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Abstract

The availability of micronutrients is a key factor that affects primary productivity in
High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient
supply is governed by a range of physical, chemical and biological processes, and
there are significant feedbacks within the ecosystem. It has been suggested that
baleen whales form a crucial part of biogeochemical cycling processes through the
consumption of nutrient-rich krill and subsequent defecation, but data on their
contribution are scarce. We analysed the concentration of iron, cadmium,
manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces
and muscle, and krill tissue using inductively coupled plasma mass spectrometry.
Metal concentrations in krill tissue were between 20 thousand and 4.8 million times
higher than typical Southern Ocean HNLC seawater concentrations, while whale
faecal matter was between 276 thousand and 10 million times higher. These
findings suggest that krill act as a mechanism for concentrating and retaining
elements in the surface layer, which are subsequently released back into the
ocean, once eaten by whales, through defecation. Trace metal to carbon ratios
were also higher in whale faeces compared to whale muscle indicating that whales
are concentrating carbon and actively defecating trace elements. Consequently,
recovery of the great whales may facilitate the recycling of nutrients via defecation,
which may affect productivity in HNLC areas.
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Introduction

Large regions of the Southern Ocean are characterized by low phytoplankton
biomass despite high concentrations of major nutrients (e.g. nitrate, phosphate
and silicate), and have been characterised as High Nutrient Low Chlorophyll
(HNLC) waters [1]. Phytoplankton forms the base of the marine food chain,
supporting everything from microscopic animals to large marine mammals [2—4].
It also plays an important role in carbon sequestration by converting carbon
dioxide (CO,) to biomass through photosysnthesis, and through sinking,
transferring the carbon to the deep ocean and sea floor sediments [5,6]. Marine
ecosystems can either act as a source or sink of atmospheric CO, depending on
the relative rates of photosynthesis and overall total respiration. One factor
responsible for limiting the accumulation of phytoplankton in HNLC waters has
been the availability of essential trace elements, particularly iron (Fe), that are
required for biochemical processes such as photosynthesis and respiration, as well
as in the reduction of inorganic nitrogen species [7].

The major sources of trace elements in marine ecosystems are from
atmospheric deposition, continental run-off, shelf sediments, hydrothermal vents
and ocean crust [8]. However the Southern Ocean is remote from most of these
sources; consequently the concentration of trace elements in surface waters is low.
Some of the important trace elements underpinning biogeochemical processes are:
Fe and manganese (Mn) for carbon fixation; zinc (Zn), cadmium (Cd), and cobalt
(Co) for CO, acquisition; Zn and Cd for silica uptake by large diatoms; Co and Zn
as calcifiers; Fe for nitrogen (N,) fixation; copper (Cu) and Fe for nitrification,
denitrification and organic N utilization; Zn for organic phosphorus (P)
utilization; Fe for synthesis of photopigments; and Cu for methane oxidation
[9,10]. As Fe, Mn, and Cu have a short residence time, while Cd, Zn and P have
an intermediate residence time in oxygenated waters [11-14], any mechanism that
can increase the persistence of trace elements in surface waters should enhance
overall marine primary productivity.

Until recently, the primary biogeochemical role of marine animals was
considered to be as consumers of carbon, converting it into fast-sinking faecal
material or returning it to the atmosphere through respiration [15]. However, a
number of recent studies instead suggest that marine animals and seabirds are part
of a positive feedback loop that retains nutrients in the surface waters, thus
enhancing primary productivity and stimulating carbon export [16-20].

