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Abstract

Rayleigh-Taylor instabilities occur when a light fluid lies beneath
a heavier one, with an interface separating them. Under the influence
of gravity, the two fluid layers attempt to exchange positions, and as
a result, the interface between them is unstable, forming fingers and
plumes. Here, an analogous problem is considered, but in cylindri-
cal geometry. Two line sources are present within an inner region of
lighter fluid, and each of them has an inwardly-directed gravity field.
The surrounding fluid is heavier and is pushed outwards by the light
inner fluid ejected from the two sources. Nonlinear inviscid solutions
are calculated, and compared with the results of a linearized inviscid
theory. In addition, the problem is formulated as a weakly compress-
ible viscous outflow, and modelled with Boussinesq theory. It is found
that vorticity is generated in the viscous interfacial zone, but that
overturning plumes do not develop. However, the solution growth is
highly sensitive to initial conditions.

Keywords: Binary sources, Boussinesq approximation, curvature singu-
larity, Rayleigh-Taylor instability, vorticity.
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1 Introduction

The Rayleigh-Taylor instability refers to the situation in which two horizontal
layers of fluid are present, separated by an interface. The upper fluid is more
dense that the lower one, so that any disturbance to the interface is unstable.
Fingers develop as the heavier fluid punches down through the lighter one,
or conversely, as bubbles of the lower lighter fluid rise upward by buoyancy.
The flow was first studied theoretically by Rayleigh [1] and later by Taylor
[2], using a linearized analysis in which the disturbances to the interface are
considered to be small perturbations around the initial horizontal surface.

As time progresses, the interfacial disturbances eventually grow too large
for the assumptions of linearized theory to remain valid. Thus, after the
passage of a suitable interval of time, the shape adopted by the interface is
necessarily described by non-linear equations, and may become intricate and
complicated as a result. When the viscosity of the fluids is ignored, earlier
computational studies observed that a time was reached at which the nu-
merical solution abruptly failed, as discussed by Sharp [3]. The reason for
this is subtle and surprising, and the phenomenon was explained by Moore
[4] in a study of the Kelvin-Helmholtz instability, which is a related unstable
flow that occurs when two fluids move with different speeds either side of
an interface. Moore [4] showed that the curvature of the interface becomes
infinite within finite time, so that inviscid models cease to be valid beyond
that critical time. Moore’s asymptotic theory has been confirmed and ex-
tended by Cowley, Baker and Tanveer [5]. In addition, similar asymptotic
arguments were developed by Baker, Caflisch and Siegel [6] for the Rayleigh-
Taylor problem, where an estimate was derived for the critical time at which
a Moore curvature singularity would form at the interface, in that problem
too.

When the viscosity of the fluid is taken into account, the formation of a
curvature singularity at the interface within finite time is prevented. Once
again, the means by which this occurs is subtle. For some time, it has been
understood that viscosity permits the fluid to generate vorticity at its in-
terface, a phenomenon not possible for purely inviscid fluids, and the result
is that the interface itself may curl over into a spiral shape. One of the
first methods for computing such configurations was introduced by Krasny
[7], and relies on a ‘vortex blob’ approach, in which the interface is effec-
tively replaced by a narrow zone of finite width in which vorticity is created,
so mimicking the behaviour of a fully viscous interfacial region. Using this
technique, Krasny [7] was able to obtain the famous ‘cat’s eye’ spirals asso-
ciated with the Kelvin-Helmholtz instability. Nevertheless, Baker and Pham
[8] have pointed out that the details of the flow may depend to some extent

2



upon details of how the ‘vortex blob’ method itself is implemented, which is
perhaps not surprising as these are fundamentally unstable flow situations.
Forbes [9] used spectral methods to compute interface shapes in the classical
planar Rayleigh-Taylor instability. In that work, it was demonstrated that
the inviscid model produced a curvature singularity within finite time, but
that a viscous solution then replaced that singularity with a small region of
high vorticity at the interface. This occurs at precisely the time and location
of the inviscid curvature singularity, and it is this effect which is responsi-
ble for the overturning of the interface and the subsequent development of
spirals.

Rayleigh-Taylor flows are of interest in a wide variety of situations, and
are believed to occur over vast ranges of length scales, as discussed by Kelley
et al. [10]. Drips from a freshly-painted ceiling are an example of the phe-
nomenon, and further instances are given in the review articles by Sharp [3],
Kull [11] and Inogamov [12]. Flows of this type may occur on atmospheric
and oceanographic length scales (see Waddell et al. [13]) and are believed to
have influence even at astrophysical and galactic sizes [10]. Thus McClure-
Griffiths et al [14] attribute certain galactic structures they observed to in-
stances of Rayleigh-Taylor instability, and it is also proposed by Low and
McCray [15] as an explanation for the structure of galactic super-bubbles.

In astrophysical situations, Rayleigh-Taylor instabilities occurring in ge-
ometries other than just the planar case may be expected to be of interest.
Unstable cylindrical surfaces around line sources, or spherical surfaces of ex-
plosion or implosion, might occur in stellar flows, underwater eruptions or
possibly in the inertial confinement of plasmas as indicated by Epstein [16].
In these cases, the interface is subject both to the usual Rayleigh-Taylor
mechanism which results from a heavier fluid overlying a lighter one, as well
as to the effects of the curvature of the interface itself. This second influ-
ence is known as the Bell-Plesset effect [16] and may act either to stabilize
or destabilize the surface. The equations governing the (linear) stability of
the interfacial surface in the cylindrical and the spherical cases have been
presented by Mikaelian [17], and are generalized by Yu and Livescu [18]
to include compressibility. More recently, Forbes [19] considered cylindri-
cal Rayleigh-Taylor flow in the non-linear viscous and inviscid cases, for a
situation in which light fluid was ejected from a line sink, into a heavier
surrounding fluid. He carried out a linearized stability analysis and showed
that, in the absence of gravity, his linearized equation (30) was identical to
Mikaelian’s cylindrical equation (1b). Forbes [19] considered a single-mode
perturbation to the cylindrical surface, as for Mikaelian’s [17] linearized anal-
ysis, and showed that this mode continues to grow as time progresses. In the
inviscid case, the solution for the K-th radial mode ultimately develops cur-
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vature singularities at the interface, similar to the situation discovered by
Moore [4] for planar flow, and the solution fails at finite time. When vis-
cosity is introduced, however, the K-th radial mode continues to grow, but
eventually forms K overturning plumes arranged at regular intervals around
the cylinder. Similar structures have been computed by Matsuoka and Nishi-
hara [20] in a related instability (the Richtmyer-Meshkov instability).

