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Abstract

A previous study by Forbes (2011b) has argued that, when a light
fluid is injected from a point source into a heavier ambient fluid, the
interface between them is most unstable to perturbations at the low-
est spherical mode. This means that, regardless of initial conditions,
the outflow from a point source eventually becomes a one-sided jet.
However, two-sided (bi-polar) outflows are nevertheless often observed
in astrophysics, in apparent contradiction to this prediction. While
there are many possible explanations for this fact, the present paper
considers the effect of a straining flow in the ambient fluid. In ad-
dition, solid-body rotation in the inner fluid is also accounted for, in
a Boussinesq viscous model. It is shown analytically that there are
circumstances under which straining flow alone is sufficient to convert
the one-sided jet into a genuine bi-polar outflow, in linearized the-
ory. This is confirmed in a numerical solution of a viscous model of
the flow, based on a spectral solution technique that accounts for non-
linear effects. Rotation can also generate flows that are two sided, and
this is likewise revealed through an asymptotic analysis and numerical
solutions of the non-linear equations.

Keywords: bi-polar flows, Boussinesq approximation, instability, inter-
face, one-sided outflows, Rayleigh-Taylor flow, rotation, spectral methods,
straining flow, vorticity.
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1 Introduction

In the classical Rayleigh-Taylor instability, two fluids of different density form
two horizontal layers, with an interface separating them and the more dense
fluid on top. This configuration is unstable, so that small disturbances to
the interface grow with time and develop into fingers of one fluid penetrating
into the other. The problem was first investigated by Rayleigh (1883) and
Taylor (1950) in the context of linearized theory, in which disturbances to the
interface are assumed to be of small amplitude. They found that disturbances
grow exponentially fast, so that eventually their amplitude must become
large enough to violate the assumptions of linear theory. Consequently, non-
linearity becomes important after some finite time.

This work assumed that the two fluids are inviscid, and while this gives
rise to Laplace’s equation for the velocity potential in each fluid, which is
a relatively simple linear partial differential equation, the conditions on the
unknown evolving interface nevertheless remain non-linear. That fact is re-
sponsible for some surprisingly intricate behaviour at the interface. It was
observed in earlier numerical solutions of the problem that the calculations
failed after a certain time, as discussed by Sharp (1984), for reasons that were
not immediately obvious. It is now known from the work of Moore (1979), on
the related Kelvin-Helmholtz instability, that a curvature singularity forms
at the interface within finite time. Beyond that critical time, the inviscid
model ceases to be valid. A similar process occurs for the Rayleigh-Taylor
instability, and Moore’s analysis has since been used by Baker, Caflisch and
Siegel (1993) to estimate the time at which a curvature singularity forms at
the interface in this situation. For the Kelvin-Helmholtz instability, Moore’s
(1979) observation that a curvature singularity is formed at finite time has
been confirmed by Cowley, Baker and Tanveer (1999), using an asymptotic
argument in which time is treated as a complex variable.

The inclusion of viscosity in models of the Rayleigh-Taylor instability
eliminates the curvature singularity at the interface. Instead, a small region
of high vorticity is produced, at the precise time and location where the
inviscid theory predicted a singularity. This was shown numerically by Forbes
(2009), in planar Rayleigh-Taylor flow, but has been understood to be the
case for a long time. Krasny (1986) simulated the effects of viscosity in an
otherwise inviscid fluid by introducing a “vortex blob” approach, in which the
interface is effectively modelled as a diffuse region rather than a mathematical
discontinuity. For the Kelvin-Helmholtz instability, his calculations could
continue to much later times than that at which Moore’s (1979) curvature
singularity would occur. He demonstrated that the interface rolled up into
overhanging plumes at later times. Baker and Pham (2006) have argued that
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different types of “vortex blob” methods may result in different outcomes for
these unstable flows, so that the results are not entirely independent of the
details of the numerical method. Nevertheless, these techniques are capable
of generating solutions in broad agreement with the results of numerical
solutions of fully viscous equations, as has been illustrated by Tryggvason et
al. (1991).

The Rayleigh-Taylor instability has been studied extensively, and it arises
in a number of situations of practical interest, including in the atmosphere
(see Schmitt (1995)) and ocean (see Cui and Street (2004)). It is also be-
lieved to play a significant role in astrophysics, as discussed in the review
by Inogamov (1999). McClure-Griffiths et al. (2003) attributed the struc-
tures they observed in radio studies of galaxies to Rayleigh-Taylor flows, and
they may also play a role in galactic super-bubble formation, as suggested
by Low and McCray (1988). Dgani and Soker (1998) undertook careful ob-
servations of 34 planetary nebulae, and suggested that the Rayleigh-Taylor
instability might explain the fragmentation of the halo of nebulae, so that
the interstellar medium could penetrate to their inner regions.

Rayleigh-Taylor type instabilities are possible in geometries more elab-
orate than the relatively simple situation of two horizontal layers in two-
dimensional flow, that represents the classical statement of the problem. In
particular, it is possible to conceive of these types of flows in astrophysical
circumstances, provided that there is a radially inwardly directed gravity
force, with a “heavier” fluid enclosing a bubble of “lighter” fluid. In this
present paper, such a flow is of interest purely as a type of canonical prob-
lem in fundamental fluid mechanics; however, it does also have more than a
little relevance to problems in astrophysics, concerning the shapes adopted
by planetary nebulae with outflows (see Huarte-Espinosa et al. (2012)) or a
type of re-bound phenomenon that may occur after an initial implosion in a
neutron star, as discussed by Nordhaus et al. (2012). Of course, magnetic
fields are almost certainly of importance in such applications, and a discus-
sion of their role in flows around young stars is given by Shariff (2009). They
are not considered here, although further modelling of their effect on radial
outflow from a line source is given by Chambers and Forbes (2012).

Forbes (2011a) has recently considered a generalization of the classical
Rayleigh-Taylor flow to a geometry in which a lighter fluid is injected into
a heavier medium, through a line source. The flow is therefore still two-
dimensional, as in the classical problem, but now gravity is directed radially
inwards. Small perturbations to the interface were found to grow unstably as
the outflow progressed. In the inviscid formulation of the problem, curvature
singularities were encountered at the interface within finite time, analogously
to those predicted by Moore (1979) for the planar Kelvin-Helmholtz insta-
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bility. When viscous effects were then included, the curvature singularities
were again replaced by small regions of high vorticity, and these resulted in
the formation of overturning plumes arranged around the expanding cylinder.
Qualitatively similar results have been generated by Matsuoka and Nishihara
(2006) for a related shock-induced flow (the Richtmyer-Meshkov instability).

For cylindrical planar flows of this type, as well as for more complex
three-dimensional geometries, the curvature of the interface can result in
an additional instability, known as the Bell-Plesset effect. This has been
analyzed by Mikaelian (2005) in linearized (small amplitude) theory, for con-
centric shells of fluid undergoing implosion or explosion, in both cylindrical
and spherical geometry. Forbes (2011b) studied outflow from a point source,
with an initially spherical interface and inwardly directed gravity. For invis-
cid fluids, he presented a linearized analysis and showed that it reduces to
Mikaelian’s equation at infinite Froude number (zero gravity), corresponding
to an underwater explosion, for example. Interestingly, this small-amplitude
solution predicts that the first spherical mode is the most unstable, so that
any initial disturbance would ultimately be dominated by it as time pro-
gresses. Thus it would be expected that the outflow would develop into a
one-sided jet. Non-linear inviscid theory could not confirm this decisively,
since again it was found that a type of curvature singularity developed at
the interface; nevertheless, Forbes (2011b) also carried out the numerical
solution to a viscous model and demonstrated numerically that one-sided
outflows were indeed produced.

In the astrophysical context, this represents something of a paradox, since
it is commonly observed that outflows occur as strongly two-sided (bi-polar)
jets, and this is discussed in the book by Stahler and Palla (2004, section
13.2.1) and the review by Zinnecker and Yorke (2007). Of course, magnetic
field effects might account for this in part, with the star acting as a strong
magnetic dipole. However, the numerical work of Lovelace et al. (2010),
in which magnetic fields are included, does nevertheless produce one-sided
outflow jets, and they have been observed experimentally in astrophysics, as
is discussed by Reipurth and Bally (2001). One-sided jets are also observed
in certain spherical implosions in the internal confinement fusion literature,
and are described further by Ye et al. (2010).

One purpose of the present paper is to explore the extent to which the
one-sided jet produced from spherical outflow, as a result of the Bell-Plesset
effect, is affected by motion of the ambient heavier fluid. In the astrophysi-
cal context, this would correspond to background motion of the interstellar
medium. This is now known to be an important phenomenon; Low and
Klessen (2004) and Inoue and Fukui (2013) argue that supersonic turbulence
and cloud-cloud collision are likely to have important roles in star forma-
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tion, and this is confirmed both theoretically and in observations. Klein and
Woods (1998) carried out a numerical study of two colliding clouds, and
noted that perturbations on the cloud surfaces may indeed lead to asym-
metrical outflows, through a “bending mode instability”. Observations of
head-on collisions in galaxies have been presented by Braine et al. (2004).
The computations of Anathpindika (2009) show two clouds of similar size
colliding and forming an elongated straining-type region, and it is suggested
that star formation may occur in this zone.

In the present paper, the focus is on fundamental fluid mechanics, and so
a simple straining flow is considered in the outer fluid, perhaps as an ideal-
ization of the flow computed by Anathpindika (2009), for example. A very
simple model of this effect has been given recently by Forbes and Brideson
(2013) and assumes that the densities of the inner and outer fluids are ap-
proximately equal; in that case, the problem reduces to a non-linear partial
differential equation for the shape of the interface alone, since the velocities
in each fluid are able to be specified in advance. Those authors showed that
their non-linear equation can be solved completely in closed form, and gives
a perfectly symmetric bi-polar outflow as a result of the straining motion
superposed on the outflow from the point source. A question of interest is
therefore to know under what conditions the one-sided jet produced when the
densities are no longer equal might be forced into a bi-polar configuration by
the background straining flow. A secondary aim of this paper is to allow for
solid-body rotation of the inner jacket of fluid surrounding the point source,
so that its effects on the outflow morphology can be assessed.

Section 2 presents the governing equations for the non-linear inviscid
model for this problem. As with the analysis of Forbes (2011b), it has been
found here that curvature singularities are formed at the interface at rela-
tively early times, and these prevent features of any particular interest from
being seen in the results. Thus, although these non-linear inviscid equations
have been solved using a spectral method, the results are not discussed here.
However, the linearized analysis is nevertheless still of interest, and it shows
how there are situations in which the straining flow can indeed render the
outflow bi-polar. When rotation is included in the inner fluid, a linearized
theory is no longer available; however, a new approximate theory is presented
in Section 3, and likewise demonstrates that rotation may also result in bi-
polar outflow. A Boussinesq approach to the full viscous problem is then
presented in section 4. Straining is included, and provision is also made for
solid-body rotation of the inner fluid. The results of these computations are
presented in section 5 and some concluding remarks given in section 6.
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2 Linearized Inviscid Analysis

A spherical bubble of radius a is supposed to be present at the initial time
t = 0, with its centre located at the origin of a cartesian coordinate system.
It is filled with incompressible fluid of density ρ1 , and at time t = 0 a mass
source at the origin is impulsively turned on. This source produces fluid at
the volume rate m. The bubble is embedded in an outer ambient fluid of
density ρ2 . A straining flow is present in the outer fluid, and is character-
ized by straining rate parameter A, with units time−1. In general it will be
assumed that the outer fluid 2 has larger density than inner fluid 1, so that
their ratio obeys the condition D = ρ2/ρ1 > 1. The object at the origin,
which is responsible for the mass outflow, is modelled as a mathematical
point source, but it also has mass M and so generates a gravitational poten-
tial GM/

√
x2 + y2 + z2 per mass, in which G is the universal gravitational

constant. In the inviscid model, a sharp interface is present between the
fluids, and it will be assumed here that the geometry remains axi-symmetric,
for simplicity.