All animals require a range of nutrients that they mostly obtain from their diet.
Different marine animal groups have requirements for particular nutrients: e.g.
crustaceans require Cu for their respiratory pigment [21], whereas marine
mammals require Fe for the oxygen (O,) storage protein in muscles; myoglobin
[22]. Thus animals tend to concentrate the range of nutrients that are important
for their metabolic processes. Marine mammals, being air-breathing, spend most
of their lives in the surface layer and are thought to defecate exclusively in the
euphotic zone [23]. In addition, some animals inhabit or migrate to water deeper
than the euphotic zone, where they feed and then return the scavenged nutrients
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to the surface layer when they defecate [24,25]. Animals such as seabirds and
whales are capable of converting the concentrated elements found in solid form in
their prey into a liquid form in their faecal material that is released into the
euphotic zone [16, 20, 26]. This plume of liquid, rich in trace elements, could act
as a fertiliser for phytoplankton production [20,27]. Dense aggregations of large
animals may also have a significant local effect on mixing of water and nutrients
across the thermocline by generating turbulence [28].

The objective of our study was to determine the degree to which a variety of
trace elements are concentrated in krill tissue, and subsequently taken up into
whale muscle or defecated, to evaluate their potential role in recycling nutrients in
the Southern Ocean. In addition to Fe, we report the concentrations of carbon
and six other biologically important elements (Cd, Mn, Co, Cu, P and Zn)
measured in five species of baleen whales and four species of krill, including
Antarctic krill (Euphausia superba). Iron concentrations and diet analysis on these
samples have been presented and discussed in Nicol et al. [16] and Jarman et al.
[29], respectively.

Methods
Sample collection

Whale muscle samples were collected from stranded and dead blue (Baleoptera
musculus) and fin (Baleoptera physalus) whales in South-western Australia. Blue,
fin, sperm (Physeter macrocephalus), humpback (Megaptera novaeangliae) and
pygmy blue (Baleoptera musculus brevicauda) whale faecal samples were collected
opportunistically from a range of locations by trawling 0.5 mm mesh nets over the
surface waters following defecation. Four species of krill (Nyctiphanes australis,
Meganyctiphanes norvegica, Euphausia pacifica and Euphausia superba) were
collected from various locations worldwide. All sample tissue and faecal matter
were stored in individual 50 ml polycarbonate screw cap bottles, preserved
in>70% ethanol and frozen at —20°C until analyses.

Analysis of the trace element concentration

Samples were dried at 60°C until constant weight was attained. Subsequently they
were crushed using an acid-cleaned pipette tip and shaken vigorously to
homogenise the samples. Digestion of 2—100 mg subsamples were performed in
acid-cleaned 15 ml Teflon perfluoroalkoxy (PFA) vials (Savillex, Minnetonka,
MN, USA) by adding 1 ml of concentrated nitric acid and 0.125 ml of hydrogen
peroxide (all Ultrapure, Seastar Baseline, Choice Analytical). The samples were
then heated at 125°C for 8 hours on Teflon coated digestion hotplate, housed in a
bench-top fume hood coupled with HEPA filters to ensure clean input air
(Digiprep, France). Identical procedures were applied to blanks (n=6) and to two
certified referenced materials (n=5) (DORM-3 fish protein; National Research
Council, Ottawa, Canada; and NIST 1566a oyster tissue; National Institute of
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Standards and Technology, Gaithersburg, Maryland, USA). Certified materials,
blanks and samples were resuspended in 10-100 mL of 10% v:v nitric acid
(Ultrapure, Seastar Baseline) and analysed by sector field inductively coupled
plasma mass spectrometry (SF-ICP-MS) (Finnigan MAT ELEMENT 1 Bremen
Germany), following methods described in Cullen and Sherrell [30] and
Townsend [31].

Analysis of carbon

All glass- and metal-ware in contact with the carbon samples were pre-combusted
at 450°C for 12 hours. Subsamples (2-100 mg) of dried faecal matter were placed
in 13 mm diameter silver capsules (Sercon, Australia) and carbon content was
then determined at the Central Science Laboratory, University of Tasmania, using
a Thermo Finnigan EA 1112 Series Flash Elemental Analyser (estimated precision
~1%).

