31, 42]). For many problems, these pheromones only indirectly
identify solutions, potentially leading to poorer performance of the ACO algorithms that employ
them. This is discussed in the next section.
4 Unique Solution Representation in Pheromones

When applying ACO to the TSP, an intuitive pheromone representation is C � C, where C is the set
of cities. This choice is seemingly a good one, as it associates pheromone with the solution feature
that most directly contributes to cost (i.e., links), and indeed, like many other intuitive pheromone
choices, it works quite well in practice [17]. Furthermore, this pheromone representation has an
important feature. Each distinct solution to the TSP is represented by exactly one set of links and so,
in the pheromone representation, by exactly one set of solution characteristics. (This is not the case,
for instance, when using a C � C pheromone for a subset problem, as illustrated in Figure 1.)
Hereafter, we say that pheromone representations with this feature have the property of unique
representation, expressed by Definition 2.

Definition 2: A pheromone representation M has the property of unique representation if each solution is
represented by exactly one set of solution characteristics taken from M.

There are two criteria for possessing this property. First, each distinct solution must be
represented at least once, as any excluded solution could be the optimal one. As pheromone
representations are derived from characteristics of the solution structures used, which will in any
properly designed algorithm allow for any solution to be represented, this criterion is generally
trivially met. In some pheromones, distinct solutions may share the same representation, as in
one ACO algorithm for the static aircraft landing problem [37]. While such pheromones do not
exclude any solutions, the sharing of a single representation by multiple solutions may be unde-
sirable for problems where the same pheromone values are shared between solutions of quite
Artificial Life Volume 11, Number 3276



Figure 1. A small subset problem (in which the cost is associated with items) using the C � C pheromone representation.
All possible ant solutions are shown for the subset {a, c, f } taken from some larger set. For simplicity, the pheromone
matrices shown only have entries for those items in this subset. Ø is the artificial start point from which all ants begin.
Shaded cells indicate the solution characteristics (pheromone values) corresponding to the adjacent solution. Crossed
cells indicate infeasible solution characteristics.
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different quality. Such sharing of representations occurs infrequently and is discussed below in
Section 4.4.

The second criterion for unique representation is that each distinct solution must be represented
no more than once. If this latter criterion is not met, then ants could construct the same solution
while using different sets of solution characteristics (this is illustrated for a subset problem in
Figure 1). Moreover, pheromones that represent distinct solutions multiple times consequently
increase the size of solution space ants search in—even though the same number of distinct
solutions are present—which can be an undesirable property for search algorithms. For many
problems, the solution structure allows each solution to be represented in multiple ways. Due to
constraints present in the problem, the distribution of these extra representations is likely to be
nonuniform, biasing the search towards certain solutions. A bias that favors better solutions would
be desirable. However, as the distribution of representations is unknowable for difficult combina-
torial problems, unique representation of solutions is a safe, practical alternative. Notably, Gutjahr
[23] states for GBAS that (p. 875) ‘‘. . . to each feasible solution, there corresponds (via A–1) at least
one walk . . . [in the construction graph].’’ This means that the pheromone it uses, which is
associated with the links in these walks, is not guaranteed to have the property of unique
representation.

It should be noted that with any pheromone representation ants are able to construct the same
solution while encountering different sequences, and in some cases slightly different subsets, of the
solution characteristics that describe that solution. For instance, in the TSP ants may construct the
same solution while starting at different cities, thereby encountering a different sequence of solution
characteristics (i.e., links) while never explicitly encountering the link from the last back to the first
city, which may be explicitly visited by other ants producing the same solution. With higher order
pheromone representations, ants may encounter different sets of higher order solution character-
istics, as the contents of their respective partial solutions will often be different even if those partial
solutions will eventually represent the same solution. Both cases are artifacts of the constructive
approach and are not inherently problematic, as at each step ants are given the best available estimate
of the learned utility of solution components. A problem arises when two or more solution
characteristics from a given pheromone representation correspond to a single ‘‘true’’ solution
characteristic in terms of a particular problem. For instance, using a C � P pheromone
representation for a subset problem means that the solution characteristics (i, 1), . . . ,(i, n) all
represent the single solution characteristic ‘‘i is present in the solution.’’ Yet with this representation
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only one of these is used in each ant’s solution, spreading the pheromone for the important solution
characteristic across multiple values. Consequently, each distinct solution also has multiple
representations. Indeed, using the C � P pheromone for this problem, each solution of n items
has n! different representations.