It is appropriate to express this problem in terms of spherical polar co-
ordinates, as defined in the text by Kreyszig (2011). The distance from the
origin is r =

√
x2 + y2 + z2, the azimuthal angle about the z-axis is θ , and ϕ

is the angle of declination measured down from the z-axis. Since the problem
is assumed axi-symmetric, solutions will be independent of angle θ. It follows
that

x = r sinϕ cos θ 0 < r < ∞
y = r sinϕ sin θ 0 < ϕ < π

z = r cosϕ 0 < θ < 2π. (2.1)

The interface in this inviscid problem is assumed to have the equation r =
R(ϕ, t) so that R(ϕ, 0) = a at the initial time t = 0.

Dimensionless variables are now introduced, and these are used through-
out the paper. The initial radius a is taken as the unit of length, and time
is referenced against the quantity a3/m. Speeds are made dimensionless by
reference to m/a2 and the ratio ρ1m

2/a4 is used as the scale for pressure.
For inviscid fluids, the velocity vector q may be derived as the gradient of a
velocity potential Φ which is non-dimensionalized by reference to m/a. The
three key dimensionless parameters are therefore

D =
ρ2
ρ1

; F 2 =
m2

GMa3
(2.2)

and a non-dimensional strain rate parameter A for the outer fluid. The
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Figure 1: A sketch of the dimensionless outflow configuration for a rotating
inner fluid in the presence of a straining flow. This image is taken from an
actual solution for viscous flow at time t = 4, with A = 0.1, density ratio
D = 1.05, Froude number F = 0.5, angular speed ω = 0.2 and the n = 2
mode perturbed with initial amplitude ϵ = 0.1. The “interface” has been
constructed from the ρ̄ = 0.01 contour for the density perturbation function.
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quantity D is the ratio of densities, and F is a Froude number. A sketch of
a dimensionless outflow is given in Figure 1.

In the spherical coordinates (2.1), the velocity vector is expressed as
q = uer + weϕ with components u and w in the radial and axial direc-
tions, respectively. In each fluid, these components are obtained from their
velocity potentials according to the relationships

uj =
∂Φj

∂r
wj =

1

r

∂Φj

∂ϕ
, (2.3)

for j = 1, 2. Since the fluids are also incompressible, each velocity potential
satisfies Laplace’s equation

∇2Φj =
∂2Φj

∂r2
+

2

r

∂Φj

∂r
+

1

r2
∂2Φj

∂ϕ2
+

cotϕ

r2
∂Φj

∂ϕ
= 0. (2.4)

There is a point source located at the origin and also an imposed straining
flow, so that the velocity potential

Φ = − 1

4πr
+ Ar2P2 (cosϕ) (2.5)

serves as a background flow for each fluid. In this expression, which itself is
a solution to Laplace’s equation (2.4), the function P2(z) = (1/2) (3z2 − 1)
represents the Legendre polynomial of order 2, as defined in Abramowitz and
Stegun (1972, page 333).

The interface r = R(ϕ, t) starts as a sphere of radius 1 at time t = 0, but
then evolves according to the two kinematic conditions

uj =
∂R

∂t
+

wj

R

∂R

∂ϕ
j = 1, 2 on r = R(ϕ, t) (2.6)

and the dynamic condition

D
∂Φ2

∂t
− ∂Φ1

∂t
+ 1

2
D
(
u2
2 + w2

2

)
− 1

2

(
u2
1 + w2

1

)
− (D − 1)

F 2r

= 1
2

(D − 1)(
4πR2

0

)2 − (D − 1)

F 2R0

on r = R(ϕ, t). (2.7)

The kinematic expressions (2.6) represent the fact that neither of the two
fluids is free to cross the interface. The pressures in each fluid may be ob-
tained from the unsteady Bernoulli equation, as given by Batchelor (1967,
page 383), and the dynamic condition (2.7) is then a statement that the two
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pressures must be equal at the interface. In this expression, the reference
radius function

R0(t) =

[
1 +

3t

4π

]1/3
(2.8)

is the shape that the interface r = R(ϕ, t) would adopt in the absence of
any straining flow and if it remained purely spherical. A derivation of the
expression (2.7) is given in Forbes (2011b).

In this Section, the initial conditions will be taken to be that the interface
itself is spherical, but that a perturbation of magnitude ϵ is made to the speed,
at the n-th spherical harmonic. Consequently,

Φ1(r, ϕ, 0) = − 1

4πr
+ Ar2P2 (cosϕ) +

ϵ

n
rnPn (cosϕ)

Φ2(r, ϕ, 0) = − 1

4πr
+ Ar2P2 (cosϕ)−

ϵ

n+ 1
r−n−1Pn (cosϕ) . (2.9)

In these expressions, the functions Pn(z) are Legendre polynomials of order
n, as for the pure straining background flow (2.5).

Numerical solutions to these non-linear equations have been generated
using a spectral technique similar to that in Forbes (2011b), but the results
are insufficiently interesting to merit inclusion here. This is because curva-
ture singularities are formed at the poles within quite short time intervals,
and this process is only enhanced by the presence of the straining field, as
the strain rate A is increased. The inclusion of viscous effects is far more
revealing, and this is considered in Section 4. Instead, a linearized solution
to these equations is developed here, based on the assumption that the per-
turbation to the spherical interface, and hence also the straining field, are
both proportional to the small parameter ϵ in the initial conditions (2.9).

The two velocity potentials are expanded in series in the small parameter
ϵ, and take the forms

Φ1(r, ϕ, t) = − 1

4πr
+ ϵA1r

2P2(cosϕ) + ϵΦ11(r, ϕ, t) +O
(
ϵ2
)

Φ2(r, ϕ, t) = − 1

4πr
+ ϵA1r

2P2(cosϕ) + ϵΦ21(r, ϕ, t) +O
(
ϵ2
)
. (2.10)

Notice that the strain rate parameter A is also assumed small, so that A =
ϵA1. The velocity components can now be obtained from equations (2.3).
Similarly, the shape of the interface is perturbed about the basic spherical
form, and is given by the expression

R(ϕ, t) = R0(t) + ϵR1(ϕ, t) +O
(
ϵ2
)
, (2.11)
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in which the zeroth-order term R0 is the spherical radius function given
in equation (2.8). These expressions (2.10), (2.11) are substituted into the
governing equations, and terms are retained only to the first order in ϵ, giving
a system of linearized equations for the three unknown functions Φ11 , Φ21

and R1 . The two kinematic conditions (2.6) yield

∂R1

∂t
= − 2R1

4πR3
0

+ 2A1R0P2(cosϕ) +
∂Φ11

∂r

∂R1

∂t
= − 2R1

4πR3
0

+ 2A1R0P2(cosϕ) +
∂Φ21

∂r

on r = R0(t) (2.12)

and the dynamic condition (2.7) can be expressed in the form

D
∂Φ21

∂t
− ∂Φ11

∂t
+

(D − 1)

4πR2
0

∂R1

∂t
+

(D − 1)

F 2

R1

R2
0

= 0

on r = R0(t), (2.13)

where use has been made of equations (2.12).
Since the velocity potentials must satisfy Laplace’s equation (2.4) in their

respective domains, it follows that the two linearized components in (2.10)
have the general forms

Φ11(r, ϕ, t) =
∞∑
n=1

Bn1(t)r
nPn(cosϕ), 0 < r < R0(t)

Φ21(r, ϕ, t) =
∞∑
n=1

Cn1(t)r
−n−1Pn(cosϕ), r > R0(t). (2.14)

Similarly, the perturbed radius function in equation (2.11) is written

R1(ϕ, t) =
∞∑
n=1

Rn1(t)Pn(cosϕ). (2.15)

These are now substituted into equations (2.12), (2.13) to give differential
equations for the unknown coefficients Bn1(t), Cn1(t) and Rn1(t).

In the linearized solution, each of the Fourier modes in the series (2.14),
(2.15) acts independently of the others, so that each mode can be considered
separately. After some algebra, it may be shown that the coefficients for
the perturbed interface function (2.15) obey the second-order linear (non-
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constant coefficient) differential equation

d2Rn1

dt2
R0(Dn+ n+ 1) +

dRn1

dt

[
3(Dn+ n+ 1)

4πR2
0

]
−Rn1

[
2[(n+ 2)(n+ 1)−Dn(n− 1)]

(4π)2R5
0

+
(D − 1)n(n+ 1)

F 2R2
0

]
= 0

if n ̸= 2, (2.16)

except at the second Fourier-Legendre mode, when the equation becomes

d2R21

dt2
R0(2D + 3) +

dR21

dt

3(2D + 3)

4πR2
0

−R21

[
4(6−D)

(4π)2R5
0

+
6(D − 1)

F 2R2
0

]
= A1

20D

4πR0

if n = 2. (2.17)

These equations (2.16), (2.17) for the coefficients Rn1 of the linearized solu-
tion (2.15) determine the shape of the outflow, in small amplitude theory.
The question of most interest here is whether the bi-polar mode is ultimately
dominant, as a result of the straining motion with amplitude A1. If this is
the case, then the function R21 in equation (2.17) will grow faster than all
the other modes Rn1 , n ̸= 2, as t → ∞. If, however, one-sided jets are
ultimately formed, then R11 will become the dominant coefficient, regardless
of the straining amplitude A1. The linearized equation (2.16) for n ̸= 2 was
apparently first derived by Plesset (1954) in the limiting case F = ∞, and is
also presented for that case by Mikaelian (2005) (his equation 1c).

It is relevant to the present investigation to consider the behaviour of so-
lutions to equations (2.16), (2.17) in various parameter regimes, to determine
whether one-sided or bi-polar outflows may result. Forbes (2011b) claimed
that a closed-form solution to (2.16) would not be possible for arbitrary val-
ues of the parameters; however, such a solution does in fact exist, and can
be represented in terms of modified Bessel functions. For completeness this
new solution is given in Appendix A (Section 8) , but nevertheless does not
lend itself to easy analysis. For finite Froude number F and arbitrary density
ratio D, it appears that the first-mode function R11 obtained from equation
(2.16) grows faster than the bi-polar mode R21 in equation (2.17), so that
one-sided outflows are most commonly predicted by this linearized analysis,
for arbitrary straining amplitude A1. Of course, it has been assumed here
that the straining rate A = ϵA1 is also small, and larger values are certainly
possible, that do not conform to the assumptions of this linearized theory. In
such cases, numerical solution of a non-linear problem is required, and will
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be studied in Section 5. There is, however, an interesting limiting case of
this general linearized result, and this is now considered separately here.

2.1 Infinite Froude number limit

It is of interest here to study separately the infinite Froude-number case
F = ∞. This is not directly accounted for in the general closed-form solution
presented in Appendix A (Section 8), since one of the changes of variable
needed there assumed finite Froude number.