Results
Element distribution

Results for certified reference materials are presented in Table 1 and were found
fit for purpose. Mean and standard deviation of C, Fe, Cd, P, Co, Mn, Cu and Zn
for five species of whale faeces, two species of whale muscle and four species of
krill are summarised in Table 2; with published comparative values of dissolved
and particulate trace elements in Southern Ocean surface waters in Table 3,
marine phytoplankton in Table 4, and Antarctic krill and marine mammals in
Table 5. Concentrations of metals varied between the specimens. In krill tissue,
the highest concentration was observed for Zn followed by Fe and Cu. In whale
muscle, the highest concentration was observed for Fe followed by Zn and Cu.
Lastly, in whale faeces, the highest concentration was observed for Zn, followed by
Cu and Fe. Consistently, the three elements with the lowest mean concentrations
in krill tissue and whale muscle and faeces were Mn followed by Cd and Co. There
are some differences in concentration of the various elements between our results
and published data (Table 5). These differences may be a result of seasonal or
regional effects and variability in trace element concentrations in krill and baleen
whales, which is a topic for future studies.

Mean concentrations of trace elements were higher in whale faecal matter
compared to whale muscle and krill tissues. When compared to published
Southern Ocean seawater concentrations in HNLC waters [32], the metal content
of krill tissue was between 22 thousand (for Co) and 4.8 million (for Fe) times
higher than surface water concentrations, while whale faecal matter was between
276 thousand (for Co) and 9.2 million times (for Fe) times higher.
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Table 1. Elemental analysis using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) for certified referenced material of fish protein
(Certified Reference Material number: DORM-3) and oyster tissue (National Institute of Standards and Technology (NIST), Certified Reference Material

number 1566a).

DORM-3 referenced values (mg kg™ ")
Measured average (mg kg~ ") (n= 5)
Standard deviation

Recovery (%)

NIST 1566a certified values (mg kg~ ")
Measured average (mg kg~ ") (n= 5)
Standard deviation

Recovery (%)

347.00 0.29 15.5 51.3
322.09 0.28 24865.65 2.92 0.23 14.88 69.55
42.02 0.03 3281.6 0.39 0.03 1.47 39.06
92.82 96.52 n/a 63.4 n/a 95.99 135.58
539.00 4.15 n/a 12.3 0.57 66.3 830
477.85 4.13 29853.89 11.46 0.31 62.60 837.11
11.84 0.04 1100.99 0.1 0.02 0.70 7.58
88.66 99.49 n/a 93.18 53.65 94.41 100.86

Averages listed are the mean of 5 replicates. Recovery values indicate the percentage difference between measured and certified values.

n/a — No certified value given.

doi:10.1371/journal.pone.0114067.t001

Metal: Carbon and carbon to phosphorus ratio

When normalised to C, the concentration of Cd, Cu, Co, Mn and Zn were higher
in krill tissue compared to whale muscle, whereas Fe was higher in whale muscle
compared to krill tissue (Table 6 and Figure 1). All metal to C ratios were higher
in whale faeces compared to whale muscle. When normalised to P, the C content
was highest in whale muscle followed by krill tissue and lastly whale faeces
(Table 6 and Figure 2). Redfield C:P molar ratio of 106:1 mol:mol is typical of
phytoplankton [33]. Here, whale faeces and krill tissue are below the C:P Redfield
ratio and whale muscle are higher.

Discussion
Comparison to published analyses

The concentrations of trace elements in krill from this study were within the
reported ranges for the Antarctic krill (Table 5) [34,35]. For whale muscle, the
concentration of Cd, Cu and Zn were similar to published values from other
Southern Ocean marine mammals: Crabbeater seal (Lobodon carcinophagus),
Leopard seal (Hydrurga leptonyx), and Weddell seal (Leptonychotes weddellii)
(Table 5) [36].

Most studies investigating trace element concentration in marine vertebrates
have used liver or kidney tissue as a means of quantifying the bioaccumulation of
metal contaminants. However, as liver plays an important role in accumulation
and detoxification of elements, it is expected that the concentration of elements in
liver and kidney would not be comparable with trace element concentrations in
muscle samples analysed in this study [37]. Unfortunately we did not have any
samples from other whale tissue to compare with the literature values. The
concentration of Fe, Mn, Zn, Cd and Cu in whale muscle from this study was
much higher than published muscle concentrations of the Southern minke whale
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Table 3. Summary of dissolved and particulate trace element concentrations in surface waters from the literature (nmol L™7).