The situation in spherical geometry turns out to be rather different to the
cylindrical case. Forbes [21] examined the analogous case of outflow from a
point source in three dimensional geometry, in which the lighter inner fluid
was separated from a heavier outer fluid by an interface that was initial a
sphere. Forbes’ [21] linearized stability equation (3.12) was again identical to
the corresponding equation (1c) presented for the spherical case by Mikaelian
[17], but now it predicts that the lowest axi-symmetric spherical mode is the
most unstable. Unlike the cylindrical case, it follows that, in spherical ge-
ometry, any perturbation is likely therefore to lead ultimately to a one-sided
outflow jet, and Forbes [21] confirmed that the non-linear viscous solutions
did indeed behave this way. Remarkably, one-sided outflow jets have recently
been observed in astrophysics by Gómez et al. [22].

The present paper, however, is concerned with Rayleigh-Taylor type flow
from a surface that is initially cylindrical, in geometry similar to that studied
by Forbes [19]; the spherical case is not discussed further here. The interest
here focusses instead on a binary system, where two line sources are present
within the inner lighter fluid region. The main question of interest is whether
the two sources will force the outflow to adopt a favoured shape, similar to
the bi-polar morphology often encountered in astrophysics (see Stahler and
Palla [23]), but in this two-dimensional flow. The spherical case does indeed
favour one particular outflow shape as the likely outcome [21], although as
discussed above, in that case it is uni-polar. The alternative possibility is that
planar flow involving a binary source system may behave more like the single-
source case [19] in which the eventual morphology is determined largely by
the initial conditions for the outflow. It will be argued here that this second
possibility appears the more usual outcome for planar flows involving line
sinks.

In the next section 2, the inviscid model for binary outflow is presented.
A spectral method for the accurate solution of this non-linear problem is also
outlined, and it is based upon the technique introduced by Forbes, Chen and
Trenham [24]. This approach makes use of integration by parts to derive
a system of ordinary differential equations for the Fourier coefficients of the
velocity potentials and interface shape, and these are then integrated forward
in time from appropriate initial conditions, to give time-dependent solutions
of high accuracy. The interfacial curvature is also able to be determined to
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high precision from the series representations of the solution variables. A
linearized solution for this inviscid model is then examined in section 3, and
yields an elegant closed-form expression for the interface shape, as well as for
the velocity potential in each fluid. A viscous model of this problem is also
outlined in section 4, and is based upon the Boussinesq approximation, as
presented by Farrow and Hocking [25]. Results obtained from the linearized
and non-linear inviscid theories, and from the Boussinesq viscous model, are
presented in section 5. A discussion of the work is given in section 6, along
with some possible further topics for study, prompted by this analysis.

2 Inviscid Binary Outflow

Suppose that there are two inviscid incompressible fluids separated by a sharp
interface. Initially, they form a circular cylinder of radius a with the light
fluid of density ρ1 inside, and the heavier fluid of density ρ2 outside in the
region a < r < ∞. A line source is present at the point (x, y) = (0, b)
inside the circular interface, so that b < a, and it has strength mT (volume
rate per width) and mass MT per width. The other source is located at
(x, y) = (0,−b), and its strength and mass are mB and MB per width,
respectively.

This inviscid problem will be described using cylindrical polar coordinates
(r, θ) according to the usual relations x = r cos θ, y = r sin θ. The problem
is also non-dimensionalized using the initial radius a of the cylinder as the
characteristic length, and some reference volume rate per width mR as a con-
venient measure of source outflow strength. There are thus six dimensionless
parameters involved in the statement of this problem. They are

β =
b

a
ηT =

mT

mR

ηB =
mB

mR

D =
ρ2
ρ1

F 2
T =

m2
R

a2GMT

F 2
B =

m2
R

a2GMB

. (1)

The constant β is the radius of the location of the two sources relative to
the initial interface radius; since these are situated within the inner fluid, it
follows that 0 < β < 1. The density ratio of the outer to inner fluid is D, and
for Rayleigh-Taylor flows, D > 1. The dimensionless strengths of the upper
and lower sources are ηT and ηB respectively, and FT and FB are Froude
numbers based on the masses of the two sources. The dimensional quantity
G appearing in equations (1) is the universal gravitational constant. A sketch
of the outflow geometry in non-dimensional coordinates is given in Figure 1.
In fact, it would be possible to reduce by one the number of dimensionless
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Figure 1: A sketch of the dimensionless flow configuration for the inviscid
binary outflow problem. The interface is taken from an actual solution with
D = 1.05, FT = FB = 10, β = 0.8, ηT = 0.1, ηB = −0.1 at time t = 0.8, and
with equal scales on the two axes. The radial speed was initially perturbed
at the third (odd) mode K = 3 with amplitude ϵ = 0.1.

parameters appearing in (1), by choosing the reference source strength mR

to be either mT or mB . However, this has not been done here, in order
to preserve the symmetry of the governing equations, as well as to allow a
linearized asymptotic solution, to be presented in section 3.