Infinite Froude number corresponds to the limit in which the mass of
the source is small, so that the effects of gravity are insignificant. As in
Appendix A (Sec. 8), the spherical radius R0 in equation (2.8) is taken to be
the independent variable, instead of the time t. In the infinite Froude-number
limit, equation (2.16) then becomes

R2
0

d2Rn1

dR2
0

+R0
dRn1

dR0

− α2
nRn1 = 0, if n ̸= 2

with α2
n = 2

[
(n+ 2)(n+ 1)−Dn(n− 1)

Dn+ n+ 1

]
, (2.18)

and at the second mode, equation (2.17) yields

R2
0

d2R21

dR2
0

+R0
dR21

dR0

− α2
2R21 = A1β2R

4
0, if n = 2

with α2
2 =

4(6−D)

(2D + 3)
, β2 =

80πD

(2D + 3)
. (2.19)

Each of these equations is of Euler-Cauchy type, and can be solved in closed
form.

When n ̸= 2, equation (2.18) is easily seen to have general solution

Rn1(R0) = Cn1R
αn
0 + Cn2R

−αn
0 (2.20)

for arbitrary constants Cn1 and Cn2. On the other hand, the inhomogeneous
equation (2.19), in which the second mode is forced by the straining flow,
has solution

R21(R0) = C21R
α2
0 + C22R

−α2
0 + A1

β2(2D + 3)

12(3D + 2)
R4

0. (2.21)

Again, the constants C21 and C22 are arbitrary.
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The solution (2.20) shows that disturbances to the interface do not grow
if αn is purely imaginary. Consequently, the n-th spherical Fourier mode is
stable if

D >
(n+ 2)(n+ 1)

n(n− 1)
, (2.22)

and this is the result obtained by Forbes (2011b). If equation (2.22) is not
obeyed, then the interface will be unstable and grow algebraically with time,
for infinite Froude number. In particular, the first mode n = 1 is always
unstable regardless of the value of the density ratio D. Furthermore, insta-
bility always occurs for D < 1, unlike pure Rayleigh-Taylor flow, and this
indicates the additional destabilizing effect of the spherical geometry, known
as the Bell-Plesset effect, as discussed by Epstein (2004). In the case of the
second mode n = 2, it is clear from equation (2.21) that the solution grows
at the rate R4

0 as a result of the straining flow. This is always greater than
the growth rate of the unstable first mode n = 1, which grows only at the
power

√
12/(D + 2). Therefore, at infinite Froude number F , the first mode

is always unstable and any initial disturbance will develop into a one-sided
jet, when there is no straining. However, any non-zero straining amplitude
ϵA1 eventually causes the second mode to dominate, so that a bi-polar jet is
ultimately formed.

In summary this Section has shown that, in the linearized solution, the
inclusion of a straining flow with small strain rate is unlikely to prevent the
ultimate formation of a one-sided jet. However, when gravity effects are
negligible, so that F = ∞, then straining does indeed convert the one-sided
jet into a bi-polar outflow.

3 Asymptotic Inviscid Theory with Rotation

Rotation of the inner bubble of fluid 1 is also of interest in this study. How-
ever, this situation does not lend itself to a linearized analysis in the same
way as for straining flow in section 2, since the fluid pressures are quadratic
in the azimuthal velocity component v responsible for the rotation. Never-
theless, it is possible to derive a weakly non-linear asymptotic theory similar
to that in section 2. This is presented here.

The analysis starts from Euler’s equations of motion for incompressible
fluids, expressed in spherical polar coordinates. In each fluid, the velocity
components (u,w, v) in the (r, ϕ, θ) directions and the pressures are expressed
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by means of the expansions

uj =
1

4πr2
+ ϵŨj +O

(
ϵ2
)

wj = ϵW̃j +O
(
ϵ2
)

v1 =
√
ϵṼ1 +O

(
ϵ3/2

)
pj = p0j(r, t) + ϵP̃j +O

(
ϵ2
)
, j = 1, 2,

R = R0(t) + ϵR̃1 +O
(
ϵ2
)
, (3.1)

in which ϵ is again a small parameter. The two functions p01 and p02 are the
background pressures in each fluid, required to satisfy Euler’s equations in
the presence of the point source, subject to the conditions that pressure be
continuous on the expanding spherical interface r = R0(t) in equation (2.8)
and zero at infinity. These two functions are therefore

p01(r, t) =
1

rF 2
− 1

2

1

(4π)2r4
+

(D − 1)

R0F 2
− 1

2

(D − 1)

(4π)2R4
0

, 0 < r < R0(t)

p02(r, t) =
D

rF 2
− 1

2

D

(4π)2r4
, r > R0(t). (3.2)

These expressions (3.1), (3.2) are substituted into the full inviscid Euler
equations. Terms are retained to order ϵ in the radial and axial components
of the momentum equations, and to order

√
ϵ in the azimuthal component.

In each fluid, the continuity equations yield

1

r2
∂

∂r

(
r2Ũj

)
+

1

r sinϕ

∂

∂ϕ

(
W̃j sinϕ

)
= 0, j = 1, 2. (3.3)

The three components of the (Euler) momentum equation in inner fluid 1
then give

∂Ũ1

∂t
+

1

4πr2
∂Ũ1

∂r
− 2

4πr3
Ũ1 −

Ṽ 2
1

r
+

∂P̃1

∂r
= 0

∂W̃1

∂t
+

1

4πr2
∂W̃1

∂r
+

1

4πr3
W̃1 −

cotϕ

r
Ṽ 2
1 +

1

r

∂P̃1

∂ϕ
= 0

∂Ṽ1

∂t
+

1

4πr2
∂Ṽ1

∂r
+

1

4πr3
Ṽ1 = 0. (3.4)

These equations hold in the domain 0 < r < R0(t), in which the function R0

is as given in equation (2.8). There is no rotation in outer fluid 2, and so
the azimuthal momentum equation in that case is satisfied identically. The
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radial and axial components become

∂Ũ2

∂t
+

1

4πr2
∂Ũ2

∂r
− 2

4πr3
Ũ2 +

1

D

∂P̃2

∂r
= 0

∂W̃2

∂t
+

1

4πr2
∂W̃2

∂r
+

1

4πr3
W̃2 +

1

Dr

∂P̃2

∂ϕ
= 0, (3.5)

and these are valid over the domain r > R0(t). The two kinematic conditions
(2.6) yield

∂R̃1

∂t
= Ũj −

2

4πR3
0

R̃1 j = 1, 2 on r = R0(t). (3.6)

The dynamic condition, that the two pressures must be equal on the interface,
gives rise to the approximate constraint

P̃2 − P̃1 =
(
D − 1

)[ 1

R2
0F

2
− 2

(4π)2R5
0

]
R̃1 on r = R0(t). (3.7)

This is a consistent weakly non-linear model of inviscid outflow, with rotation
in the inner fluid region. It must be solved subject to the initial condition

Ṽ1(r, ϕ, 0) = ω0r sinϕ, 0 < r < R0(0) (3.8)

on the azimuthal component of the fluid velocity vector.
To maintain complete consistency in this weakly non-linear model, the

last equation for Ṽ1 in the system (3.4) should be solved subject to the initial
condition (3.8) and then utilized in the remaining components of the mo-
mentum equation (3.4). While this is in principle achievable, it is sufficiently
difficult as to make useful progress impossible. Therefore, in order to pro-
ceed, the asymptotic approximation is now made that the initial azimuthal
velocity in equation (3.8) may be taken to be the solution for all times t of
practical interest. This form is now used in the radial and axial momentum
components of Euler’s equation (3.4).

Following a similar procedure to that in Section 2, the velocity compo-
nents in inner fluid 1 are expressed by means of the series

Ũ1(r, ϕ, t) =
∞∑
n=1

nBn1(t)r
n−1Pn (cosϕ)

W̃1(r, ϕ, t) = −
∞∑
n=1

Bn1(t)r
n−1P ′

n (cosϕ) sinϕ, 0 < r < R0(t). (3.9)
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In outer fluid 2, the velocity components are likewise written

Ũ2(r, ϕ, t) = −
∞∑
n=1

(n+ 1)Cn1(t)r
−n−2Pn (cosϕ)

W̃2(r, ϕ, t) = −
∞∑
n=1

Cn1(t)r
−n−2P ′

n (cosϕ) sinϕ, r > R0(t). (3.10)

The shape of the interface is determined by the function R̃1 and it is rep-
resented by the same form (2.15) as used previously in Section 2. These
are substituted into equations (3.4), (3.5) and the boundary conditions (3.6)
and (3.7) to give differential equations for the coefficients Bn1(t), Cn1(t) and
Rn1(t).

To satisfy the weakly non-linear approximation (3.4) to Euler’s equation
in the inner fluid, with azimuthal velocity component given by (3.8), it is
necessary that the perturbation pressure in that region take the form

P̃1(r, ϕ, t) =
1

2
ω2
0r

2 sin2 ϕ−
∞∑
n=1

B′
n1(t)r

nPn (cosϕ)

− 1

4π

∞∑
n=1

nBn1(t)r
n−3Pn (cosϕ) + f1(t), 0 < r < R0(t),(3.11)

in which f1(t) is so far an arbitrary function of time. Similarly, Euler’s
equation (3.5) requires that the pressure in the outer fluid be given by the
expression

P̃2(r, ϕ, t) = −D

∞∑
n=1

C ′
n1(t)r

−n−1Pn (cosϕ)

+
D

4π

∞∑
n=1

(n+ 1)Cn1(t)r
−n−4Pn (cosϕ) , r > R0(t).(3.12)

The perturbation pressure in equation (3.12) is required to fall to zero as
r → ∞.

As in the previous Section 2, the Fourier modes again act independently
of each other, and so can be considered separately. The linearized kinematic
conditions (3.6) allow the coefficients Bn1(t) and Cn1(t) both to be eliminated
in favour of Rn1(t). Finally the dynamic condition (3.7) shows that, at the
zeroth Fourier mode, the function f1(t) in the representation (3.11) must be
given by the formula

f1(t) = −1

3
ω2
0R

2
0(t).
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After some algebra, it follows that the Fourier coefficients R̃n1(t) for the
interface shape satisfy the identical second-order differential equation (2.16)
as has already been encountered in Section 2, provided that n ̸= 2. At the
second Fourier-Legendre mode, however, the appropriate differential equation
is found to be

d2R̃21

dt2
R0(2D + 3) +

dR̃21

dt

3(2D + 3)

4πR2
0

−R̃21

[
4(6−D)

(4π)2R5
0

+
6(D − 1)

F 2R2
0

]
= −2ω2

0R
2
0

if n = 2. (3.13)

The left-hand side of this equation is identical to (2.17), but the forcing term
on the right-hand side is different in two significant ways. Firstly, it has
the opposite sign from the straining case (2.17), and secondly, it involves
a higher power of R0. This equation (3.13) can be solved in closed form,
similarly to equation (8.5) in the Appendix 8, but for general Froude number
it is again difficult to see whether rotation is sufficient to force a bi-polar
outflow in every case. However, for infinite Froude number, the situation is
considerably clearer, and that special case is now considered separately.

3.1 Infinite Froude number limit

As for the corresponding case with straining flow, examined in section 2.1, the
Froude number is here set to infinity, F = ∞, and represents the situation
in which gravity is insignificant. The zeroth-order spherical radius R0 in
equation (2.8) is again taken as the independent variable, rather than the
time t, and for every Fourier mode other than the second one (n ̸= 2), the
equation for the evolution of that mode is given by (2.18). Its solution (2.20)
shows that the n-th Fourier-Legendre mode grows algebraically with time.