Given that the pheromone is the mechanism for learning about features of good solutions in
ACO, the property of unique representation is one of the most important determinants of a
pheromone representation’s utility for a given problem. Where the solution structure imposed by the
constructive process allows for each solution to be represented only once, all alternative pheromones
for that structure will have the property of unique representation. Where the solution structure used
does allow for distinct solutions to be represented in different ways, pheromones based on how
solutions are represented will also represent distinct solutions more than once. Even when
alternative pheromones for a problem have the property of unique representation, it does not
follow that they will be equally effective, an issue discussed in Section 6.
4.1 Unique Representation in Higher Order Representations
If a given first order pheromone representation has the uniqueness property for a particular
problem, then any higher order representations generated from it will also have the uniqueness
property on the same problem. This is formalized in Theorem 1. This principle holds for all nth
order pheromone representations given solutions containing at least n first order solution
characteristics; solutions with fewer than that do not possess groups of the required size.

Theorem 1: Let M be an arbitrary first order pheromone representation. If M has the property of unique
representation for a given problem, then solutions represented by at least n z 2 different pheromone values are also
uniquely represented by any higher order representation Mn.

Proof. Let M be an arbitrary first order pheromone representation such that M has the property of
unique representation. Let PM o M be a set of solution characteristics from M that corresponds to a
solution to the problem under consideration. Let PMn= { (i1, . . . , in) j i1; . . . ; in a PM i1 � ��� � in}
be the set of all n-tuples of distinct elements from PM, where � is an arbitrary but fixed order
imposed on the elements of M. There is only one such set of n-tuples for each PM and n. From
Definition 1 it can be seen that PMn o Mn. Therefore, each solution has exactly one representation
in Mn. In view of Definition 2, Mn has the property of uniqueness.

Corollary 1: Let M be an arbitrary first order pheromone representation such that M does not have the property
of unique representation for a given problem. Provided that solutions are represented by at least n different phero-
mone values in M, any higher order representation Mn also does not possess the property of unique representation for
that problem.

4.2 Examples of Unique and Multiple Representation
This section examines alternative pheromone representations for three important COPs to illustrate
the importance of the property of unique representation.
4.2.1 Subset Problems (Cost on Items)
Consider again subset problems where cost or profit is associated with the items included in the
subset. This includes the MKP, SCP, SPP, and k-cardinality tree problem, among others. Intuitively,
such problems should have a C pheromone representation, as the items placed in the subset are
important solution characteristics. Indeed, TSP-like and other pheromone representations are
regarded as inappropriate for these problems [26]. Nevertheless, they make an interesting case
study in the analysis of inappropriate pheromone representations.

When applying a C � C pheromone representation to these problems, a solution characteristic
(i, j ) represents choosing one item i after choosing some other item j. It derives from the graph
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representation of a subset, where the nodes visited are the items included in the subset and
pheromone is associated with the links in that graph, which are clearly meaningless for a subset
problem. However, the definition of GBAS suggests that this pheromone is the one that it
would use when applied to subset problems. If solutions are represented in this way, with an
artificial start node (an item with zero weight and cost ) from which all ants begin, each solution of
n items is represented n! times, with the pheromone associated with including a given item
spread over k separate values, where k is the total number of items (excluding the start node) n < k.
Figure 1 illustrates the use of this pheromone representation for a simple subset problem. As
described above, a C � P pheromone creates the same number of extra representations for solu-
tions to these problems.

The intuitive pheromone choice C satisfies the requirements of unique representation, as any
solution may be represented, yet each solution is represented by at most one subset of solution
characteristics.
4.2.2 Graph Coloring Problem
In the graph coloring problem, although solution components represent the assignment of specific
colors to nodes, distinct solutions are described by the groups of like-colored nodes. That is,
specific color information is discarded. Thus, for a given k-coloring of a graph, there are k! – 1
other colorings that represent the same solution, produced by swapping the actual colors between
color groups. Clearly, then, any pheromone representation that includes specific color information
may represent distinct solutions multiple times. This is the case if using a C1 � C2 pheromone, where
C1 is the set of nodes and C2 is the set of colors. Each of the k! – 1 alternative representations of
each distinct solution has a different corresponding set of solution characteristics ( i.e., representa-
tion) in the pheromone. Furthermore, such a pheromone may mislead ants by attracting them to
make node-color assignments that, being parts of two different representations of the same distinct
solution, produce a poorer solution when combined.