Since each fluid is incompressible and inviscid, then each flows irrotation-
ally. As a consequence, the velocity vectors qj = ujer + vjeθ in each fluid
may be expressed as gradients of velocity potentials Φj , j = 1, 2, so that

uj =
∂Φj

∂r
; vj =

1

r

∂Φj

∂θ
. (2)

Each velocity potential then satisfies Laplace’s equation

∇2Φj =
∂2Φj

∂r2
+

1

r

∂Φj

∂r
+

1

r2
∂2Φj

∂θ2
= 0 (3)
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in its respective domain of validity. The two line sources are both located
within the inner fluid region, and therefore

Φ1 → ηT
2π

log
√
r2 − 2βr sin θ + β2 as (r, θ) → (β, π/2)

Φ1 → ηB
2π

log
√
r2 + 2βr sin θ + β2 as (r, θ) → (β,−π/2). (4)

The two fluid regions are separated by a sharp interface, the shape of
which is represented by some function r = R(θ, t). Initially, the interface
is simply a circle of unit dimensionless radius, so that R(θ, 0) = 1, but its
subsequent evolution is governed by two further conditions. The first is a
kinematic boundary condition, which states that neither fluid is free to cross
its own boundary. It is expressed as

uj =
∂R
∂t

+
vj
R

∂R
∂θ

on r = R(θ, t), (5)

and applies in each fluid at the interface, j = 1, 2. Secondly, there is a
dynamic requirement that the pressures in each fluid must be equal at the
interface. For inviscid fluids flowing irrotationally, pressure is calculated
from the unsteady Bernoulli equation (see Batchelor [26], page 387), and the
dynamic boundary condition may therefore be written

D
∂Φ2

∂t
− ∂Φ1

∂t
+

1

2
D
(
u2
2 + v22

)
− 1

2

(
u2
1 + v21

)
+

(D − 1)

F 2
T

log

(√
R2 − 2βR sin θ + β2

β

)
+

(D − 1)

F 2
B

log

(√
R2 + 2βR sin θ + β2

β

)
= 0

on r = R(θ, t). (6)

The two velocity potentials Φ1 and Φ2 and the interface profile R are there-
fore obtained as solutions of the two Laplace equations (3), subject to the
behaviour (4) of the potential in the inner fluid, along with the kinematic
and dynamic boundary conditions (5) and (6).

This problem suggests naturally that a solution might be sought in terms
of Fourier series. Accordingly, the spectral technique of Forbes, Chen and
Trenham [24] is adapted to this cylindrical geometry, and is similar to the
method used by Forbes [19] to study Rayleigh-Taylor outflow from a single
source. In the inner fluid region 0 < r < R(θ, t), the potential is represented
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as

Φ1(r, θ, t) =
ηT
2π

log
√
r2 − 2βr sin θ + β2

+
ηB
2π

log
√
r2 + 2βr sin θ + β2

+ P1,0(t) +
N∑

n=1

rn
[
P1,n(t) cos(nθ) +Q1,n(t) sin(nθ)

]
, (7)

and the similar relation

Φ2(r, θ, t) =
ηT
2π

log
√
r2 − 2βr sin θ + β2

+
ηB
2π

log
√
r2 + 2βr sin θ + β2

+ P2,0(t) +
N∑

n=1

r−n
[
P2,n(t) cos(nθ) +Q2,n(t) sin(nθ)

]
(8)

is used to express the potential in the outer fluid region r > R(θ, t). The
shape of the interface is given by the function

R(θ, t) = 1 +R0(t) +
N∑

n=1

[
Rn(t) cos(nθ) + Sn(t) sin(nθ)

]
. (9)

These expressions (7)–(9) become exact as N → ∞ in the upper limits of the
sums, and in the numerical implementation of these formulae, N is clearly
taken to be as large as is practicable.

The velocity components uj and vj , j = 1, 2 are obtained by differenti-
ation of the forms (7), (8) according to the relations (2). These quantities
are then evaluated on the interface (9), for use in the interfacial boundary
conditions. The first kinematic condition, obtained with j = 1 in equation
(5), is then subjected to standard Fourier decomposition and yields at once

R′
0(t) =

1

2π

∫ π

−π

[
u1 −

v1
R

∂R
∂θ

]
r=R

dθ

R′
k(t) =

1

π

∫ π

−π

[
u1 −

v1
R

∂R
∂θ

]
r=R

cos(kθ) dθ

S ′
k(t) =

1

π

∫ π

−π

[
u1 −

v1
R

∂R
∂θ

]
r=R

sin(kθ) dθ,

for k = 1, 2, . . . , N. (10)

This process therefore leads to ordinary differential equations for the Fourier
coefficients in the representation (9) of the interface shape.
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Following Forbes, Chen and Trenham [24], the second kinematic condition
in the system (5) is replaced with the difference of these two statements, in
the form

R
(
u2 − u1

)
=

(
v2 − v1

)∂R
∂θ

on r = R(θ, t). (11)

This equation is similarly subjected to Fourier analysis. The conditions at
the zeroth mode are obtained simply by integrating (11) over the interval
−π < θ < π, and it is found that, after the left-hand side of the equation
is treated using integration by parts, the zeroth-mode condition is satisfied
identically. The contribution of equation (11) at the k-th even Fourier mode is
now determined by multiplying by the basis function cos(kθ) and integrating.
The left-hand side of this equation becomes∫ π

−π

R
(
u2 − u1

)
r=R cos(kθ) dθ

=
N∑

n=1

∫ π

−π

−nR−n
[
P2,n(t) cos(nθ) +Q2,n(t) sin(nθ)

]
cos(kθ) dθ

−nRn
[
P1,n(t) cos(nθ) +Q1,n(t) sin(nθ)

]
cos(kθ) dθ,

and after integration by parts, this then takes the form∫ π

−π

R
(
u2 − u1

)
r=R cos(kθ) dθ

=

∫ π

−π

(
v2 − v1

)
r=R

∂R
∂θ

cos(kθ) dθ

− k
N∑

n=1

∫ π

−π

R−n
[
P2,n(t) sin(nθ)−Q2,n(t) cos(nθ)

]
sin(kθ) dθ

− k

N∑
n=1

∫ π

−π

Rn
[
P1,n(t) sin(nθ)−Q1,n(t) cos(nθ)

]
sin(kθ) dθ. (12)

When this result (12) is incorporated into the equation giving the contribu-
tion of (11) to the k-th even mode, the algebraic system of equations

N∑
n=1

∫ π

−π

R−n
[
P2,n(t) sin(nθ)−Q2,n(t) cos(nθ)

]
sin(kθ) dθ

+
N∑

n=1

∫ π

−π

Rn
[
P1,n(t) sin(nθ)−Q1,n(t) cos(nθ)

]
sin(kθ) dθ = 0 (13)

is obtained. The similar procedure is now employed to obtain the corre-
sponding equation for the k-th odd Fourier mode contribution from equation

9



(11); multiplication by the basis functions sin(kθ) and integration by parts
yields

N∑
n=1

∫ π

−π

R−n
[
P2,n(t) sin(nθ)−Q2,n(t) cos(nθ)