At the second mode, equation (3.13) in the infinite Froude-number limit
becomes

R2
0

d2R̃21

dR2
0

+R0
dR̃21

dR0

− α2
2R̃21 = −2ω2

0

(4π)2

(2D + 3)
R7

0, for n = 2, (3.14)

in which the constant α2 is as given in equation (2.19). Equation (3.14) is
an Euler-Cauchy differential equation, and its solution is easily calculated to
be

R̃21(R0) = C21R
α2
0 + C22R

−α2
0 − 2ω2

0(4π)
2

3
[
34D + 41

]R7
0. (3.15)

The two constants C21 and C22 are arbitrary.
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This solution (3.15) has some similarities to the corresponding result
(2.21) in the straining case; the second Fourier mode grows at the rate R7

0

which always exceeds the growth rate
√

12/(D + 2) of the first mode. There-
fore, rotation at any angular speed ω0 will ultimately cause the second mode
to dominate, so that bi-polar outflow is the eventual result for infinite Froude
number. However, since the sign of the last term in equation (3.15) is neg-
ative, then rotation is expected to give rise to solutions that are ultimately
bi-polar, but that are compressed along the z-axis, with a corresponding ex-
pansion about their waists. This is unlike the straining situation in section
2.1, where positive strain rates caused an extension of the outflow bubble on
the z-axis.

4 Boussinesq Model for Viscous Flow

Following Forbes (2011b), a viscous model for this outflow problem is now
considered, based on the Boussinesq approximation in which it is assumed
that the fluid density is continuous in space, instead of there being a den-
sity jump at an infinitessimally thin interface. This greatly simplifies the
problem to be solved. In this approximation, the interface is represented
as a narrow region across which the density changes smoothly but rapidly,
producing a thin interfacial zone rather than a mathematical discontinuity.
The problem is non-dimensionalized as in section 2, using the density (ρ1)
of the inner (lighter) fluid as the reference density. In dimensionless vari-
ables, the continuous density function is represented as ρ = 1 + ρ̄ , and in
the Boussinesq approximation, ρ̄ is assumed to be small. Furthermore, this
formulation “splits” the mass conservation equation into an incompressible
component and a weakly compressible part that allows for the transport of
the density variation function ρ̄. This therefore gives the two equations

divq = 0
∂ρ̄

∂t
+ q · ∇ρ̄ = σ∇2ρ̄. (4.1)

The dimensionless number σ in the weakly compressible density transport
equation is a diffusion constant, and is related to a Prandtl number. Further
discussion may be found in the paper by Farrow and Hocking (2006). In the
present paper, the quantity ρ̄ is described as a perturbation density, with
the result that the Boussinesq approximation treats the fluid as weakly com-
pressible. However, if preferred, the perturbation density ρ̄ can be eliminated
in favour of some other quantity Θ through an effective equation of state, of
the form

ρ̄ = −αSΘ
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in dimensionless variables. Here, Θ might represent the temperature rise
above ambient (and αS is a constant). In that case, the variable Θ still
satisfies the second of the equations in the system (4.1), which would now
correspond to an energy equation for the convection and diffusion of heat.
The diffusion coefficient σ then represents a coefficient of thermometric con-
ductivity, as discussed by Chandrasekhar (1961, page 18) and Drazin and
Reid (2004, page 37).

Although the geometry of this problem is assumed to remain axi-symmetric,
provision is nevertheless made for a swirling component of velocity in the az-
imuthal (θ) direction. Accordingly, the velocity vector is now written as

q = uer + weϕ + veθ. (4.2)

In the Boussinesq approximation, the Navier-Stokes equations of viscous fluid
motion become

∂q

∂t
+ q · ∇q+∇p = − 1

F 2

[
1 + ρ̄

r2

]
er +

1

Re

∇2q. (4.3)

In this equation, p represents the pressure, and F is the Froude number based
on the radially inward gravitational force, as in section 2. The additional
parameter Re is a Reynolds number, and gives a measure of the inverse
viscosity of the fluid. A source is present at the origin, within inner fluid 1,
and it is represented as a mathematical point singularity. Provision is also
made for solid-body rotation near the source, representing a spinning object
at the origin. Consequently,

q → 1

4πr2
er + ωr sinϕeθ, as r → 0. (4.4)

The additional parameter ω is the dimensionless angular speed of the rotating
source in viscous fluid 1.

Since the geometry is assumed to be axi-symmetric, there is no depen-
dence on the azimuthal coordinate, and consequently ∂/∂θ ≡ 0. The first
equation in (4.1) therefore only involves the radial and axial fluid velocity
components u and w, and as a result, this equation can be satisfied identically
by means of a streamfunction Ψ. It follows that

u =
1

r sinϕ

∂
(
sinϕΨ

)
∂ϕ

; w = −1

r

∂
(
rΨ

)
∂r

. (4.5)

It is convenient now to consider the vorticity vector ζ = curlq , which in the
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present problem takes the form

ζ =
1

r sinϕ

∂

∂ϕ
(v sinϕ) er −

1

r

∂

∂r
(rv) eϕ + Zeθ

where Z =
1

r

[
∂

∂r
(rw)− ∂u

∂ϕ

]
. (4.6)

The component Z of the vorticity in the azimuthal direction, in equation
(4.6), can be expressed in terms of the streamfunction as a result of equation
(4.5). The result is

Z(r, z, t) = −
[
1

r2
∂

∂r

(
r2
∂Ψ

∂r

)
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂Ψ

∂ϕ

)
− Ψ

r2 sin2 ϕ

]
. (4.7)

The r- and ϕ-components of the Boussinesq Navier-Stokes equations (4.3)
are now combined to eliminate the pressure, which is equivalent to taking
the vector curl of this equation and retaining only the azimuthal component.
This gives a vorticity equation for the component Z. After some algebra,
this becomes

∂Z

∂t
+ u

∂Z

∂r
+

w

r

∂Z

∂ϕ
− Z

r

(
u+ w cotϕ

)
+

2v

r2

(
∂v

∂ϕ
− r cotϕ

∂v

∂r

)
− 1

F 2r3
∂ρ̄

∂ϕ

=
1

Re

[
1

r2
∂

∂r

(
r2
∂Z

∂r

)
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂Z

∂ϕ

)
− Z

r2 sin2 ϕ

]
. (4.8)

This must be solved in conjunction with the azimuthal component of the
Navier-Stokes equations (4.3), which takes a somewhat similar form

∂v

∂t
+ u

∂v

∂r
+

w

r

∂v

∂ϕ
+

v

r

(
u+ w cotϕ

)
=

1

Re

[
1

r2
∂

∂r

(
r2
∂v

∂r

)
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂v

∂ϕ

)
− v

r2 sin2 ϕ

]
. (4.9)

Finally, the second of the equations in the system (4.1) must be included,
and in this coordinate system it may be written out in full as

∂ρ̄

∂t
+ u

∂ρ̄

∂r
+

w

r

∂ρ̄

∂ϕ

= σ

[
1

r2
∂

∂r

(
r2
∂ρ̄

∂r

)
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂ρ̄

∂ϕ

)]
. (4.10)
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These coupled equations are to be solved together with the condition (4.4)
near the source at the origin. In addition, it is necessary in the solution
method to create an artificial boundary r = β at some distance from the
source, to create an appropriate computational window. At that outer limit,
the conditions

v = 0 ; ρ̄ = (D − 1) ; u =
1

4πr2
at r = β (4.11)

are imposed. This non-linear system of equations must be solved numerically,
and this task is made potentially more difficult by the presence of a point
singularity at the origin.

In view of the need to cope with this singularity, a spectral solution
method is used for the solution of equations (4.8) – (4.10), following Forbes
(2011b). The streamfunction in equations (4.5), (4.7) is represented in the
form

Ψ(r, ϕ, t) = −cotϕ

4πr
+ Ar2 cosϕ sinϕ

+
M∑

m=1

N∑
n=1

Bmn(t)
Jn+1/2

(
αn,mr

)
√
r

P ′
n(cosϕ) sinϕ. (4.12)

In this expression, Pn are the Legendre polynomials, as in section 2, and
Jn+1/2 are the Bessel functions of first kind, of half-fractional order. The
constant A is the strain rate parameter. In addition, the constants

αn,m = jn+1/2,m/β (4.13)

have been defined. The symbol jν,s denotes the s-th zero of the Bessel func-
tion of order ν, consistently with the notation of Abramowitz and Stegun
(1972, page 370). The radial and axial components of the velocity vector q
can now be computed from equation (4.12) using (4.5), and the result is

u(r, ϕ, t) =
1

4πr2
+ Ar

(
3 cos2 ϕ− 1

)
+

M∑
m=1

N∑
n=1

n(n+ 1)Bmn(t)
Jn+1/2

(
αn,mr

)
r3/2

Pn(cosϕ) (4.14)

and

w(r, ϕ, t) = −3Ar cosϕ sinϕ−
M∑

m=1

N∑
n=1

Bmn(t)

[
1
2
r−3/2Jn+1/2

(
αn,mr

)
+ αn,mr

−1/2J ′
n+1/2

(
αn,mr

)]
P ′
n(cosϕ) sinϕ. (4.15)
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The streamfunction can also be used to obtain the azimuthal component of
the vorticity vector (4.6). An additional advantage of this spectral method
is that the Poisson equation (4.7) leads at once to

Z(r, ϕ, t) =
M∑

m=1

N∑
n=1

α2
n,mBmn(t)

Jn+1/2

(
αn,mr

)
√
r

P ′
n(cosϕ) sinϕ, (4.16)

without numerical approximation.
The perturbed density function is likewise represented spectrally, and the

form taken by Forbes (2011b) is available here also. Thus

ρ̄(r, ϕ, t) = (D − 1)

(
r

β

)3

+
M∑

m=1

Cm0(t) sin

(
mπr3

β3

)

+
M∑

m=1

N∑
n=1

Cmn(t)r
5/2Jn+1/2

(
αn,mr

)
Pn(cosϕ), (4.17)

with the constants αn,m again given by equation (4.13). This follows from a
careful analysis of the forms of the functions needed to satisfy the vorticity
equation (4.8). The streamfunction (4.12) and density (4.17) obey the re-
quirements (4.4) and (4.11) at the boundaries of the computational domain.

Finally, a representation is needed for the azimuthal component v in the
velocity vector (4.2). To begin, a background field

vS(r, ϕ) =

{
ωr sinϕ, 0 < r < 1

0, 1 < r < β
(4.18)

is considered, representing solid-body rotation in the unit sphere occupied
by inner fluid 1 at initial time t = 0. This is now represented spectrally, in
the form

vS(r, ϕ) =
M∑

m=1

V S
m0

J3/2
(
α1,mr

)
√
r

sinϕ,

and decomposed into its Fourier-Bessel modes using the orthogonality rela-
tion∫ β

0

rJℓ+1/2

(
αℓ,mr

)
Jℓ+1/2

(
αℓ,kr

)
dr =

{
0, m ̸= k

(β2/2)J2
ℓ+3/2

(
αℓ,kβ

)
, m = k

(4.19)

for the half-order Bessel functions of the first kind. Equation (4.19) may be
obtained from Gradshteyn and Ryzhik (2000, page 658), and it yields

V S
k0(β

2/2)J2
5/2

(
α1,kβ

)
= ω

∫ 1

0

r5/2J3/2
(
α1,kr

)
dr.
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The integral on the right-hand side of this expression can be evaluated in
closed form, using an identity from Abramowitz and Stegun (1972, page
361). Consequently,

V S
m0 =

2ωJ5/2

(
α1,m

)
α1,mβ2J2

5/2

(
α1,mβ

) . (4.20)

This background flow is used to create a representation for the azimuthal
component of the velocity vector, in the form

v(r, ϕ, t) =
M∑

m=1

V S
m0

J3/2
(
α1,mr

)
√
r

sinϕ

+
M∑

m=1

N∑
n=1

Vmn(t)
Jn+1/2

(
αn,mr

)
√
r

P ′
n(cosϕ) sinϕ, (4.21)

with the constants V S
m0 given in equation (4.20).