Similar problems occur if either of the second order representations X � C1 � C2; (C1 � C2)
2 or

X � C1 � C2; (C1)
2 � C2 is used. The former stores pheromone between all pairs of node-color

assignments, while the latter only stores pheromone for like-colored pairs of nodes. While these
representations capture interdependences between adjacent nodes so that poor combinations of
node-color assignments are less likely, each solution is still represented multiple times. For
instance, consider the solution characteristic (i, j, k) taken from the latter pheromone, which is
equivalent to (i, j, kV) if the colors k and kV are swapped. As described in Section 3, these
representations may be simplified by discarding specific color information to produce a grouping
pheromone for this problem. An X � C1 � C2; (C1)

2 grouping pheromone, applied to this problem,
does have the property of uniqueness, as it directly models color groups.
4.2.3 Permutation Scheduling Problems
The solution to a number of scheduling problems, collectively called permutation scheduling
problems, may be formulated as a permutation of a set of operations, subject to some partial order.
This group includes the single machine total tardiness problem (and variants) and the f low shop, job
shop ( JSP), and open shop (OSP) problems. In some problems, operations are grouped into jobs.
Due to precedence constraints between some pairs of operations within each job, the completion
time for each operation, and hence its contribution to the schedule’s overall cost, will depend on
differing subsets of the operations that precede it. Consequently, different permutations may actually
represent the same solution. Early ACO algorithms for these problems used a TSP-like C � C
pheromone representation (C is the set of operations), which has the drawback that an artificial start
node representing an empty schedule must be used, as solutions to these problems are not cyclic like
those to the TSP (e.g., [11]). More recent algorithms have used a C � P pheromone (P is the
absolute position of operations in the sequence), which does not require an artificial start node. Both
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Figure 2 . A small OSP-style permutation scheduling problem using the C � C pheromone representation. The artificial
start point Ø is not shown for brevity. (a) o1 and o3 must be processed on the same machine, while o2 requires a different
machine. (b) An ant’s solution, the schedule it represents, and the solution characteristics used. (c) Another ant’s
solution, producing the same schedule but using different solution characteristics.
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of these represent permutations rather than precedence relationships between operations and hence
can represent solutions multiple times.

Consider the application of a C � C pheromone to the trivial scheduling problem depicted in
Figure 2. In this example, the completion time of o3 may be affected by the completion time of o1
(and vice versa), while o2 is independent of o1 and o3. As a result, the operation sequence ho1, o2, o3i is
equivalent to ho1, o3, o2i, even though different solution characteristics from C � C are involved in
each. In empirical studies of the C � C pheromone representation, Blum and Sampels [7, 8] found
that it introduced a bias into the search, such that in more constrained scheduling problems like the
JSP, poorer solutions could be reinforced more than better solutions.

To counteract some empirically observed problems with the C � P pheromone, Merkle and
Middendorf [29, 30] suggest two alternative schemes for interpreting and updating pheromone
values, called summation evaluation [29] and relative pheromone evaluation [30]. In terms of the
notation introduced in Section 3, both of these approaches would be described as C � P; C � P,
because the pheromone associated with placing an operation at the current location in a solution
vector is derived from several pheromone values that describe the utility of placing that operation at
different positions in the vector. Clearly, the notation is not perfectly suited to describing these uses
of pheromone, as they use pheromone values associated with taking one action to inf luence the
decision to take a different action. While these improve the results of using this pheromone
representation on some scheduling problems, they still do not directly model the precedence
relationships that uniquely describe solutions and so may represent solutions multiple times.

Blum and Sampels [7] describe an alternative pheromone representation, X � C; C2 ( preceding),
referred to as learning-of-relations pheromone, where solution characteristics (i, j) a C2 re-
present scheduling operation i somewhere before operation j. This pheromone representation is
intended to identify precedence relations between related operations, where two operations are re-
lated if the scheduling of either one can have a direct effect on the start time of the other (ex-
cluding precedence relations required by the problem’s constraints). For instance, in the case of the JSP,
operations that require the same machine will affect each other’s start time and are therefore related.
The underlying C2 pheromone representation allows for only one representation of each solution, as
it directly models the precedence relations between all related operations and therefore has the property
of unique representation. As reported in Section 1.1, it outperforms the other commonly used
pheromone representations for these problems, including C � P with summation evaluation.
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In summary, unique representation of solutions in pheromones is important for the successful
application of ACO. Without it, ants explore enlarged search spaces with conf licting guidance from
different pheromone patterns for otherwise identical solutions. The next section describes an
alternative way of characterizing pheromone representations based on their size and discusses the
implications for choosing between alternative pheromones.