]
cos(kθ) dθ

+
N∑

n=1

∫ π

−π

Rn
[
P1,n(t) sin(nθ)−Q1,n(t) cos(nθ)

]
cos(kθ) dθ = 0. (14)

Although equations (13), (14) are elegant algebraic equations involv-
ing the Fourier coefficients, it is nonetheless inconvenient to retain them in
this form, and ordinary differential equations for these coefficients would be
preferable. As in Forbes, Chen and Trenham [24], this is achieved by direct
differentiation of these equations with respect to time. A notation is first
introduced for several intermediate products defined as integrals, as follows:

SCS
1,k,n(t) =

∫ π

−π

Rn cos(nθ) sin(kθ) dθ

SCS
2,k,n(t) =

∫ π

−π

R−n cos(nθ) sin(kθ) dθ. (15)

There are eight families of these functions, represented as SAB
j,k,n, j = 1, 2,

in which the first exponent A is either C or S, depending on whether the
second term in the integrand is cos(nθ) or sin(nθ). The second exponent B is
likewise either C or S, corresponding to either cos(kθ) or sin(kθ) appearing in
the third term. In terms of these intermediate functions (15), the derivatives
of the even and odd components (13), (14) of the kinematic relation can be
expressed in the forms

N∑
n=1

SSS
1,k,nP

′
1,n(t)− SCS

1,k,nQ
′
1,n(t) + SSS

2,k,nP
′
2,n(t)− SCS

2,k,nQ
′
2,n(t)

=

∫ π

−π

∂R
∂t

(
v1 − v2

)
r=R sin(kθ) dθ, k = 1, 2, . . . , N,

N∑
n=1

SSC
1,k,nP

′
1,n(t)− SCC

1,k,nQ
′
1,n(t) + SSC

2,k,nP
′
2,n(t)− SCC

2,k,nQ
′
2,n(t)

=

∫ π

−π

∂R
∂t

(
v1 − v2

)
r=R cos(kθ) dθ, k = 1, 2, . . . , N. (16)

The dynamic condition (6) is also subject to Fourier decomposition, in the
similar manner to that applied to the kinematic conditions. The zeroth mode
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term is obtained by integrating equation (6) over the interval −π < θ < π.
This is of little practical interest, however, since it essentially leads to a
differential equation for the coefficients P1,0 and P2,0 in the expressions (7),
(8), and these quantities can be ignored. The contributions from the higher-
order even and odd Fourier modes are obtained by multiplication by basis
functions cos(kθ) and sin(kθ), respectively, and integration over θ. This gives
the further systems of differential equations

N∑
n=1

−SCC
1,k,nP

′
1,n(t)− SSC

1,k,nQ
′
1,n(t) +DSCC

2,k,nP
′
2,n(t) +DSSC

2,k,nQ
′
2,n(t)

=
1

2

(
JC
1,k −DJC

2,k

)
− (D − 1)

F 2
T

Y C
T,k −

(D − 1)

F 2
B

Y C
B,k , k = 1, 2, . . . , N,

N∑
n=1

−SCS
1,k,nP

′
1,n(t)− SSS

1,k,nQ
′
1,n(t) +DSCS

2,k,nP
′
2,n(t) +DSSS

2,k,nQ
′
2,n(t)

=
1

2

(
JS
1,k −DJS

2,k

)
− (D − 1)

F 2
T

Y S
T,k −

(D − 1)

F 2
B

Y S
B,k , k = 1, 2, . . . , N.(17)

In these equations, it has proven convenient to define the additional inter-
mediate functions

JC
1,k(t) =

∫ π

−π

(
u2
1 + v21

)
r=R cos(kθ) dθ

Y C
T,k(t) =

∫ π

−π

log
√
R2 − 2βR sin θ + β2 cos(kθ) dθ

Y C
B,k(t) =

∫ π

−π

log
√
R2 + 2βR sin θ + β2 cos(kθ) dθ. (18)

The superscript C in each of these functions denotes the presence of the
function cos(kθ) in the integrands, and these same quantities with an S
superscript contain instead the function sin(kθ). In the first term JC

1,k the
subscript 1 refers to the use of the velocity components u1 and v1 for the
inner fluid, so that replacing this with the subscript 2 indicates that the
outer velocity components u2 and v2 are involved.

These Fourier decomposed equations now lead to an efficient numerical
method for the solution of the non-linear inviscid outflow problem with the
two sources. Firstly, the derivatives R′

0 , R
′
k and S ′

k of the Fourier coefficients
for the interface shape are evaluated directly from equations (10), at each
time step. Next, a coupled system of 4N algebraic equations is solved at
each time step, to give the differentiated Fourier coefficients P ′

1,n , Q′
1,n ,

P ′
2,n , Q′

2,n. The equations involved are the Fourier decomposed kinematic
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conditions (16) and dynamic conditions (17). This therefore results in a
system of 6N + 1 non-linear ordinary differential equations for the Fourier
coefficients that are required to construct the solution. These equations are
marched forward in time using the accurate Runge-Kutta-Fehlberg algorithm
ode45 made available in MATLAB.

In the evaluation of the right-hand sides of equations (10), and in the
calculation of the intermediate variables (15) and (18), it is necessary to
compute several integrals numerically. This is done here using Gaussian
quadrature, employing the routine made available by von Winckel [27]. Ac-
curate results are typically obtained with N = 41 Fourier coefficients, and
401 points placed over the interval −π < θ < π at locations determined by
the requirements of the Gaussian quadrature routine of von Winckel [27].

3 Linearized Solution for the Inviscid Model

In this section, a linearized asymptotic solution is constructed to the govern-
ing equations (3)–(6), and to begin, it makes use of the Fourier-series rep-
resentations (7)–(9) exactly as for the numerical solution of the non-linear
problem.

Suppose that the source strengths and the gravitational attractions are
all small, of the order of some small parameter ϵ, and write

ηT = ϵNT ηB = ϵNB

1

F 2
T

= ϵST
1

F 2
B

= ϵSB. (19)

The two potentials and the interface shape are now expressed as perturba-
tions in the small parameter ϵ, and take the forms

Φ1(r, θ, t) = ϵΦ1,1(r, θ, t) +O(ϵ2)

Φ2(r, θ, t) = ϵΦ2,1(r, θ, t) +O(ϵ2)

R(θ, t) = 1 + ϵR1(θ, t) +O(ϵ2). (20)

These approximations (19), (20) are substituted into the governing inviscid
equations and terms retained at the first order in the small parameter ϵ.