As yet, the three sets of Fourier coefficients Bmn(t) , Cmn(t) , Vmn(t) are
unknown. They must be obtained from the three equations (4.8) – (4.10).
These equations are spectrally decomposed, using the orthogonality relation
(4.19) for Bessel functions, along with the results∫ π

0

Pn(cosϕ)Pℓ(cosϕ) sinϕ dϕ =

{
0, n ̸= ℓ

2/(2ℓ+ 1), n = ℓ
(4.22)

and∫ π

0

P ′
n(cosϕ)P

′
ℓ(cosϕ) sin

3 ϕ dϕ =

{
0, n ̸= ℓ

2ℓ(ℓ+ 1)/(2ℓ+ 1), n = ℓ
. (4.23)

Equation (4.22) is the usual orthogonality result for Legendre polynomials,
and (4.23) is a similar result for the derivatives of these polynomials; it may
be derived from an identity for associated Legendre polynomials given by
Abramowitz and Stegun (1972, page 338). It is most efficient to compute
the Legendre functions Pn(cosϕ) and their derivatives P ′

n(cosϕ) from three-
term recurrence relations, and these are presented in Forbes (2011b). These
functions are calculated once, stored, and not re-computed.

The vorticity equation (4.8) is multiplied by P ′
ℓ(cosϕ) sin

2 ϕ and inte-
grated over the interval 0 < ϕ < π. The orthogonality relation (4.23) is
then used to evaluate the appropriate integrals. The result is next multiplied
by the quantity r3/2Jℓ+1/2

(
αℓ,kr

)
and integrated over r, making use of the

relation (4.19) for Bessel functions. After some algebra, this gives rise to
a system of MN ordinary differential equations for the Fourier coefficients
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Bkℓ(t) , which for completeness are presented in Appendix B (Sec. 9). The
azimuthal component (4.9) of the Boussinesq Navier-Stokes equation has the
similar structure, and so it is treated in the same way as the vorticity equa-
tion. Again, a system of MN differential equations for the coefficients Vmn(t)
is obtained, and these, too, are given in Appendix B (Sec. 9).

Finally, the density equation (4.10) is similarly subject to Fourier decom-
position. To begin, it is multiplied by sinϕ and integrated, making use of
(4.22). The resulting expression is then further multiplied by r2 sin

(
kπr3/β3

)
and integrated with respect to r. This gives a system of ordinary differential
equations for the zeroth-order coefficients Cm0(t) . The higher-order Fourier
modes are next obtained at the ℓ-th order in ϕ by multiplying (4.10) by
Pℓ(cosϕ) sinϕ and integrating over the interval 0 < ϕ < π. The resulting
equation is multiplied by r−3/2Jℓ+1/2

(
αℓ,kr

)
and integrated, using the orthog-

onality relation (4.19) to evaluate the integrals. This gives the final system of
MN differential equations for Cmn(t). These are also presented in Appendix
B (Sec. 9).

It remains to specify initial conditions for the flow. Since the initial
conditions for the azimuthal component of the velocity are just those in the
background flow (4.18), the coefficients are set to the values Vmn(0) = 0 at
time t = 0. The flow is started with a spherical interface of unit radius, as
in section 2, so that the density perturbation is taken to be

ρ̄(r, ϕ, 0) =

{
0 for 0 < r < 1

D − 1 for 1 < r < β,

at time t = 0. Following Forbes (2011b), this equation combined with (4.17)
gives

Ck0(0) =
2(D − 1)

kπ
cos

(
kπ/β3

)
Ckℓ(0) = 0, k = 1, 2, . . . ,M ℓ = 1, 2, . . . , N.

Again following Forbes (2011b), it will be assumed here that an initial per-
turbation with amplitude ϵ is made to the radial velocity component at the
n-th spherical mode, at time t = 0. Thus

u(r, ϕ, 0) =
1

4πr2
+

{
ϵrn−1Pn(cosϕ) for 0 < r < 1

ϵr−n−2Pn(cosϕ) for 1 < r < β
(4.24)

for some particular n, which mimics the corresponding inviscid case (2.9). It
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Figure 2: Density contours for viscous solutions with strain rate A = 0.2 at
the second mode n = 2, for Froude number F = 2 and density ratioD = 1.05.
There is no rotation, ω = 0, and no initial disturbance, ϵ = 0. Solutions have
been obtained with two different numbers of Fourier coefficients, M = N =
21 (left picture) and M = N = 25 (right picture).

follows from equation (4.14) that Bkℓ = 0 for ℓ ̸= n, but that

Bkn(0) =
2ϵ

n(n+ 1)αn,kβ2J2
n+3/2

(
αn,kβ

)[(2n+ 1)

αn,k

Jn+1/2

(
αn,k

)
−
Jn−1/2

(
αn,kβ

)
βn−1/2

]
,

for the special case ℓ = n.
The equations given in Appendix B (Sec. 9) represent a coupled sys-

tem of M(3N +1) ordinary differential equations for the Fourier coefficients.
These are to be solved subject to the initial conditions given above, although
a variation of this starting flow will also be considered later. The integrals
in the equations in Appendix B (Sec. 9) are evaluated with Gauss-Legendre
quadrature, using the algorithm provided by von Winckel (2004). This is
carried out with 161 mesh points in each coordinate, over the computational
window 0 < r < β, 0 < ϕ < π, and in the results to be presented here,
the artificial boundary r = β is chosen to be located at β = 5. Gaussian
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quadrature of order 161 is so accurate as to be essentially exact in this ap-
plication, so that the numerical error comes from truncating the series at
the (M,N)-th Fourier mode. An example solution is shown in Figure 2 for
an outflow generated by straining motion, and computed with the two dif-
ferent numbers of Fourier coefficients M = N = 21 and M = N = 25 in
each of the two coordinate variables r and ϕ. It has been found in this work
that 25 coefficients is sufficient to resolve all the features of these flows, ex-
cept occasionally for very fine details near the heads of outflow jets. This
may perhaps be visible in Figure 2. Accordingly, results are presented here
with M = N = 25 coefficients. The differential equations in Appendix B
(Sec. 9) for these Fourier coefficients are integrated forward in time using
the MATLAB routine ode45, which is an implementation of a fourth-fifth-
order Runge-Kutta-Fehlberg algorithm with adaptive time steps to control
the error. The computer run time is of the order of five hours on a standard
quad-core personal computer.

5 Presentation of Results

The linearized solutions of Section 2 showed that, for infinite Froude number
F → ∞, the the first spherical mode was the most unstable and grew at
the fastest rate. However, when a straining flow was then added, the second
mode now became the most unstable and had the fastest growth rate. In that
case, straining was sufficient to convert the one-sided outflow jet into a bipolar
outflow. However, at finite values of the Froude number F the situation is
less clear, and it appears that, in general, this situation does not continue
to be the case, so that even in the presence of straining, a one-sided jet is
the most likely outcome. Nevertheless, these conclusions were based on the
assumption that the interface shape consisted of only small perturbations to
the unit sphere (in dimensionless variables), so that the strain rate parameter
A was necessarily required to be small. The first question to be asked of a
numerical solution to the full non-linear problem, in which A is now allowed
to be of arbitrary size, is whether sufficiently large strain rates can produce
bipolar outflows once again.

Figure 3 shows solutions at two different times t = 0.6 and t = 1.2, for
a small strain rate A = 0.1. There is no rotation (ω = 0) and the Froude
number has the moderate value F = 2. Initially, a perturbation was made
to the radial velocity component u with amplitude ϵ = 0.1 and at the lowest
spherical mode n = 1. The linearized solution of section 2 suggests that the
lowest mode is likely still to be the most unstable one, and this is confirmed
by the two solutions shown in Figure 3. Here, shaded contours of the density
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Figure 3: Density contours for viscous solutions with strain rate A = 0.1 at
the first mode n = 1, for Froude number F = 2 and density ratio D = 1.05.
There is no rotation, ω = 0, and the initial amplitude was ϵ = 0.1. Solutions
are shown at the two times t = 0.6 and 1.2.

perturbation function ρ̄ are drawn. The density ratio in this case is D = 1.05
and outside the expanding bubble the solution is very nearly uniform at the
value ρ̄ = 0.05, as expected. There are, in fact, very small oscillations about
this value as a result of Gibbs’ phenomenon (see Kreyszig 2011), but these
are of no consequence; nevertheless, they may be visible in the diagrams.
Inside the expanding bubble, the perturbation density is ρ̄ = 0, again as
expected, and there is a narrow region across which ρ̄ changes rapidly but
smoothly from one value to the other. This defines the effective interface
zone. At the earlier time t = 0.6, the expanding bubble still retains its
approximately spherical shape, although there is a small jet beginning to
form at the “upper” pole of the sphere. (Since gravity is directed radially
inward, there is no true “up” or “down” in these diagrams, and in fact the jet
can form at either pole; the one at which it develops is determined by details
of the numerical solution). By the later time t = 1.2 a strong one-sided jet
has developed at that same pole, and is clearly visible in the upper portion
of the diagram. In this case, straining is insufficient to make a qualitative
change to the morphology of the outflow.

The solution of Figure 3 has been repeated in Figure 4, but now for the
larger strain rate A = 0.5. Contours of the perturbation density ρ̄ are again
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Figure 4: Density contours for viscous solutions with strain rate A = 0.5 at
the first mode n = 1, for Froude number F = 2 and density ratio D = 1.05.
There is no rotation, ω = 0, and the initial amplitude was ϵ = 0.1. Solutions
are shown at the two times t = 0.6 and 1.2.

displayed at the same two times t = 0.6 and t = 1.2, and the interfacial zone
is clearly evident as a narrow region in which ρ̄ changes from zero near the
origin to the value 0.05 in the outer zone. It is immediately clear in this
case that the higher strain rate A = 0.5 is now responsible for converting
the one-sided jet into an essentially bipolar outflow, even although the initial
perturbation was made to the lowest mode n = 1. A close examination of
the outflow at the later time t = 1.2 reveals that it is not precisely symmetric
about the midplane z = 0, but it is nevertheless now strongly bipolar. Inter-
estingly, there are narrow regions in the outer fluid at about z = ±2 where
the density rises above the ambient value D = 1.05, due to the compressive
effects associated with the straining motion about the interface. (Alterna-
tively, these regions may be regarded as zones of elevated temperature in this
Boussinesq approach, as indicated in the discussion following equation 4.1).
These appear as four small regions at about z = ±2 in Figure 4, particularly
at the later time t = 1.2, since these are effectively cross-sections through
the flow on the plane y = 0.

To assist in visualizing the outflows obtained at the two different straining
rates in Figures 3 and 4, the effective interface has been created from the
density profile ρ̄ = 0.03, approximately in the middle of the interfacial zone.
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Figure 5: The axi-symmetric interface shape created from the density contour
ρ̄ = 0.03 at time t = 1.2. Results are shown for the two different strain rates
A = 0.1 and A = 0.5. The remaining parameters are as for Figures 3 and 4.