4.3 Pheromone Representation Size and Unique Representation
Pheromones that lack the property of unique representation are most directly identified by
examining the number of times they represent individual solutions. In this way direct comparisons
may be made between alternative pheromone representations. A related approach considers the total
number of solution characteristics described by alternative pheromone representations. Given that
alternative pheromones for the same problem represent the same number of distinct solutions, and
that each solution characteristic corresponds to a decision variable plus some value, a larger set of
solution characteristics corresponds to a larger number of ways to represent each solution. More
precisely, the larger the ratio between the total number of solution characteristics and the number of
solution characteristics used per solution, the more likely it is that pheromone does not have the
property of unique representation. However, the number of solution characteristics (i.e., values
assigned to decision variables) used per solution is similar across alternative pheromone representa-
tions, because they must make similar numbers of decisions when constructing solutions. Thus, we
consider only the total number of solution characteristics hereafter.

As larger sets of solution characteristics are more likely to allow for multiple representations of
solutions, a minimal set of solution characteristics is a sufficient condition for possessing the property
of unique representation. By minimal it is meant that there is no smaller set of solution characteristics
that may still represent each solution separately. If this latter criterion were excluded, the
minimal set of solution characteristics would belong to the pheromone representation with the
single solution characteristic that a solution is feasible, which clearly possesses the property of unique
representation, yet is singularly unhelpful in learning how to construct good solutions. Once a
minimal set of solution characteristics is identified, creating higher order versions of it using
Definition 1 or using a single pheromone value for groups of solution characteristics (discussed in
the next section) will still produce pheromones with the property of unique representation, but with
different learning properties from the original set.

While a minimal set of solution characteristics is sufficient for a pheromone to have the property
of unique representation, it is not a necessary condition for all problems. For example, with an n
operation SMTTP, C � C and C � P pheromones describe n(n – 1) and n2 solution characteristics in
total, respectively, of which n are used to describe a single solution. This is somewhat larger than
Blum and Sampels’ [7] learning-of-relations pheromone [X � C; C2 (preceding)], which only
describes n(n – 1) solution characteristics in total, with n( n – 1)/2 used for each solution. Yet all
three pheromones have the property of unique representation for this problem. This does not entail
that these pheromones will produce the same behavior when used in otherwise equivalent ACO
algorithms, simply that there is only one way to represent each distinct solution in each of them. In
more complex shop scheduling problems with multiple jobs and machines, only the learning-of-
relations pheromone maintains the property of unique representation.

Section 6 shows how the automated pheromone selection scheme we propose ensures a minimal
set of solution characteristics (or some higher order version thereof), thereby producing a
pheromone representation with the property of unique representation for a given problem.

The next subsection explores issues related to pheromone representations that, while representing
all solutions exactly once, share representations between distinct solutions.

4.4 Shared Representations in Pheromones
When a single set of solution characteristics corresponds to two or more distinct solutions, those
solutions may be said to share a representation. In effect, it is the reverse of having multiple
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representations.6 However, examination of a wide range of pheromone-representation–problem
combinations suggests that it is far less common for multiple solutions to share one representation
than for a single solution to have multiple representations. Furthermore, sharing of representations is
not necessarily undesirable.

It is possible to contrive unnatural pheromone representations for a variety of problems that
exhibit shared representations. For instance, consider a pheromone representation for a subset
problem that arbitrarily groups items into pairs, with a single pheromone value to indicate if either
item in each pair should be included in solutions. Such a representation would make use of a set of
virtual components C V, where C i C V and jC Vj = jCj/2. Similar pheromone representations may be
contrived for other problems by having small groups of solution components where each group has
a single pheromone value. Clearly, such representations are inappropriate, as they fail to distinguish
between different solutions. However, these examples are highly artificial and unlikely to eventuate in
the typical application of ACO. Of more interest is the small number of pheromone representations
with this property that can appear as a result of plausible design decisions. Two of these are
considered here.
4.4.1 Aircraft Landing Problem
The static single runway aircraft landing problem involves the allocation of landing times to planes
such that allocated times are within each plane’s landing window while minimum separation times
between different types of aircraft are respected [37]. Each plane has a preferred (most economical)
landing time, and the aim of the problem is to minimize the difference between actual and preferred
landing times, with different penalty rates for earliness and lateness. If the problem is modeled as the
assignment of times to planes, then an intuitive choice of pheromone is C1 � C2, where C1 is the set
of planes and C2 is the set of landing times. However, given that time windows differ between planes
and can be of different lengths, such a representation contains many solution characteristics that can
never be used.7 Further, unlike many other assignment problems where the number of items ( in this
problem, planes) is equal to or greater than the number of resources ( time slots), in this problem
jC1jVjC2j.