Sampling

Size

location

Marguerite
Bay, WAP

Ross Sea
Ross Sea
Ross Sea
Weddell Sea

Atlantic sec-
tor

Atlantic sec-
tor

Indian-Pacific
sector

Indian-Pacific
sector

Southern
Ocean

Ross Sea

Ross Sea
Ross Sea
Weddell Sea

Atlantic sec-
tor

Atlantic sec-
tor

East
Antarctica

Amundsen
Sea open
ocean

Southern
Ocean

Overall
ranges

0-100
0.5-375
0-380
50

40

40-100

40

40

0-20

0-100

0.5-100
0-380
50

40

40-100

8-50

0-20

partitioning

Dissolved

Dissolved
Dissolved
Dissolved
Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Dissolved

Particulate

Particulate
Particulate
Particulate

Particulate

Particulate

Particulate

Particulate

Particulate

Dissolved

Particulate

0.34-0.86
0.04-0.73
2.01
0.155-
0.905
0.25-0.27
0.1
0.03 0.34
0.011-
0.097
2.18
0.02-0.14
0.001-
0.018
0.071-
0.66
0.26 0.34

0.03-2.01 0.04-0.9

2.18 0.01-0.14

0.02

0.04

0.02

0.04

16.6—
44.5

16.6—
445

0.43-3.3
1.23-2.16
0.5-11.6

0.95-6.66

1.2-1.4

1.78

0.05-
0.733

0.04-1.36

0.026—
0.222

0.017-
0.070

0.38

0.43-6.6

0.017-
1.36

2.2-8.2
0.24-5.17

1.7-10.8

2324

1.01

0.2-1.2

0.020-
0.805

291

0.24-10.8

0.02-2.91

0.33-1.2

0.01-6.6
0.34

0.08

19-198

0.01-0.17
0.01-3.1
0.022

0.007-
0.141

8.81-39.4

1170

0.44

0.01-6.6

0.01-198 1170

Reference
Hendry [63]

Corami [45]
Fitzwater [64]
Grotti [65]
Westerlund and

Ohman [66]
Loscher [E_7]
Loscher [68]
Frew [69]
Bowie [44]
Cullen [32]

Corami [45]

Fitzwater [64]
Grotti [65]
Westerlund and

Ohman [66]
Loscher [67]
Léscher [68]

Lannuzel [70]

Cullen [32]

Data from Frew [69] and Bowie [44] in the Australasian-Pacific sector are from non-fertilised surface waters.

doi:10.1371/journal.pone.0114067.t003

(Baleoptera acutorostrata) (Table 5) [37]. In whale faeces, the concentration of Cd,
Cu and Zn were higher than published values for faeces from Antarctic chinstrap
penguins (Pygoscelis antarctica) (Table 5) [38]. To the best of our knowledge,
there are no other studies that have reported trace element concentrations in
faecal matter from Antarctic vertebrates.
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Table 4. Trace element concentrations (mean + standard deviation) in cellular phytoplankton (umol L™ ).

Sampling
ALEIREVE] location Reference

Unknown Diatoms (Low Fe)

Autotrophic flagel-
lates (Low Fe)

Heterotrophic fla-
gellates (Low Fe)

Diatoms (High Fe)

Autotrophic flagel-
lates (High Fe)

Heterotrophic fla-
gellates (High Fe)