Results are shown in Figure 5, at the time t = 1.2 (the later time in the
previous two Figures), but for the two different strain rates A = 0.1 and
A = 0.5. In Figure 5, the scale on all the axes is the same, so that the
outflow is as it would actually appear. For the smaller strain rate A = 0.1,
the picture on the left shows a nearly spherical bubble with a one-sided
outflow, and this is similar in morphology to the outflows shown by Forbes
(2011b) for which no strain was present at all. However, in the picture on the
right, the interface at the larger strain rate A = 0.5 has been pulled into an
elongated shape, with a wider waist but with strong outflow jets from each
pole. These jets are nevertheless not entirely symmetric, so that hints of the
one-sided nature of the flow still persist.

It is now of interest to see the effect that pure rotation has upon outflow
morphologies. An interesting case is portrayed in Figure 6. This is a solution
started by a perturbation of amplitude ϵ = 0.1 at the second mode n = 2, for
density ratio D = 1.05 and the smaller Froude number F = 0.5, representing
a rather more massive object at the origin. There is no straining in this
case, so that A = 0, and the interface has been re-created from the ρ̄ = 0.02
contour approximately in the middle of the interfacial zone for this solution.
The interface is displayed at time t = 4. The spinning motion is evidently
responsible for the appearance of a pronounced waist-band near the plane
z = 0. There is outflow from each pole, so that the solution is bipolar to a
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Figure 6: An axi-symmetric interface shape created from the density contour
ρ̄ = 0.02, for a viscous solution with rotation speed ω = 0.2 at the second
mode n = 2, for Froude number F = 0.5 and density ratio D = 1.05. There
is no straining flow, A = 0, and the initial amplitude was ϵ = 0.1. The
solution is shown at time t = 4.

large degree, although again the two jets are not symmetric, even although
the solution was started from a perturbation to the second mode n = 2 only.
In addition, each outflow jet has created an over-turning interface, and the
plume at the lower side of the picture has generated quite a pronounced
over-hanging plume near its head.

Figure 7 gives a further direct comparison of the effects of rotation on
the outflow shape. Here, the interface has been created using the contour
ρ̄ = 0.02 of the perturbed density function, and solutions are shown for the
case of no rotation, ω = 0, and a strong rotation ω = 3. In this example,
there is a weak straining flow with A = 0.1, the Froude number is F = 2 and
the density ratio is D = 1.05. Both of these solutions were generated from
perturbations to the first, most unstable, mode n = 1 and both are shown
at the same time t = 1.2.

The solution on the left of this diagram represents the case of no rotation,
and consists of a one-sided jet exiting the pole of the sphere at the top of
the picture. This is the same case as depicted for the left-hand picture in
Figure 5. (In this diagram the contour ρ̄ = 0.02 has been used to create the
interface, whereas in Figure 5 the contour ρ̄ = 0.03 was used. Nevertheless,
the two images are very similar, because the contours in the interfacial zone
are packed closely together in this narrow region). By contrast, the solution
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Figure 7: The axi-symmetric interface shape created from the density contour
ρ̄ = 0.02 at time t = 1.2. Results are shown for the two different rotation
speeds ω = 0 (no rotation) and ω = 3. The strain rate is A = 0.1 for a
perturbation at the first mode n = 1 with amplitude ϵ = 0.1, with Froude
number F = 2 and density ratio D = 1.05.
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shown on the right of Figure 7 is no longer a one-sided outflow, but now
consists of outflow jets from both of the poles of the sphere. However, the
outflow jets are again not exactly symmetric about the mid-plane z = 0. In
addition, there is again a strong waistband structure in the morphology of
the interface for the ω = 3 case, including some small regions of over-hang.
This is consistent with the weakly non-linear analysis of Section 3, which
suggests that the outflow is reduced along the z-axis, although still bi-polar,
with a corresponding expansion in the region of the waist. For both diagrams
in Figure 7, the scale is the same on all axes, so that these two shapes are as
they would actually appear, and are both drawn to the same scale.

Figure 8 shows the development of the azimuthal velocity component v,
for the strongly rotating solution ω = 3 depicted on the right side of Figure
7. Two solutions are shown here, at the times t = 0.2 and t = 1.2. These
are first-mode solutions with n = 1, and the remaining parameters are as
in Figure 7. Contours of the azimuthal speed v are presented, and only the
portion of the solution in the region −2 < x < 2, −2 < z < 2 is shown,
for ease of viewing. These diagrams illustrate the decay of the rotational
component with time. At the time t = 0.2 shown in Figure 8(a), the speed
v is essentially zero outside the initial unit sphere, and at this early time,
there is a maximum of about |v| = 2.5 in a small region close to the centre-
plane z = 0. Notice that the initial discontinuity in the speed profile (4.18)
at r = 1 soon develops into a thin region in which v changes rapidly but
smoothly, and this is evident in Figure 8(a) at this early time t = 0.2. As
time progresses, the azimuthal speed v reduces in magnitude, and becomes
more focussed, so that, by time t = 1.2 shown in Figure 8(b), almost all the
rotational motion is confined within the waistband structure shown in the
right-hand diagram of Figure 7. Furthermore, the magnitude of this quantity
has approximately halved. Interestingly, the two outflow jets shown in Figure
7 are not associated with any significant amount of rotational motion, as is
evident from the contours in Figure 8(b).

As a further aid to visualizing the evolution of the solution in Figure 8,
it is instructive to draw the instantaneous stream-surfaces. From Batchelor
(1967), streamlines are curves which are parallel to the velocity vector q in
equation (4.2). In spherical polar coordinates (2.1), it is possible to show that
one family of stream-surfaces is given by the equation r sinϕΨ = constant,
at least in steady flow. Accordingly, this quantity has been calculated from
the spectral representation (4.12), and cross-sections of these surfaces have
been plotted in the x-z plane using a contouring routine. These are shown in
Figures 9. In these diagrams, the full computational window 0 < r < β = 5
is shown, and the scales are the same on both pairs of axes.

In the outer field, the stream-surfaces far from the origin remain essen-
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Figure 8: Evolution of the azimuthal velocity component v for a solution
with strain rate A = 0.1 and rotational speed ω = 3. The scales on both
axes are the same. The density ratio is D = 1.05 and the Froude number is
F = 2. The initial perturbation was to the n = 1 mode. Solutions are shown
at times (a) t = 0.2 and (b) t = 1.2.
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Figure 9: Streamlines for a solution with strain rate A = 0.1 and rotational
speed ω = 3. The scales on both axes are the same. The density ratio is
D = 1.05 and the Froude number is F = 2. The initial perturbation was to
the n = 1 mode. Solutions are shown at times (a) t = 0.2 and (b) t = 1.2.
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tially unchanged as time progresses, as can be seen by comparing Figure 9(a)
at the early time t = 0.2 with the later time t = 1.2 shown in Figure 9(b).
They have a roughly hyperbolic shape, as is to be expected from the strain-
ing motion in equation (2.5). In the near-field close to the origin, there is a
widening of the region at the bottom of the diagram, and this is associated
with the outflow jet that can be seen at the bottom of the right-hand picture
in Figure 7.

Finally, the azimuthal component Z of the vorticity has been calculated
for this same case shown in Figures 8 and 9, from the spectral representation
(4.16) of this function. Contours of the vorticity component Z are shown in
Figure 10(a) at time t = 0.2, and Figure 10(b) shows Z at the later time
t = 1.2. For ease of viewing, only the section −3 < x < 3, −3 < z <
3 is displayed here, and the scale on the axes is the same. For the pure
background flow (2.5) consisting only of spherical outflow and the straining
field, the vorticity component Z is zero everywhere, except at the origin
where it is infinite. Thus at the early time t = 0.2 shown in Figure 10(a) the
azimuthal vorticity Z is essentially zero everywhere, except for a small intense
patch near the origin. However at the later time t = 1.2 in Figure 10(b),
while the azimuthal vorticity is zero almost everywhere, there is nevertheless
an intense patch near the z-axis at the bottom of the diagram, associated
with the strong jet out of the lower pole in the right-hand side picture in
Figure 7. In addition, there is a smaller patch of vorticity component Z near
the head of the upper-most jet.

Figures 8 – 10 therefore create an interesting account of the development
of the solution at rotation rate ω = 3 shown on the right-hand side of Figure
7. The combination of straining and rotation causes what would otherwise
have been a one-sided jet to be replaced instead with the bipolar morphology
in Figure 7, with a pronounced waistband structure and jets emerging from
both poles of the sphere. As the outflow evolves in time, the energy within
the rotational component v of the velocity vector decays, and what remains
is concentrated in the waistband near the centre-plane z = 0. This is partly
due to viscosity and diffusion, but it is evidently the case also that the en-
ergy associated with the azimuthal speed v in the outflow jets is diverted
in large measure into rotation in the plane

(
er, eϕ

)
orthogonal to the az-

imuthal direction. This is visible as the intense patch of vorticity component
Z particularly in the jet from the lower pole in these diagrams.

To conclude this presentation of results, it is interesting to consider an ini-
tial condition that involves all the Fourier modes, instead of just a monochro-
matic disturbance at the n-th mode only. To this end, the initial radial
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Figure 10: Contours of the azimuthal component Z of the vorticity, for a
solution with strain rate A = 0.1 and rotational speed ω = 3. The scales
on both axes are the same. The density ratio is D = 1.05 and the Froude
number is F = 2. The initial perturbation was to the n = 1 mode. Solutions
are shown at times (a) t = 0.2 and (b) t = 1.2.
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velocity profile (4.24) in now replaced with the multi-modal disturbance

u(r, ϕ, 0) =
1

4πr2
+

{∑N
n=1 B

IN
n rn−1Pn(cosϕ) for 0 < r < 1∑N

n=1 B
IN
n r−n−2Pn(cosϕ) for 1 < r < β.

(5.1)

Now the new coefficients BIN
n in this initial condition (5.1) will be chosen so

that initially, and on the surface r = 1 of the sphere of inner fluid, the radial
velocity component behaves as

u(1, ϕ, 0) =

{(
2ϵ/π

)
ϕ for 0 < ϕ < π/2(

2ϵ/π
)
(π − ϕ) for π/2 < ϕ < π.

(5.2)

It now follows from equation (5.1) and the orthogonality condition (4.22)
that the coefficients for this new initial condition are obtained from (5.2) in
the form

BIN
ℓ =

2ℓ+ 1

2

∫ π

0

u(1, ϕ, 0)Pℓ(cosϕ) sinϕ dϕ, ℓ = 1, . . . , N (5.3)

and these quadratures are evaluated using the Gaussian routine of vonWinckel
(2004). Finally, the representation (4.14) of the radial velocity component
is evaluated at t = 0 and compared with the initial condition (5.1). The
orthogonality conditions (4.22), (4.19) are used to give the initial values of
the Fourier coefficients Bmn in the form

Bkℓ(0) =
(2ℓ+ 1)

ℓ(ℓ+ 1)β2J2
ℓ+3/2

(
αℓ,kβ

) ∫ β

0

∫ π

0

r5/2Jℓ+1/2

(
αℓ,kr

)
×u(r, ϕ, 0)Pℓ(cosϕ) sinϕ dϕ dr.