To create a more manageable pheromone representation, Randall [37] divides each plane’s time
window into a fixed number k of contiguous regions. While solution components are from C1 �
C2, the solution characteristics are from C1 � C V2, where C1 � C2 7! C V2. Hence, solutions with
assigned landing times that fall within the same regions will map to the same set of solution
characteristics. This kind of pheromone sharing is possible due to the nature of the resources ( i.e.,
time slots) in this problem. Unlike problems such as the GAP, where resources have quite distinct
identities, resources in this problem vary only slightly from one to the next. Furthermore, given the
large range of time slots available, it may even be advantageous to group closely related time slots in
this manner. If the pheromone were associated with individual time slots, each time slot would have
to be assigned to the same plane a number of times before pheromone levels would be sufficiently
high to seriously affect ant behavior. Aggregating adjacent time slots increases the likelihood of any
one of them being chosen. If desired, the number of regions could be increased as the search
progresses to differentiate between neighboring time slots.

Thus, for the single runway aircraft landing problem, modeled as the assignment of time slots to
planes, using a pheromone that shares representations may be a good practical choice. If the
problem is modeled so that solutions determine the landing order of planes only, with actual landing
times to be assigned by a subordinate heuristic, an alternative pheromone that does not share
7 This is the case if the representation is implemented as a matrix.

6 While it would be possible to contrive a pheromone representation that exhibits multiple shared representations, it is improbable that
such pheromones would be developed in the normal course of applying ACO, so they are not considered further.
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representations may be more appropriate, such as Blum and Sampels’ [7] learning-of-relations
pheromone.

4.4.2 Car Sequencing Problem
The car sequencing problem is a common problem in the car manufacturing industry [40]. The aim
of the variant considered here is that cars of different models are placed in a production sequence
such that the separation penalty between cars of the same model is minimized.8 Each model has a
fixed number of cars. One way this can be modeled is as the allocation of sequence positions to
different models. This shares similarities with graph coloring, in that the solution cost relates to pairs
of items (i.e., sequence positions) assigned to each group (i.e., model); yet it also has features of a
typical assignment problem, in that the separation penalty depends on what model a sequence
position is assigned to. A highly appropriate pheromone representation for this problem model is
developed in Section 6. However, in order to illustrate potential problems with shared solution
representations, only a pheromone for the graph coloring aspects is considered here. An X � C1 �
C2; (C1)

2 pheromone captures how separation penalties are allocated within models (groups).
However, while each solution is represented no more than once in this pheromone, several solutions
share their representation with other solutions. This is because, unlike graph coloring, the groups in
this problem have separate identities, evidenced by the different penalties associated with each
model. This pheromone representation is therefore inappropriate, as very different solutions may be
represented by the same set of solution characteristics.

Whether or not to share pheromone representations between different solutions seems to be a
practical consideration depending on the problem in question. The automated system described in
Section 6 does not currently support pheromones that share representations between solutions.

5 Parsimony in Pheromone Representations

Another desirable property of pheromone representations is parsimony, which means that a
representation contains just enough information to correctly represent key solution characteristics,
and no more. Generally, this relates to the use of a second order representation when a first order
representation will suffice. The following examples illustrate the role of parsimony in pheromone
representations.

In subset problems such as the multiple knapsack and k-cardinality tree problems, it is possible to
use the second order pheromone representation X � C; C2 (copresent ). Due to Theorem 1, this
second order representation has the property of unique representation. Additionally, the extra
information provided may promote better learning about good solutions to the problem in question.
However, in a comparative study on the k-cardinality tree problem, Blum [4] found that it was not as
effective as a C pheromone representation. It was suggested that this is due to the increased
computational overhead of using a more complicated pheromone representation, which results in
fewer solutions produced given the same amount of time (as was the case in this study). This
suggests that if a simpler pheromone representation adequately models a problem, it is unnecessary
to use a higher order (commonly, a second order) pheromone representation.

The same is likely to be true of the higher order pheromone representations for assignment
problems, such as X � C1 � C2; (C1 � C2)

2, which models pairs of assignments from C1 � C2 being
copresent in a solution. This pheromone also has the property of unique representation, as solutions
to these problems are uniquely defined by the assignments from which they are assembled. However,
unless the typical assignment pheromone is not sufficient to capture those solution characteristics
that are important in a problem, parsimony suggests that this second order representation should be
avoided used in favor of its first order counterpart.
8 The car sequencing problem may also be modelled as a constraint satisfaction problem, where each station on a production line can
support a limited number of cars of the same model in sequence [22].