The perturbation potential Φ1,1 is found to obey Laplace’s equation (3)
within the undeformed inner region 0 < r < 1. Similarly, Φ2,1 satisfies
Laplace’s equation in the undisturbed outer zone r > 1. Near the two line
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sources, equations (4) take the linearized forms

Φ1,1 → NT

2π
log

√
r2 − 2βr sin θ + β2 as (r, θ) → (β, π/2)

Φ1,1 → NB

2π
log

√
r2 + 2βr sin θ + β2 as (r, θ) → (β,−π/2), (21)

and the two kinematic conditions (5) become approximately

∂Φ1,1

∂r
=

∂R1

∂t
;

∂Φ2,1

∂r
=

∂R1

∂t
on r = 1. (22)

Finally, the dynamic condition (6) linearizes to

D
∂Φ2,1

∂t
− ∂Φ1,1

∂t

+ (D − 1)ST log

(√
1− 2β sin θ + β2

β

)
+ (D − 1)SB log

(√
1 + 2β sin θ + β2

β

)
= 0 on r = 1. (23)

These linearized equations may now be solved using the same forms (7), (8)
derived for the non-linear solution, provided that Φ1 and Φ2 are replaced
with the perturbation potentials Φ1,1 and Φ2,1 and source strengths ηT and
ηB are replaced with their linearized counterparts NT and NB. The zeroth-
order coefficients P1,0 and P2,0 play no role in the linearized solution and so
will be ignored.

It follows at once from the difference of the two linearized kinematic
conditions (22) that

P2,n = −P1,n ; Q2,n = −Q1,n , n ≥ 1. (24)

The linearized dynamic condition (23) is Fourier analyzed, exactly as in the
algorithm developed in Section 2 for the non-linear problem, by multiplying
by basis functions cos(kθ) and sin(kθ) and integrating once around the circle
r = 1. After making use of the relations (24), it follows that

P ′
1,k =

(D − 1)
(
ST + SB

)
π(D + 1)

Ck(β)

Q′
1,k =

(D − 1)
(
ST − SB

)
π(D + 1)

Sk(β), , k ≥ 1, (25)
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in which it is convenient to define constants

Ck(β) =

∫ π

−π

cos(kθ) log
√

1− 2β sin θ + β2 dθ

Sk(β) =

∫ π

−π

sin(kθ) log
√

1− 2β sin θ + β2 dθ. (26)

The interfacial shape can be recovered from (22), and gives

R1(θ, t) = t
NT

2π

(1− β sin θ)

(1− 2β sin θ + β2)
+ t

NB

2π

(1 + β sin θ)

(1 + 2β sin θ + β2)

+
t2

2π

(D − 1)

(D + 1)

∞∑
n=1

n

[(
ST + SB

)
Cn(β) cos(nθ)

+
(
ST − SB

)
Sn(β) sin(nθ)

]
(27)

in the linearized theory. Here, it has been assumed that the interface was
the circle r = 1 at time t = 0, so that the perturbation function in equation
(20) took the initial value R1(θ, 0) = 0.

Integration by parts allows the intermediate constants in equation (26)
to be expressed as

Cn(β) =
β

n

∫ π

−π

cos θ sin(nθ)

1− 2β sin θ + β2
dθ

Sn(β) = −β

n

∫ π

−π

cos θ cos(nθ)

1− 2β sin θ + β2
dθ. (28)

It turns out that, when expressed in the form (28), these integrals may be
evaluated in closed form, using the calculus of residues. Further details are
given in the Appendix 7. The final expressions take the remarkably simple
forms

Cn(β) = −πβn

n
cos

(
nπ

2

)
Sn(β) = −πβn

n
sin

(
nπ

2

)
. (29)

When these forms (29) are used in the expressions for the interface shape,
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then equations (27), (19), (20) and a little algebra give the linearized interface

R(θ, t) = 1 + t
ηT
2π

(1− β sin θ)

(1− 2β sin θ + β2)
+ t

ηB
2π

(1 + β sin θ)

(1 + 2β sin θ + β2)

− t2

2

(D − 1)

(D + 1)

∞∑
n=1

[
1

F 2
T

βn cos
(
n(θ − π/2)

)
+

1

F 2
B

βn cos
(
n(θ + π/2)

)]
+O(ϵ2).

It turns out that the sums in this expression can be evaluated in closed form.
Each of them is an expression of the form

∞∑
n=1

βn cos(nϕ) = Re

{ ∞∑
n=1

βneinϕ
}

with 0 < β < 1, and so can be evaluated as a geometric sum. Taking the
real part of the resulting expression then gives

∞∑
n=1

βn cos(nϕ) = −β

[
β − cosϕ

1− 2β cosϕ+ β2

]
.

As a result, the linearized expression for the interface shape takes the final
form

R(θ, t) = 1 + t
ηT
2π

(1− β sin θ)

(1− 2β sin θ + β2)

+ t
ηB
2π

(1 + β sin θ)

(1 + 2β sin θ + β2)

+
βt2

2F 2
T

(
D − 1

D + 1

)(
β − sin θ

1− 2β sin θ + β2

)
+

βt2

2F 2
B

(
D − 1

D + 1

)(
β + sin θ

1 + 2β sin θ + β2

)
+O(ϵ2). (30)

The potentials in each fluid region are now considered. From equations
(19) and (20), it is possible to write

Φ1(r, θ, t) =
ηT
2π

log
√

r2 − 2βr sin θ + β2

+
ηB
2π

log
√

r2 + 2βr sin θ + β2

+
∞∑
n=1

rn
[
ϵP1,n cos(nθ) + ϵQ1,n sin(nθ)

]
+ O(ϵ2), in 0 < r < 1 (31)
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and

Φ2(r, θ, t) =
ηT
2π

log
√
r2 − 2βr sin θ + β2

+
ηB
2π

log
√

r2 + 2βr sin θ + β2

+
∞∑
n=1

r−n
[
ϵP2,n cos(nθ) + ϵQ2,n sin(nθ)