In this expression, the strain has been ignored, A = 0, for simplicity. It turns
out that the integrals in this equation can all be evaluated in closed form,
giving

Bkℓ(0) =
2BIN

ℓ

ℓ(ℓ+ 1)αℓ,kβ2J2
ℓ+3/2

(
αℓ,kβ

)[Jℓ+1/2

(
αℓ,k

)
+Jℓ−1/2

(
αℓ,k

)
− β1/2−ℓJℓ−1/2

(
αℓ,kβ

)]
after some algebra. The coefficients BIN

ℓ are obtained from (5.3).
The development of an outflow starting from this multi-modal initial dis-

turbance is shown in Figure 11. There is no straining flow in this solution,
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Figure 11: Density contours for viscous solutions with no background strain,
A = 0, for the multi-modal initial condition. The density ratio is D = 1.05
and the Froude number is F = 2. The angular speed is ω = 0.5 and the
initial amplitude was ϵ = 0.03. Solutions are shown at the two times t = 3
and 4.
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Figure 12: The axi-symmetric interface shape created from the density con-
tour ρ̄ = 0.02 at time t = 4. Results are shown for the two different rotation
speeds ω = 0 (no rotation) and ω = 0.5. There is no straining flow in this
solution, A = 0, and the solution has been started from the multi-mode ini-
tial condition with amplitude ϵ = 0.03. The density ratio is D = 1.05 and
the Froude number is F = 2.

A = 0, but rotation is present with angular speed parameter ω = 0.5. Den-
sity profiles are shown at the two times t = 3 and t = 4, and only the portion
of the solution in the region −3 < x < 3, −3 < y < 3 is displayed for ease of
viewing. At early times, the outflow remains almost spherical, although by
time t = 3 it is evident that a small waistband structure has begun to form
in the profile, as a result of the rotation. After this time, an outflow from
each pole develops rather rapidly, so that by time t = 4, these structures are
quite well developed.

For solutions generated using the multi-mode initial condition in equa-
tions (5.1), (5.2), it is observed that qualitatively similar results are indeed
obtained as for the monochromatic initial conditions discussed above, namely,
that without straining or spin a one-sided outflow is generally produced. This
may be converted into a bi-polar flow when rotation or strain are introduced.
This is illustrated in Figure 12, for the parameter values used in Figure 11.
In this diagram, the picture on the left is for the case of no rotation, ω = 0
and it shows that, once again, an essentially one-sided outflow is produced,
similar to that depicted in Figure 7. The density ratio in this diagram is
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D = 1.05 and the interfaces have been created using the ρ̄ = 0.02 contour.
The remnant of the original sphere is still visible in the diagram for ω = 0,
but there is an elongated jet at the top of the diagram, and a much smaller
overturning region at the bottom. This is in accordance with the predictions
of the linearized theory of Section 2 which indicates that the one-sided mode
is the most unstable and so will dominate. When rotation is introduced,
however, with angular speed ω = 0.5 in the picture on the right, a strong
waistband structure develops, and there is now outflow of roughly similar
intensity from each pole. This is closely similar to the situation obtained by
starting the flows from a just a single mode, as previously.

6 Discussion and Conclusion

This paper has studied outflow of a light fluid from a point source, into a sur-
rounding heavier ambient fluid. The two fluids are separated by an interface
which is initially spherical, but a small perturbation is made to the radial
velocity component, and this then evolves in time. A linearized theory has
been given for the case in which each fluid is incompressible and inviscid, and
the interface separating them is infinitessimally thin. The predictions of this
theory are then compared with a numerical solution of the viscous Boussi-
nesq equations modelling essentially the same situation. In this approach,
the interface is, however, a narrow region of continuous but rapid density
change; in addition, the fluid is assumed to be weakly compressible, and the
small perturbations to the background density are convected and diffused
throughout the flow. Provision has been made for background straining mo-
tion of the fluid, and also for solid-body rotation within the inner expanding
bubble of lighter fluid ejected from the point source. The numerical solution
is achieved using the somewhat novel spectral method advanced by Forbes
(2011b), since it has the capacity to treat the point source exactly, even in
viscous flow. Furthermore, the spectral method allows the Poisson equation
(4.7) to be solved immediately and exactly (see equation 4.16), whereas this
can be a difficult task in other solution methods.

In the recent work of Forbes (2011b), the outflow from a point source was
studied, and it was found that an inviscid linearized theory predicted that
the first spherical Fourier mode is always unstable, and in fact is the fastest
growing component. This would mean that an arbitrary initial disturbance,
consisting of a mix of all the Fourier modes, would eventually be dominated
by the first mode alone. This would result in a one-sided jet emanating
from one of the poles of the sphere. This is a surprising conclusion, but it
could, in fact, have been derived from an equation given earlier by Plesset
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(1954) and Mikaelian (2005). Forbes (2011b) carried out a numerical solution
to the non-linear inviscid equations, but that solution was stopped by the
formation of a curvature singularity at the interface at critical times that
were too early to allow an inviscid one-sided jet to form. However, Forbes’
numerical solution of the corresponding viscous Boussinesq model did indeed
verify that one-sided jets were produced. This appears to be confirmed by
the numerical work of Lovelace et al. (2010).

The main aim of the present paper, therefore, is to determine conditions
under which additional flow features might replace this one-sided jet with
a bipolar outflow, consisting of an outflow jet emanating from each of the
two poles of the sphere. The original motivation for this study came from
the astrophysical context, in which bipolar outflows are often observed (see
Stahler and Palla 2004), instead of the one-sided flows obtained by Forbes
(2011b). Of course, there are many possible explanations for this fact, includ-
ing the presence of strong magnetic fields, compressibility, shocks and even
relativistic effects, all of which are ignored here. Thus, while the original mo-
tivation is astrophysical, it remains the case that the present investigation is
of interest in its own right, as a study in fundamental fluid mechanics.

Nevertheless, there is now growing evidence that one-sided outflows do
genuinely occur in astrophysics. They are predicted by the numerical work
of Lovelace et al (2010), and very recently they have also been measured
directly by Gómez et al. (2013), in radio observations of the Herbig-Haro
object HH 111. The image presented in their figure 1 is taken from the 2007
epoch of that astrophysical source, and it bears a remarkable morphological
similarity to the one-sided outflows presented here. Their figure 3 highlights
the evolution of this object over the period 1992 – 2007.

It is possible to estimate a likely Froude number for this object HH 111,
since it has been the subject of considerable study. Reipurth et al. (1999)
indicate that mean outflow speeds are of the order of 150 km/sec, from
a source with about 25 Solar luminosities; since this scales as the fourth
power of mass, this corresponds to

√
5 Solar masses. If the source radius is

comparable to that of the Earth, then a ≈ 6.37 × 106 metres (see Resnick
and Halliday 1966), so that the Froude number in (2.2) is about F ≈ 0.275.
In view of the assumed outflow speed, this is likely to be an upper bound,
but in any event, such a small value for the Froude number places this object
in a parameter region where moderate values of strain and rotation would be
insufficient to prevent the formation of a one-sided jet, as is indeed the case.

A sample computation for F = 0.275 is presented in Figure 13. Here,
a moderate straining rate A = 0.05 and rotation speed ω = 0.2 have been
chosen. The solution was started from a perturbation of amplitude ϵ = 0.01
to the first Fourier mode n = 1, as in equation (4.24). A one-sided jet begins
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Density  ;  A = 0.05  ;  D = 1.05  ;  F = 0.275  ;  ω = 0.2  ;  ε = 0.01  ;  n = 1  ;  t = 1.8
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Figure 13: Density contours at time t = 1.8, for an outflow at Froude number
F = 0.275. The straining parameter is A = 0.05, with density ratio D = 1.05
and angular speed parameter ω = 0.2. The solution was started at the first
Fourier mode, n = 1 with initial amplitude ϵ = 0.01. The scale on both axes
is the same.
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to form in the interface at about t = 1 and is well established by time t = 1.8,
as is evident in Figure 13.

Thus the theoretical results of the present paper show that, for small
amplitude deformations in the infinite Froude number limit, a straining flow
alone is sufficient to convert the one-sided outflow found by Forbes (2011b)
into a genuinely bipolar flow. This is discussed in Section 2.1. Similarly,
rotation about the z-axis also results in a bipolar flow as F → ∞, although
with reduced outflow from the poles and a correspondingly enlarged waist-
band, as discussed in Section 3.1. However, the result is considerably less
clear in the case of finite Froude number, although in most instances it ap-
pears no longer to be true; the analytical solutions in Sections 2 and 3 appear
to suggest that the mode-one solutions are again the most unstable, so that
one-sided outflows are therefore most likely to be encountered.

Viscous Boussinesq theory confirms the predictions of the linearized the-
ory of Section 2 for finite Froude number F , when the imposed strain rate is
sufficiently small. In these viscous results, the diffusion constant in equation
(4.10) was set simply to σ = 10−4 and the Reynolds number in equation (4.8)
was taken to be Re = 250, as in Forbes (2011b), although the solutions are
not qualitatively affected by this choice. As the strain rate parameter A is
made larger, however, linearized theory eventually ceases to be valid so that,
for sufficiently large A, the non-linear results show clearly that the imposed
strain field is again sufficient to produce genuinely bipolar outflows. These
are nevertheless complex structures, and the two outflow jets are not exactly
symmetric about the centre-plane. It is, perhaps, not unreasonable to expect
that a strong strain field in a viscous fluid will create an essentially bipolar
outflow, since the straining flow itself consists of the second spherical Fourier
mode, which is bipolar. It might be possible in future work to investigate
the relationship between straining fields and the morphologies they generate
using a weakly non-linear theory, although this has so far eluded the present
investigation.

The viscous Boussinesq solution presented here has also shown that suf-
ficiently strong rotation in the inner lighter fluid can also be responsible for
producing a type of bipolar outflow, rather than the purely one-sided flows
of Forbes (2011b). This is in accordance with the weakly non-linear solution
of Section 3 for inviscid fluids. However, these non-linear flows are rather
complex; the two outflow jets are again not entirely symmetric, and there is
evidently also a transfer of energy out of the azimuthal rotation mode and into
the azimuthal component Z of vorticity, that causes rotation in a plane nor-
mal to the azimuthal direction. At this point, it is reasonable to ask whether
these axi-symmetric structures would be stable to small perturbations in the
azimuthal coordinate θ. This would then generate a fully three-dimensional
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flow, and has been ignored here. Nevertheless, much interesting stability
analysis remains to be done in that case. The corresponding numerical solu-
tions could in principle be obtained by an extension of the spectral method
developed here, although that would require formidable computational re-
sources. A very recent study by Romanova et al. (2013) has considered fully
three-dimensional magnetohydrodynamic waves in the accretion disks of ro-
tating stars, and a curved one-armed wave was shown. Similar results may
be possible in the present problem also, but await future study.

7 Acknowledgements:

This work has been carried out in association with ARC (Australian Research
Council) discovery grant DP140100094. Comments by three anonymous Ref-
erees are gratefully acknowledged.

8 Appendix A - Full Solution of the Linearized

Equations

In this Appendix, a complete closed-form solution is presented to the lin-
earized equations (2.16), (2.17) in Section 2.

Since the governing equations are linear, the Fourier-Legendre modes de-
couple, and so may be considered separately, as before. Rather than using
time t as the independent variable, the zeroth-order radius function R0(t) =[
1 + (3t)/(4π)

]1/3
in equation (2.8) is employed instead. This change of

variables converts equation (2.16) into

R2
0

d2Rn1

dR2
0

+R0
dRn1

dR0

−Rn1

[
2[(n+ 2)(n+ 1)−Dn(n− 1)]

(Dn+ n+ 1)
+ (D − 1)

(4π)2

F 2

n(n+ 1)

(Dn+ n+ 1)
R3

0

]
= 0

if n ̸= 2.