Artificial Life Volume 11, Number 3 283



Pheromone Representation Selection in ACOJ. Montgomery, M. Randall, and T. Hendtlass
While not having as large an effect on ACO’s effectiveness as a pheromone representation lacking
uniqueness, the use of a representation lacking parsimony may affect an ACO algorithm’s per-
formance. The computational overhead required to process a representation with extra information
must be weighed against any potential benefits in solution quality.
6 Systematically Determining Appropriate Pheromone Representations

A pheromone representation that both uniquely represents solutions and is parsimonious may
not adequately describe solution characteristics that affect solution cost. Consider a subset
problem characterized by an objective function where cost is related to some relationship between
the pairs of items in the subset, with an objective function of the form Si Sj p i f (x( i ), x( j )). The
maximum clique (MCP) and N-queens (NQP) problems can be formulated in this way. As with
simpler subset problems, the C � C and C � P pheromone representations are inappropriate, as they
allow otherwise identical solutions to be represented more than once. A C pheromone representa-
tion has the property of unique representation, and is also parsimonious in view of simplicity.
However, the objective function suggests that the impact of including one item in the subset is related
to all other items in the subset, which is modeled by the second order pheromone representation
X � C; C2 (copresent ).

This example reveals a more general principle concerning problems and the most appropriate
choice of pheromone. While multiple solution representations and lack of parsimony are undesirable,
they are actually indications that a pheromone representation fails to adequately model those features
of solutions that directly affect solution cost. Ants construct solutions from a set of solution
components independent of the pheromone representation. Depending on the problem, each
distinct solution may be described by different sets or arrangements of solution components. This is
the case in the graph coloring problem, where solution components represent node-color assign-
ments while solutions are only uniquely described in terms of color groups. Consider an alternative
solution representation based on how various parts of the solution (i.e., solution components or
parts of solution components) directly affect the solution cost. In effect, this involves defining the
decision variables of the problem so that a change in the value of any of them results in a change in
the solution represented and hence the cost.9 As such a set of decision variables ignores how
solutions are represented (except where this has an effect on the solution cost ), it follows that it
represents solutions exactly once, and also provides a minimal set of decision-variable–value pairs.
In order to adequately model those features of solutions that directly affect the solution cost, and
hence produce a parsimonious pheromone representation that uniquely represents solutions,
solution characteristics must be chosen such that the decision variables they define have this
property. This information can be derived from a problem’s objective function and in some cases
certain constraints.

The objective function for many common COPs consists of a summation over a number of
terms. Each of these terms may be considered as a solution characteristic. The problem of deriving
an appropriate pheromone representation then becomes that of identifying the nature of these terms.
To facilitate this task, a suitable modeling language must be used that helps reveal how different parts
of the solution relate to each other. Hence, a 0-1 integer linear programming formulation would be
inappropriate as the true nature of a problem is often difficult to discern given the numerous 0-1
variables and constraints involved.

Our algorithm for automatically selecting pheromone representations requires that the pro-
blem model has already been parsed and that the nature of the entities (i.e., components) added at
9 It is conceivable that in using such a representation two apparently different solutions will have the same objective cost. However,
unless they can be shown to be completely equivalent, taking into account factors other than their cost, they should be considered to
be distinct. For instance, two solutions to the TSP may have the same tour length despite visiting cities in different orders, and would
then be considered as independent solutions.
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Figure 3 . Decision tree for automated selection of pheromone representations.
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each step be known, even though their impact on the solution cost is not. Hence, the algorithm
identifies the nature of the solution components and/or characteristics in the problem. The
algorithm has been developed by studying a wide range of commonly occurring COPs to identify
recurring themes in the objective function and what these indicate about cost contributors. This is
not the only possible algorithm for this task, but appears well suited to those problems examined.
The algorithm follows a decision tree (see Figure 3) that uses the four questions outlined below.
For each question, the possible answers are given, followed by an explanation of the reason for the
question.

Note that f (1) represents a function of one part of the solution while A represents an aggre-
gate of many parts of the solution. For example, the SMTTP has an objective in which each
operation’s contribution to the solution cost is related to Sj<i

j p(x( j )) – d(x( i )), where x(i ) is the i th
operation in the permutation, and p(k) and d(k) represent the processing time and due date of
operation k, respectively. This corresponds to f (A, 1). The number partitioning problem (NPP) [25]
has a single term of the form Si x(1, i ) – Sj x(2, j ), where x(i, j ) is the j th number in partition i,
which matches f (A, A). The algorithm is currently limited to objective functions consisting of no
more than two parts.

1. How many parts of the solution are used in each term in the objective?

Possible answers: f (1), f (1, 1), f (A, 1), f (A, A).

Rationale: To know if the cost is related to individual parts of the solution or to some
relationship between parts. f (1) restricts the number of feasible pheromone representations,
while the others require further examination.

2. If each part is related to another part of the solution, how many other parts is it related to?

Possible answers: one, selected (and more than one), all.