Thalassiosira pseu- Diatom
dona

Diatom

Thalassiosira ocea- Diatom
nica

Diatom

Skeletonema men- Diatom
zeli

Diatom

Southern 45+7 982+235 28+4 Twining and
Ocean Baines [47]
Southern 143+ 15 455+74 48+10 Twining and
Ocean Baines [47]
Southern 270 + 50 1615+484 51+8 Twining and
Ocean Baines [47]
Southern 235+27 13314350 48+8 Twining and
Ocean Baines [47]
Southern 715494 9714265 77+11 Twining and
Ocean Baines [47]
Southern 463+57 2410 + 643  99+18 Twining and
Ocean Baines [47]
Sargasso sea 21.446.5 13.940.26 Annett [53]
Sargasso sea 56.6+5.1 12.7+0.010 Annett [53]
Sargasso sea 3.43+0.27 10.2+1.1 Annett [53]
Sargasso sea 793 + 4.8 17.0+1.2 Annett [53]
Sargasso sea 4.7540.57 10.940.72 Annett [53]
Sargasso sea 33.8+11 11.1+0.97 Annett [53]

Twining and Baines [47] - Concentrations prior to Fe fertilisation are Low Fe, and following Fe fertilisation are High Fe.
Annett [53] - We used the highest and lowest Cu concentrations measured for each species of phytoplankton and its corresponding C concentration.

doi:10.1371/journal.pone.0114067.t004

Antarctic krill and baleen whales as sources of trace elements to
ocean surface waters

Iron has been demonstrated to be the primary factor controlling marine primary
productivity in one third of the world’s oceans, including the climatically
important Southern Ocean. Iron-containing proteins are essential for photo-
synthetic and respiratory electron transport [39], and iron been demonstrated to
limit the growth rates of the diatom Thalassiosira weissflogii and the dinoflagellate
Prorocentrum minimum when the unchelated Fe concentrations in seawater fall
below 0.1 nmol L™" [40]. This is further supported by the 100-fold increase in
diatom concentrations following natural and artificial Fe-fertilization experiments
in HNLC surface waters (see Boyd [41] and de Baar [42] for a synthesis).

Dissolved and particulate Fe concentration in surface seawater of HNLC
regions is typically less than 1 nmol L™ [32,43,44]. This micronutrient can be
passively scavenged onto particles or actively taken up by organisms. Nicol [16]
indicated that the Southern Ocean krill population could contain approximately
24% of the total Fe in the surface waters within its range, and whale faecal Fe
content (145 133.7 mg kg~ ') was approximately ten million times that of
Southern Ocean surface seawater concentrations. Here we confirm that krill
concentrate the Fe derived from phytoplankton into its tissue, with the Fe:C ratio
in krill 3 times higher than the averaged published value for Southern Ocean
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Figure 1. Metal to carbon ratios in krill and whales (pmol mol~"). Data points above the third quartile for whale faeces are 3 or more times higher than

the interquartile range.

doi:10.1371/journal.pone.0114067.9001

phytoplankton in low Fe conditions (Table 6). In whale muscle, the Fe:C ratio was
almost double that of krill and in whale faecal matter it was over 5 times higher
than krill tissue. This indicates that whales are concentrating the carbon and
actively defecating the Fe.

Manganese is also a crucial trace element in seawater, and it is required by the
water oxidizing complex of photosystem II in phytoplankton [9]. The
concentration of Mn in Southern Ocean surface waters is typically low (dissolved
and particulate 0.02 — 6.77 nmol L™, but 19.33 — 199.2 nmol L™ in the Ross Sea
[45], and 8.81 — 39.4 nmol L™, particulate only, in the Amundsen Sea [46]).
However published average cellular concentrations of Mn in diatoms from low Fe
waters in Southern Ocean were between 200 and 2 million times higher than
surface water concentrations suggesting that phytoplankton is enriched in Mn.
Manganese is also an essential element for metabolism in crustaceans [48].
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Figure 2. Carbon to phosphorus ratio in krill and whales (mol mol”). Data point above the third quartile
for whale faeces is 3 or more times higher than the interquartile range.

doi:10.1371/journal.pone.0114067.g002

Accordingly, krill tissue showed even higher concentrations of Mn (8.4+6.1 mg
kg™ "), which is over 300,000 times higher than typical HNLC seawater
concentrations of 0.52 nmol L' (dissolved and particulate) [32]. Whale muscle
had low concentrations of Mn (2.4+2.3 mg kg™ '), and lower Mn:C ratio
compared to whale faeces. This is because Mn is not assimilated and consequently
is often used as a measure of assimilation efficiency in marine mammals [49]. As a
result, and similar to Fe, whales defecate most of their dietary Mn as demonstrated
by high Mn content in their faeces (27.3+16.3 mg kg ~') compared to their
muscle (2.442.3 mg kg ).