]
+ O(ϵ2), in r > 1. (32)

The coefficients in (31) are determined to be

ϵP1,n(t) =
t

π

(
D − 1

D + 1

)(
1

F 2
T

+
1

F 2
B

)
Cn(β)

ϵQ1,n(t) =
t

π

(
D − 1

D + 1

)(
1

F 2
T

− 1

F 2
B

)
Sn(β), (33)

and those in (32) are evaluated in terms of these using equation (24). The
constants Cn and Sn are given in equation (29), and when these are incorpo-
rated into (33), the expression (31) takes the form

Φ1(r, θ, t) =
ηT
2π

log
√

r2 − 2βr sin θ + β2

+
ηB
2π

log
√
r2 + 2βr sin θ + β2

− t

(
D − 1

D + 1

) ∞∑
n=1

1

n

(
rβ

)n[ 1

F 2
T

cos
(
n(θ − π/2)

)
+

1

F 2
B

cos
(
n(θ + π/2)

)]
+ O(ϵ2), in 0 < r < 1. (34)

The series in this expression is able to be evaluated in closed form, and to
do this, it is first necessary to consider

∞∑
n=1

(
rβ

)n
sin(nξ) = Im

{ ∞∑
n=0

(
rβ

)n
einξ

}
.

Since 0 < rβ < 1, this may be evaluated at once as a geometric sum, and
after taking the imaginary part, gives the result

∞∑
n=1

(
rβ

)n
sin(nξ) =

βr sin ξ

1− 2βr cos ξ + β2r2
. (35)
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Now the sums in the representation (34) may formally be associated with
indefinite integrals of (35), so that

−
∞∑
n=1

1

n

(
rβ

)n
cos(nξ)

=

∫ ∞∑
n=1

(
rβ

)n
sin(nξ) dξ

= log
√

1− 2βr cos ξ + β2r2.

Consequently, the final form of the linearized expression for the potential in
the inner fluid becomes

Φ1(r, θ, t) =
ηT
2π

log
√

r2 − 2βr sin θ + β2

+
ηB
2π

log
√

r2 + 2βr sin θ + β2

+ t

(
D − 1

D + 1

)[
1

F 2
T

log
√
1− 2βr sin θ + β2r2

+
1

F 2
B

log
√

1 + 2βr sin θ + β2r2
]

+ O(ϵ2), in 0 < r < 1. (36)

This is a remarkable simplification, and it demonstrates that the linearized
potential for the fluid in the inner layer consists of the two sources (21) at
(r, θ) = (β,±π/2), and two image sources outside the domain, at points
(r, θ) = (1/β,±π/2) and with strengths proportional to the gravitational
strengths of the two line sources but increasingly linearly with time t.

A similar process may be carried out for the linearized potential Φ2 in
equation (32). After some algebra, the final form of this expression becomes

Φ2(r, θ, t) =
ηT
2π

log
√

r2 − 2βr sin θ + β2

+
ηB
2π

log
√
r2 + 2βr sin θ + β2

− t

(
D − 1

D + 1

)[
1

F 2
T

log
√

r2 − 2βr sin θ + β2

+
1

F 2
B

log
√
r2 + 2βr sin θ + β2

]
+ O(ϵ2), in r > 1. (37)

Thus the outer potential Φ2 creates two further image sources at the locations
(r, θ) = (β,±π/2) of the actual sources, exterior to the outer region, and
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again with strengths proportional to the gravitational source strength and
increasing linearly with time t. The constant (D − 1)/(D + 1) in equations
(36), (37) is the Atwood number familiar in the literature on the Rayleigh-
Taylor instability [3].

In summary, the linearized potentials in the two fluid layers are given
by the simple closed-form expressions (36) and (37), correct to second order
in the small parameter ϵ. They infer the linearized interface shape (30) in
inviscid theory.

4 Boussinesq Model for Viscous Binary Out-

flow

Following Farrow and Hocking [25], a viscous model is also formulated for
this problem, using the Boussinesq approximation to simplify the otherwise
complex task of treating the exact interface. This same approximation has
also been used by Forbes [19] to study outflow from a single line source in
planar flow, and it was found there that overturning viscous plumes could be
formed at the interface, sometimes in a ring surrounding the line source. The
interface is approximated by a narrow region in which the density changes
continously but rapidly from the value ρ2 far away to the lesser amount ρ1
inside the interfacial zone. This is achieved by representing the dimensional
fluid density as ρ = ρ2 + ρ̄ and requiring that the perturbation density ρ̄ be
assumed small relative to ρ2.

In the corresponding non-dimensionalized variables introduced in Section
2, the length scale is again taken to be the initial circle radius a of the inner
bubble, and the scale for volume rate per width is some quantity mR. Time
is referenced to a2/mR. The flow is no longer irrotational, as for the inviscid
model in section 2, and so a velocity potential does not exist here; neverthe-
less, a streamfunction Ψ may be constructed, and it is made dimensionless
using the quantity mR. A vorticity will be introduced as the vector curl
of the fluid velocity, and then non-dimensionalized by reference to mR/a

2.
Finally the density is measured relative to the inner amount ρ1 so that the
dimensionless quantity ρ̄ becomes zero far away and takes the value −(D−1)
inside the bubble. In addition to the parameters defined in equation (1), the
two additional quantities σ and Re = ρ1mR/µ are also needed here. The
first of these is a diffusion constant for the density perturbation ρ̄ and Re is
a Reynolds number in which µ is the (dimensional) dynamic viscosity of the
fluid.