Rationale: To determine the scope of the relationship(s) between parts. The answer
one restricts the number of feasible pheromone representations, while the other two
require further examination. Selected indicates that each part is related to some of the
other parts, but not all. For instance, in the JSP the contribution to the solution cost
of a single operation is related to what other operations that use the same machine have
been scheduled before it, which is a subset of all operations, since JSPs typically involve
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multiple machines. In the SMTTP an operation’s contribution to the solution cost is
related to all operations that precede it, but none that succeed it, which also matches
the answer selected.

3. If each part is related to a selected group of other parts, what identifies them?

Possible answers: all preceding/succeeding, selected preceding/succeeding, assigned same group/resource,
assigned different group/resource.

Rationale: To differentiate between problems where the relative order of components is
important (first two answers) and those where group assignment is important (second
two answers). In an implementation of the system, the two answers corresponding to
each kind of relationship (ordered versus group assignment ) would be used to make
minor changes to which parts of the pheromone representation would be used in
decisions and updated by solutions. For instance, the SMTTP would match all preceding,
while the JSP would match selected preceding.

4. If the part referenced represents an assignment, is the resource assigned used separately in
the objective function?

Possible answers: yes, no (or solution component is not an assignment ).

Rationale: If solution components represent assignments and each term in the objective
is some function of both the item and the resource to which it is assigned, then it is likely
that it is the assignment that is most important, rather than any other relationship(s) in
the problem. The exception to this rule is when dealing with a problem in which group
membership is important as well as which group items are assigned to, in which case both
aspects must be ref lected in the pheromone representation.

A simple decision tree is depicted in Figure 3. Note that Question 4 appears at the end of most
branches and in all but one case overrides any other characteristics of the problem. This is because
if the objective is, at some level, a function of individual assignments, then associating pheromone
with these will ensure that the representation has the property of unique representation while still
representing an important contributor to the solution cost. To illustrate how the algorithm may be
applied, consider the following four problems. Objective functions have been simplified by removing
the bounds on summations.

TSP Objective: Si d(x( i ), x( predecessor(i ))), where x(i ) is the ith city in the solution x, d(i, j ) is the
distance between cities i and j, and predecessor(i ) returns the preceding position to i, which is the last
position in the solution if i is the first solution position, i – 1 otherwise.
	 Question 1: f (1, 1), goto Question 2;

	 Question 2: one, goto Question 4b;

	 Question 4b: no, select C � C (adjacent pairs) pheromone.
QAP Objective: Si Sj a(i, j ) � b(x(i ), x( j )), where x(i ) is the facility assigned to location
i, a(i, j ) is the distance between locations i and j and b(k, l ) is the amount of f low between facilities
k and l.
	 Question 1: f (1, 1), goto Question 2;

	 Question 2: all, goto Question 4c;

	 Question 4c: yes, select C1 � C2 pheromone.
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GAP Objective: Si Sj a(x( i, j ), i ), where x(i, j ) is the jth task assigned to agent i, and a(k, l ) is the
cost of assigning task k to agent l.
	 Question 1: f (1), goto Question 4a;

	 Question 4a: yes, select C1 � C2 pheromone.
Car sequencing problem (CSeqP) A description of this problem appears in Section 4.4. In this
formulation, sequence positions are allocated to a fixed number of cars within each model.

Objective: Si Sj Sk P(j x(i, k ) – x(i, j )j, i ), where x(i, j ) is the position assigned to the j th car of
model i,10 and P(i, j) is the penalty for cars of model j separated by i positions.
	 Question 1: f(1, 1), goto Question 2;

	 Question 2: selected, goto Question 3;

	 Question 3: same group, goto Question 4e;

	 Question 4e: yes, select X � C1 � C2; (C1)
2 � C2 pheromone.
Note that in addition to the decision tree, an implementation of the system must perform some
other processing to slightly tailor the chosen pheromone representation to match a particular
problem. For instance, with the TSP, the system must be able to recognize that the predecessor( )
function relates adjacent pairs, rather than pairs separated by some other distance. In problems such
as the JSP, the system must be able to determine which other operations are capable of affecting each
operation’s start time, information obtainable from the problem constraints and objective.

The results from applying the algorithm to a range of COPs are presented in Table 2. With the
exception of the SMTTP, the suggested pheromone representation is the best known pheromone for
each problem to which ACO has been applied in the literature. The suggested pheromone for the
SMTTP has not been used with that problem, so no comparison can be made.