The Zn, Co and Cd concentrations in Southern Ocean surface waters are low
(0.24 — 9.4 nmol L™',0.00006 pmol L™ " and 0.04 — 0.905 nmol L™, respectively —
Table 2), however, these elements are essential cofactors in metalloenzymes in
marine phytoplankton. All marine phytoplankton have adapted to limitations of
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CO, diffusion in water by evolving carbon concentrating mechanisms (CCMs) to
support photosynthetic carbon fixation [50]. The CCM catalyses the equilibrium
between bicarbonate (HCO; ) and CO, using the Zn metalloenzyme carbonic
anyhydrase [10]. Under Zn limitation, the carbonic anhydrase can function with
Co or Cd instead of Zn [51]. Therefore the ability of marine phytoplankton to
acquire CO, also depends on the availability of Zn, Co and Cu in surface waters.

The mean cellular concentrations of Zn in diatoms vary by 2 orders of
magnitude (3.43 — 982 pumol L~! — Table 3); however diatoms show cellular
accumulation of Zn, with concentrations between 1000 to 100,000 times higher
than seawater (Table 4). Zinc is then further concentrated in krill tissue
(275.4+137.2 mg kg~ '). Whale muscle was relatively low in Zn (74.94+40.9 mg
kg™ ") compared to krill tissue, and Zn:C ratios were lower in whale muscle
compared to whale faeces suggesting the low requirement of whales on this
element. As such, most of the Zn is released through whale faecal matter
(621.5+432.9 mg kg™ ).

Cobalt and Cd were present in very low concentrations in krill tissue
(0.084+0.03 mg kg~ ' and 2.8+ 0.7 mg kg™, respectively) suggesting that relative
to other trace elements measured in this study, krill may have little use for Co and
Cd. When normalised to C, Co and Cd were higher in phytoplankton compared
to the average among krill (Table 6). Similarly Co and Cd were scarce in whale
muscle (0.04+0.04 mg kg~ ' and 0.1+0.2 mg kg~ ', respectively). When
normalised to C, Co and Cd were lower in whale muscle compared to whale
faeces, indicating that these elements are expelled through their faecal matter
(0.9440.87 mg kg~ ' and 34.7488.9 mg kg~ ', respectively). Interestingly, the
concentration of Cd in sperm whale faeces was much higher compared to other
species of whales in this study (575 mg kg~ '), which may reflect the different diet
of this species. Sperm whales in the Southern Ocean predominantly consume
squid which may predate on Antarctic krill [52].

Copper is one element that shows clear differential uptake and utilization across
the food web compared to other elements in this study. Copper concentration in
seawater is low (dissolved and particulate 0.48 — 12.96 nmol L™ " - Table 2) and is
little concentrated by phytoplankton (3.48 — 79.3 umol L™") [53], which appear
to have little physiological use for it. Studies have demonstrated that Cu is toxic to
the dinoflagellate Gonyaulax tamarensis and the diatom T. pseudonana, and is able
to decrease their growth at only a few pmol L' [54,55]. Krill, like most
crustaceans however, require Cu, as it is an essential element in their respiratory
pigment; hemocyanin [21]. Accordingly, krill tissues show a marked bio-
concentration of Cu (49.1+30.5 mg kg~ ' — Table 5, and Cu:C 20.5+ 10.4 umol
mol ' - Table 6), 100,000 times higher than Southern Ocean surface waters and
over 1.5 million times higher than that measured for Southern Ocean diatoms.
Whale muscle was relatively low in Cu (5.3 +4.5 mg kg~ ') compared to their
prey, which reflects the lower physiological dependency of mammals on this
element. Consequently, whale faeces contained high levels of Cu (1635 5.3 mg
kg~ ! in sperm whales, 253.54 100.4 mg kg~ ', all other species), and higher Cu:C
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ratio compared to whale muscle, suggesting that whales take up relatively little Cu
from their diet.