Due to the presence of two singularities, there is no particular advantage
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in retaining the polar coordinates of Section 2, so that the usual cartesian
(x, y) system will be used instead, in this viscous model. The velocity vector
is therefore expressed as q = ui + vj, with the two velocity components
calculated from the streamfunction according to the usual relations

u =
∂Ψ

∂y
; v = −∂Ψ

∂x
, (38)

replacing equation (2) in Section 2. The vorticity vector has only the single
component ζ in a direction normal to the x−y plane; it is obtained by taking
curl of the velocity vector q and gives

ζ =
∂v

∂x
− ∂u

∂y
= −∇2Ψ, (39)

in which the symbol ∇2 denotes the Laplacian. Near the two sources, the
streamfunction behaves like

Ψ → ηT
2π

arctan

(
y − β

x

)
as (x, y) → (0, β)

Ψ → ηB
2π

arctan

(
y + β

x

)
as (x, y) → (0,−β). (40)

The Boussinesq approach is essentially a weakly compressible approxima-
tion, in which the usual mass continuity equation is “split” into an incom-
pressible component divq = 0 and a transport equation

∂ρ̄

∂t
+ u

∂ρ̄

∂x
+ v

∂ρ̄

∂y
= σ

[
∂2ρ̄

∂x2
+

∂2ρ̄

∂y2

]
(41)

for the perturbation density ρ̄. The incompressible component is satisfied by
the identities (38), but the weakly compressible approximation (41) must be
treated explicitly.

In dimensionless coordinates, the Boussinesq-Navier-Stokes momentum
equation takes the form

D
∂q

∂t
+D

(
q · ∇

)
q+∇p

= − 1

F 2
T

(
D + ρ̄

) xi+ (y − β)j

x2 + (y − β)2

− 1

F 2
B

(
D + ρ̄

) xi+ (y + β)j

x2 + (y + β)2
+

1

Re

∇2q. (42)
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The vector curl of this equation (42) is now taken, and gives a vorticity
equation with only one component in the direction orthogonal to the x − y
plane. The result is

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y

= − 1

DF 2
T

1[
x2 + (y − β)2

][(y − β)
∂ρ̄

∂x
− x

∂ρ̄

∂y

]
− 1

DF 2
B

1[
x2 + (y + β)2

][(y + β)
∂ρ̄

∂x
− x

∂ρ̄

∂y

]
+

1

DRe

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
, (43)

where ζ is as defined in equation (39).
The solution to this Boussinesq viscous problem thus involves finding

functions Ψ, ρ̄ and ζ satisfying the three equations (39), (41) and (43), sub-
ject to the conditions (40) near the two line sources. From the numerical
standpoint, it is necessary to define a computational window −L < x < L,
−B < y < B in the plane; in this paper, as in the earlier studies [9], [19], a
spectral method will be used, in which the streamfunction is represented as

Ψ(x, y, t) =
ηT
2π

arctan

(
y − β

x

)
+

ηB
2π

arctan

(
y + β

x

)
+

M∑
m=1

N∑
n=1

Amn(t) sin

(
mπ(x+ L)

2L

)
sin

(
nπ(y +B)

2B

)
. (44)

In this expression, the time-dependent Fourier coefficients Amn(t) are to be
determined. The two velocity components u and v in the x- and y-directions
are obtained from (44) by exact differentiation of this expression, according
to equation (38), and the definition (39) of vorticity then gives

ζ(x, y, t) =
M∑

m=1

N∑
n=1

CmnAmn(t) sin

(
mπ(x+ L)

2L

)
sin

(
nπ(y +B)

2B

)
(45)

as the appropriate representation of that variable. The auxiliary constants
in this expression are defined to be

Cmn =

(
mπ

2L

)2

+

(
nπ

2B

)2

. (46)

Finally, a representation is needed for the perturbation density ρ̄. The form
of this function must be consistent with that assumed for the vorticity (45),
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since these two quantities are coupled through the buoyancy term in the
vorticity equation (43). It is appropriate to take

ρ̄(x, y, t) =
M∑

m=0

N∑
n=0

Rmn(t) cos

(
mπ(x+ L)

2L

)
cos

(
nπ(y +B)

2B

)
, (47)

in which the time-dependent Fourier coefficients Rmn(t) are also to be found.
The presence of two singularities within the fluid region poses a signifi-

cant numerical challenge, and one not encountered in the earlier study [19]
in which only the one line sink was involved. When spectral methods are
used, the solution technique works by multiplying the governing equations by
the basis functions used in the representations (45), (47) and then integrat-
ing over the chosen computational domain. Typically, elegant orthogonality
conditions can be brought to bear, so that the resulting equation reduces to
differential equations for the derivatives A′

mn(t) or R
′
mn(t) of the appropriate

Fourier coefficients; these may then be integrated forward in time to yield
the solution. However, when this is done in the present problem, the singu-
larities (40) at the two sources within the fluid give rise to certain integrals
that no longer converge, so that the spectral method is invalid. To over-
come this difficulty, each equation is first multiplied by the weight function[
x2+(y−β)2

][
x2+(y+β)2

]
. This has the effect of neutralizing the singulari-

ties at the points (x, y) = (0,±β). Now spectral methods may again be used,
but at the cost of losing the use of orthogonality conditions. Consequently,
a full matrix equation must be solved at each time step of the numerical
solution technique, which may significantly increase the computational cost
of the method.

Under this approach, the density equation (41) yields the system

M∑
m=0

N∑
n=0

Gmnkℓ

[
R′

mn(t) + σCmnRmn(t)
]
= −Ekℓ

k = 0, 1, . . . ,M, ℓ = 0, 1, . . . , N (48)

of (M + 1)(N + 1) differential equations for the Fourier coefficients Rmn(t).
The matrix coefficients in this expression are defined as

Gmnkℓ(t) =

∫ L

−L

∫ B

−B

[
x2 + (y − β)2

][
x2 + (y + β)2

]
× cos

(
mπ(x+ L)

2L

)
cos

(
kπ(x+ L)

2L

)
× cos

(
nπ(y +B)

2B

)
cos

(
ℓπ(y +B)

2B

)
dy dx

m, k = 0, 1, . . . ,M, n, ℓ = 0, 1, . . . , N (49)
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and the functions on the right-hand side are given by the expression

Ekℓ(t) =

∫ L

−L

∫ B

−B

[
x2 + (y − β)2

][
x2 + (y + β)2

]
×
(
u
∂ρ̄

∂x
+ v

∂ρ̄

∂y

)
cos

(
kπ(x+ L)

2L

)
cos

(
ℓπ(y +B)

2B

)
dy dx

k = 0, 1, . . . ,M, ℓ = 0, 1, . . . , N. (50)

A similar treatment of the vorticity equation (43) gives rise to the further
system