7 Concluding Remarks

As the range of application of ACO has grown, so too has the variety of solution and pheromone
representations, at times departing considerably from the original AS for the TSP and the natural
metaphor on which it is based. Given that the pheromone is the mechanism for learning about good
features of solutions in ACO, the utility of a pheromone representation may be largely determined by
whether or not it uniquely represents solutions. Pheromone representations are generally chosen in
an ad hoc manner, which has in some instances produced representations that do not uniquely
represent solutions. This increases the effective size of the search space and may potentially mislead
the search process as to the true learned value of solutions. Pheromone representations with too
much information can slow down the search process, although in some circumstances they may
produce improvements in solution quality that outweigh losses in speed. This issue is currently being
further investigated. Nevertheless, many intuitive pheromone choices have been highly effective in a
number of instances, suggesting that deriving pheromone representations by the systematic analysis
of a problem, especially its objective function, may yield improved results. Moreover, deriving a
pheromone representation in this way ensures solutions are represented both uniquely and
parsimoniously, while also focusing learning on those characteristics of solutions that most directly
contribute to cost.

We have described a system for the automated selection of pheromone representations that
may be applied to a wide range of COPs. In general, this system’s predictions correlate with the
10 Although the order of car positions within each model group is not important, it is convenient to represent each model’s set of
positions as a list.
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Table 2 . Suggested pheromone representations for common COPs using the new selection system. The problem name
abbreviations not previously defined are as follows: VRP = vehicle routing, LOP = linear ordering, GPP = graph
partitioning. PAP = processor allocation. Other abbreviations used: sel’d = selected, prec. = preceding, group = same
group, diff. = different group. References are given where ACO has been applied to that problem using the suggested
pheromone.

Problem

Decision process
Suggested

pheromone ReferenceQ1 Q2 Q3 Q4

MKP f(1) — — no C [26]

SCP f(1) — — no C [21, 35]

SPP f(1) — — no C

GAP f(1) — — yes C1 � C2 [27]

TSP f(1, 1) one — no C � C [16]

VRP f(1, 1) one — no C � C [9]

NQP f(1, 1) all — no X � C;C2

(copresent )

MCP f(1, 1) all — no X � C; C2

(copresent )

[20]

QAP f(1, 1) all — yes C1 � C2 [43]

FAP f(1, 1) all — yes C1 � C2 [28]

SMTTP f(A, 1) sel’d prec. no X � C; C2 (all prec.)

JSP f(A, 1) sel’d prec. no X � C; C2

(sel’d prec.)

LOP f(A, 1) sel’d prec. no X � C; C2 (all prec.)

GRAPH f(1, 1) sel’d group no X � C1 � C2;

(C1)
2 (group)

[12]

CSP f(1, 1) sel’d group no X � C1 � C2;

(C1)
2 (group)

[18]

BIN f(1, 1) sel’d group no X � C1 � C2;

(C1)
2 (group)

[18]

GPP f(1, 1) sel’d diff. no X � C1 � C2;

(C1)
2 (diff.)

PAP f(1, 1) sel’d diff. no X � C1 � C2;

(C1)
2 (diff.)
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Table 2 . (continued)

Problem

Decision process
Suggested

pheromone ReferenceQ1 Q2 Q3 Q4

NPP f(A, A) sel’d diff. no X � C1 � C2;

(C1)
2 (diff.)

CSeqP f(1, 1) sel’d group yes X � C1 � C2;

C1
2 � C2

Pheromone Representation Selection in ACOJ. Montgomery, M. Randall, and T. Hendtlass
best-known pheromone representations for problems described in the literature. Initial results from
our empirical studies with alternative pheromones for the TSP, JSP, OSP, GAP, and QAP support
the system’s pheromone choices for these problems. The system also makes predictions about
problems that ACO has not yet been applied to.

Additionally, we have introduced a notation for the formal description of pheromone representa-
tions. There are a number of complex problems for which this system is currently unable to derive a
single most appropriate pheromone. These include multiple objective problems such as the SMTTP
with changeover costs [24], and multiple task problems, like the p-hub median class of problems [19],
where solutions are built in two separate, but interacting, stages. To handle these problems the hard
decision tree will likely need to be softened to allow several pheromone representations to be
suggested.

A limitation of the current study is that the interaction between a pheromone representation and
the particular features of a given ACO algorithm is not considered. ACO algorithms do not, in
general, rely solely on pheromone information to guide the search process, making use of heuristic
estimates of solution components’ values and also manipulating pheromone information in different
ways.

Furthermore, the nature of the constructive process used by an ACO algorithm may introduce a
bias into the search that can affect the utility of a pheromone, even if it represents solutions uniquely
[34]. Different aspects of this issue have only recently been investigated in detail, by Blum [5] and
also by the authors [34]. Future work will integrate these two approaches to understanding and
predicting pheromone performance with the ideas presented in this article. As part of this
integration, the performance of the suggested pheromone representations will be compared against
other pheromone representations on a range of problems.
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