Phosphorus is an essential nutrient required for structural and functional
components of all organisms. Despite a high range, the mean C:P ratio in whale
muscle from our study was 30 times higher than mean whale faeces ratio and 3
times higher than the Redfield ratio (Figure 2), indicating that whales are actively
storing the P in their muscle. When nutrients are not limiting, the C:P ratio in
most phytoplankton is 106:1 [33]. When P is scarce, phytoplankton have been
demonstrated to reduce their cellular P requirements by substituting phospho-
lipids for non-P membrane lipids [56]. In the Southern Ocean, surface water
phosphate concentrations (16.6 — 44.5 nmol L™ ") [46] are much higher than the
other elements we report here. Despite this, the concentration of P in krill was
over 30 million times higher than median surface water concentrations
(28,304.1+23,286.7 mg kg~ '). Whales concentrate the P from krill for
biochemical processes.

Our results suggest that Antarctic krill and whales may be a key part of marine
biogeochemical cycling and act as a source of essential and limiting trace elements
to phytoplankton in surface waters of the Southern Ocean. Krill and whales are
long-lived, actively swimming animals that do not undergo any form of
dormancy. As such, the large stock of krill can act as a mechanism of retaining
trace elements in the surface waters whereas whales concentrate certain elements
required for physiological processes from the krill, but actively defecate other
elements that can be used for phytoplankton production. In addition, krill are
capable of absorbing elements such as fluorine directly from seawater suggesting
that they can concentrate some elements despite their scarcity in surface waters
[57].

Ecological importance of whales — past, present and future

The loss of large predators from marine ecosystems has the potential to affect
marine biogeochemistry, and consequently marine primary productivity and
carbon sequestration [16, 19, 20]. Because of their vast size and huge consumption
of krill, blue and fin whales would have been the dominant krill consumers in the
Southern Ocean before the era of commercial whaling and thus would have been
the significant contributors to ocean nutrient recycling. Although their large size
acts as a carbon store, their major role is in how they affect the recycling of critical
elements, and it is the availability of these elements that affects the ocean’s ability
to sequester carbon. Consequently it has been suggested that the efficiency of
recycling and supply of essential nutrients to surface waters has diminished in the
Southern Ocean due to massive reductions in whale numbers through commercial
whaling [18, 58, 59].

The pre-exploitation population of Antarctic blue whales was estimated to be
between 202,000 to 311,000 individuals and was expected to have exported
approximately 72,172 tons C yr~ ' [19, 60]. Current estimates of Antarctic blue
whales are approximately 4,727 individuals, less than 2% of mean pre-exploitation
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levels [19,60], with a predicted recovery rate of 8.2% per year [61]. There is no
reliable data on pygmy blue whale abundances. Fin whales are thought to be more
abundant and their numbers may be increasing; however, current estimates of
population sizes are not available. Many humpback whale populations are
recovering quickly but their current numbers are still considerably below pre-
exploitation population sizes. The recovery of the great whales could increase the
spatial extent of productive regions in the Southern Ocean through the recycling
of essential nutrients to surface layers from their faecal matter [19,59].

Conclusion

There is accumulating evidence of the role of whales in the ocean nutrient cycling
and their importance relative to their abundance (see Nicol [16], Lavery [18],
Pershing [19], Wing [20], Lavery [58], Roman [62] for synthesis). Our results
show that krill can act as a reservoir of essential trace elements in surface waters,
and whales can release these stored elements through feeding and defecation. This
study further extends the role of larger animals as important components of ocean
biogeochemical cycling for a range of elements. To fully understand the role of
large marine mammals in ocean biogeochemical cycling future studies will have to
determine the bioavailability of the elements contained in whale faeces, and to
quantify the combined effects of, nutrient recycling in the surface layer, the effects
of nutrient scavenging from deep water and biogenic turbulence caused by
vertically migrating whales.
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