This equation is next subjected to the further change of independent variable

ξ = λnR
3/2
0 with λn =

2

3

(4π)

F

√
(D − 1)

n(n+ 1)

(Dn+ n+ 1)
.

As a result, it is reduced to the form

ξ2
d2Rn1

dξ2
+ ξ

dRn1

dξ
−

(
ξ2 + ν2

n

)
Rn1 = 0, (8.1)
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in which the auxiliary constant νn is defined to be

νn =

√
8

9

[
(n+ 2)(n+ 1)−Dn(n− 1)

(Dn+ n+ 1)

]
. (8.2)

Equation (8.1) is a modified Bessel equation (see Abramowitz and Stegun
(1972), page 374). It then follows that the closed-form solution to equation
(2.16) is

Rn1 (R0) = C1Iνn

(
λnR

3/2
0

)
+ C2Kνn

(
λnR

3/2
0

)
, (8.3)

in which Iν and Kν are modified Bessel functions of the first and second
kinds, respectively, and the two constants C1 and C2 are arbitrary. For
D > 1, which is the case of most interest here, the first-kind modified Bessel
function grows exponentially with radius function R0 , but only for certain of
the lowest modes, for which the order νn in equation (8.2) is real. Therefore
only a select few of the lowest-order modes are unstable.

The same changes of variable are also made to the second-mode equation
(2.17). After some algebra, it reduces to the inhomogeneous modified Bessel
equation

ξ2
d2R21

dξ2
+ ξ

dR21

dξ
−
(
ξ2 + ν2

2

)
R21 = A1Γ2ξ

8/3, (8.4)

in which the constant ν2 is obtained from (8.2). The parameter A1 is again
the linearized straining amplitude, and

Γ2 =
80D

9(2D + 3)

(4π)

λ
8/3
2

has been defined for convenience. The inhomogeneous equation (8.4) can be
solved using a variation of parameters approach (see Kreyszig 2011) and the
Wronskian

Iν(ξ)K
′
ν(ξ)−Kν(ξ)I

′
ν(ξ) =

1

ξ

The general solution may therefore be written in the form

R21(ξ) = C1Iν2(ξ) + C2Kν2(ξ)

+A1Γ2

∫ ξ

λ2

u11/3 [Iν2(ξ)Kν2(u)−Kν2(ξ)Iν2(u)] du. (8.5)

It is very difficult to compare the solution (8.5) for the second mode n = 2
with the result (8.3) for n ̸= 2 to determine which mode has the fastest
growth rate. So it is evidently not possible for general F and D to deter-
mine whether straining forces the one-sided jet to become bipolar, at least
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in linearized theory. However, the additional integral term in (8.5) due to
straining appears to grow algebraically, whereas the lowest-order mode R11 in
(8.3) can grow exponentially. Thus it appears to be the case that, in general,
a one-sided outflow is predicted by linearized theory.

9 Appendix B - ODEs for Viscous Fourier

Coefficients

This Appendix gives the complete set of ordinary differential equations sat-
isfied by the Fourier coefficients in the Boussinesq viscous model outlined in
section 4.

The vorticity equation (4.8) is subjected to Fourier analysis, as described
in section 4. This leads to the system of MN ordinary differential equations

dBkℓ

dt
= − 1

F 2α2
ℓ,k

Ckℓ(t)−
1

Re

α2
ℓ,kBkℓ(t)

+
(2ℓ+ 1)

ℓ(ℓ+ 1)
[
αℓ,kβJℓ+3/2

(
αℓ,kβ

)]2 ∫ β

0

∫ π

0

[√
rZ

(
u sinϕ+ w cosϕ

)
−
√
r
(
ru

∂Z

∂r
+ w

∂Z

∂ϕ

)
sinϕ− 2v√

r

(∂v
∂ϕ

sinϕ− r cosϕ
∂v

∂r

)]
×Jℓ+1/2

(
αℓ,kr

)
P ′
ℓ(cosϕ) sinϕ dϕ dr

k = 1, 2, . . . ,M, ℓ = 1, 2, . . . , N.

When the azimuthal component (4.8) of the Boussinesq Navier-Stokes
equations is similarly analyzed as described in the text, it yields

dVkℓ

dt
= − 1

Re

α2
ℓ,k

(
δ1,ℓV

S
k0 + Vkℓ(t)

)
− (2ℓ+ 1)

ℓ(ℓ+ 1)
[
βJℓ+3/2

(
αℓ,kβ

)]2 ∫ β

0

∫ π

0[√
rv
(
u sinϕ+ w cosϕ

)
+
√
r
(
ru

∂v

∂r
+ w

∂v

∂ϕ

)
sinϕ

]
×Jℓ+1/2

(
αℓ,kr

)
P ′
ℓ(cosϕ) sinϕ dϕ dr

k = 1, 2, . . . ,M, ℓ = 1, 2, . . . , N.

The Kronecker delta symbol δ1,ℓ in this equation takes the value 1 when ℓ = 1
and 0 otherwise.
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The density equation (4.10) is also decomposed into its Fourier modes,
and gives the further system of differential equations

dCk0

dt
= − 3

β3

∫ β

0

∫ π

0

(
u
∂ρ̄

∂r
+

w

r

∂ρ̄

∂ϕ

)
r2 sin

(
kπr3

β3

)
sinϕ dϕ dr

+
72σ(D − 1)

β3

∫ β

0

(
r

β

)3

sin

(
kπr3

β3

)
dr

+
6σ

β3

M∑
m=1

Cm0(t)

[
12mπ

∫ β

0

(
r

β

)3

cos

(
mπr3

β3

)
sin

(
kπr3

β3

)
dr

−9m2π2

∫ β

0

(
r

β

)6

sin

(
mπr3

β3

)
sin

(
kπr3

β3

)
dr

]
,

k = 1, 2, . . . ,M

for the zeroth-order coefficients Ck0(t). The higher-order coefficients Ckℓ(t)
for the modes of order ℓ in the variable ϕ are then determined from

dCkℓ

dt
= −σ

(
αℓ,k

)2
Ckℓ(t)

− (2ℓ+ 1)

β2J2
ℓ+3/2

(
αℓ,kβ

) ∫ β

0

∫ π

0

(
u
∂ρ̄

∂r
+

w

r

∂ρ̄

∂ϕ

)
Jℓ+1/2

(
αℓ,kr

)
r3/2

Pℓ(cosϕ) sinϕ dϕ dr

+
2σ

β2J2
ℓ+3/2

(
αℓ,kβ

) M∑
m=1

Cmℓ(t)

[
6αℓ,m

∫ β

0

J ′
ℓ+1/2

(
αℓ,mr

)
Jℓ+1/2

(
αℓ,kr

)
dr

+9

∫ β

0

r−1Jℓ+1/2

(
αℓ,mr

)
Jℓ+1/2

(
αℓ,kr

)
dr

]
,

k = 1, 2, . . . ,M, ℓ = 1, 2, . . . , N.
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L. Gómez, L.F. Rodŕıguez and L. Loinard (2013). A one-sided knot
ejection at the core of the HH 111 outflow. Revista Mexicana Astron. Astro.,
49, 79–85.

I.S. Gradshteyn and I.M. Ryzhik (2000). Tables of Integrals, Series and
Products, sixth edition. Academic Press, San Diego.

M. Huarte-Espinosa, A. Frank, B. Balick, E.G. Blackman, O. de Marco,
J.H. Kastner and R. Sahai (2012). From bipolar to elliptical: simulating
the morphological evolution of planetary nebulae. Mon. Not. R. Astron.
Soc., 424, 2055–2068. http://dx.doi.org/10.1111/j.1365-2966.2012.

21348.x

N.A. Inogamov (1999). The role of Rayleigh-Taylor and Richtmyer-
Meshkov instabilities in astrophysics: an introduction. Astrophys. Space
Phys., 10, 1–335.

T. Inoue and Y. Fukui (2013). Formation of massive molecular cloud
cores by cloud-cloud collision. Astrophys. J. Letters, 774 article L31, 5
pages. http://dx.doi.org/10.1088/2041-8205/774/2/L31

R.I. Klein and D.T. Woods (1998). Bending mode instabilities and frag-
mentation in interstellar cloud collisions: a mechanism for complex structure.
Astrophys. J., 497, 777–799. http://dx.doi.org/10.1086/305488

R. Krasny (1986). Desingularization of periodic vortex sheet roll-up. J.
Comput. Phys., 65, 292–313. http://dx.doi.org/10.1016/0021-9991(86)
90210-X

E. Kreyszig (2011). Advanced Engineering Mathematics, tenth edition.
Wiley, New York.

R.V.E. Lovelace, M.M. Romanova, G.V. Ustyugova and A.V. Koldoba
(2010). One-sided outflows/jets from rotating stars with complex magnetic
fields. Mon. Not. R. Astron. Soc., 408, 2083–2091. http://dx.doi.org/

10.1111/j.1365-2966.2010.17284.x

M.-M. M. Low and R.S. Klessen (2004). Control of star formation by
supersonic turbulence. Rev. Modern Phys., 76, 125–194. http://dx.doi.

org/10.1103/RevModPhys.76.125

49



M.-M. M. Low and R. McCray (1988). Superbubbles in disk galaxies.
Astrophys. J., 324, 776–785. http://dx.doi.org/10.1086/165936

C. Matsuoka and K. Nishihara (2006). Analytical and numerical study on
a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical
geometry. Phys. Rev. E, 74, article 066303, 12 pages. http://dx.doi.org/
10.1103/PhysRevE.74.066303

N.M. McClure-Griffiths, J.M. Dickey, B.M. Gaensler and A.J. Green
(2003). Loops, drips, and walls in the galactic chimney GSH 277 + 00 + 36.
Astrophys. J., 594, 833–843. http://dx.doi.org/10.1086/377152

K.O. Mikaelian (2005). Rayleigh-Taylor and Richtmyer-Meshkov insta-
bilities and mixing in stratified cylindrical shells. Phys. Fluids, 17, article
094105, 13 pages. http://dx.doi.org/10.1063/1.2046712

D.W. Moore (1979). The spontaneous appearance of a singularity in the
shape of an evolving vortex sheet. Proc. Roy. Soc. London A, 365, 105–119.
http://dx.doi.org/10.1098/rspa.1979.0009

J. Nordhaus, T.D. Brandt, A. Burrows and A. Almgren (2012). The
hydrodynamic origin of neutron star kicks. Mon. Not. R. Astron. Soc., 423,
1805–1812. http://dx.doi.org/10.1111/j.1365-2966.2012.21002.x

M.S. Plesset (1954). On the Stability of Fluid Flows with Spherical
Symmetry. L. Appl. Phys., 25, 96–98. http://dx.doi.org/10.1063/1.

1721529

Lord Rayleigh (1883). Investigation of the character of the equilibrium of
an incompressible heavy fluid of variable density. Proc. London Math. Soc.,
14, 170–177.

B. Reipurth and J. Bally (2001). Herbig-Haro flows: probes of early
stellar evolution. Ann. Rev. Astron. Astrophys., 39, 403–455. http://dx.
doi.org/10.1146/annurev.astro.39.1.403
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