M∑
m=1

N∑
n=1

HmnkℓCmn

[
A′

mn(t) +
1

DRe

CmnAmn(t)
]
= −Fkℓ

k = 1, . . . ,M, ℓ = 1, . . . , N. (51)

This constitutesMN additional ordinary differential equations for the Fourier
coefficients Amn(t). In this expression, the matrix coefficients are

Hmnkℓ(t) =

∫ L

−L

∫ B

−B

[
x2 + (y − β)2

][
x2 + (y + β)2

]
× sin

(
mπ(x+ L)

2L

)
sin

(
kπ(x+ L)

2L

)
× sin

(
nπ(y +B)

2B

)
sin

(
ℓπ(y +B)

2B

)
dy dx

m, k = 1, . . . ,M, n, ℓ = 1, . . . , N. (52)

The functions on the right-hand side of equation (51) are

Fkℓ(t) =

∫ L

−L

∫ B

−B

{[
x2 + (y − β)2

][
x2 + (y + β)2

](
u
∂ζ

∂x
+ v

∂ζ

∂y

)
+

1

DF 2
T

[
x2 + (y + β)2

][
(y − β)

∂ρ̄

∂x
− x

∂ρ̄

∂y

]
+

1

DF 2
B

[
x2 + (y − β)2

][
(y + β)

∂ρ̄

∂x
− x

∂ρ̄

∂y

]}
× sin

(
kπ(x+ L)

2L

)
sin

(
ℓπ(y +B)

2B

)
dy dx

k = 1, . . . ,M, ℓ = 1, . . . , N. (53)

The constants Cmn in equations (48) and (51) are as defined in equation (46).
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Initial conditions must be chosen for this viscous problem. For now, the
velocity components are taken to be just those given by the two sources, so
that the coefficients are given the starting values Amn(0) = 0 in the repre-
sentations (44), (45), although different starting conditions will be examined
later. The density perturbation at time t = 0 is

ρ̄(r, θ, 0) =

{
−(D − 1), for x2 + y2 < 1

0, otherwise,
(54)

representing an effective circular interface of unit radius between the two
fluids. It follows from the representation (47) that

Rmn(0) =
1[

1 + δm0

][
1 + δn0

]
LB

∫ L

−L

∫ B

−B

ρ̄(r, θ, 0)

× cos

(
mπ(x+ L)

2L

)
cos

(
nπ(y +B)

2B

)
dy dx

m = 0, 1, . . . ,M, n = 0, 1, . . . , N. (55)

In this expression, the Kronecker delta symbol takes the values δm0 = 1 if
m = 0 and zero for all integers m ̸= 0. Similarly, δn0 = 1 for n = 0 and is
zero otherwise.

The algorithm for the solution of this viscous problem thus proceeds as
follows. To begin, initial values of the Fourier coefficients Amn(0) = 0 are
given, and Rmn(0) are computed numerically from equation (55) using the
function (54). The numerical quadratures in (55), as well as in the interme-
diate products (49), (50) and (52), (53), are evaluated to very high accuracy
using the Gauss-Legendre integration routine provided by von Winckel [27].
Equations (48) and (51) constitute a system of 2MN +M +N + 1 ordinary
differential equations for the Fourier coefficients, to be integrated forward in
time. At each new time step, the matrix equation (48) is solved, and then
rearranged to obtain the derivatives R′

mn. Similarly, equation (51) is inverted
and then rearranged to give A′

mn. These derivatives R
′
mn and A′

mn are stored
in a vector of length 2MN +M + N + 1 and the MATLAB Runge-Kutta-
Fehlberg routine ode45 is used to advance the solution forward in time. This
is done using two embedded loops, to enable the solution variables to be
re-created from their Fourier representations (44), (45) at certain times of
interest. The algorithm is made very greatly more efficient by caching the
trigonometric functions cos

(
mπ(x+L)/(2L)

)
, and so on, at the beginning of

the run, so that they are not re-computed. In addition, the matrix elements
Gmnkℓ and Hmnkℓ in equations (49) and (52) are then calculated once at the
outset and stored, since they are time-independent quantities. In this way,
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although the algorithm is unable to take advantage of the orthogonality of
the trigonometric functions and must instead solve the full matrix equations
(48) and (51) at each time step, the computational cost of this is reduced
just to a fixed overhead at the beginning of the run.

The results to be presented in this paper have typically used 91 mesh
points in x and 151 points in y, with a computational domain defined by
the constants L = 3 and B = 5. With this number of grid points, the
numerical quadratures in the algorithm are performed to extremely high
precision, so that the only significant numerical error arises from the numbers
M , N of Fourier coefficients chosen. It has been found by experimentation
that M = 25, N = 41 coefficients is sufficient to give converged numerical
results over the time intervals of practical interest.

5 Presentation of Results

A large number of runs has been made, to map out the solution behaviour
over a range of the dimensionless parameters. A representative sample of
these results is discussed here. For convenience, the density ratio will be
taken to be D = 1.05, consistently with the Boussinesq approximation. In
addition, for the linearized solution of section 3 to be valid, the inverse Froude
numbers and source strength magnitudes must be small, consistently with
equation (19). In order to facilitate comparison with the linearized result, the
Froude numbers will therefore be set to the values FT = FB = 10. Although
many values of the source off-set parameter β have been investigated, here
only the value β = 0.8 will be discussed.

Figure 2 shows a comparison of the predictions of the linearized theory
(30) with the corresponding non-linear inviscid theory of section 2. Here,
sources of equal strength ηT = ηB = 0.1 are present at the locations (x, y) =
(0,±0.8) and are indicated with small circles on the diagram. Solutions are
shown at the early time t = 2 and a rather later time t = 10. The solution
starts from a circular interface of radius R = 1 at t = 0, and there is good
agreement between the linearized and non-linear solutions at early times.
Thus the two solutions at t = 2 in Figure 2 are almost identical, except for
the two small regions near the poles, where the linearized solution is slightly
in excess of the non-linear one. As time continues, the linearized solution
necessarily becomes less reliable, since it has been derived on the assumption
that the deviation from a unit circle is only ever slight; this fails to be true
when there are two sources present, driving a continual outflow. The two
solutions at the later time t = 10 illustrate this effect, since the linearized
solution clearly over-estimates the extent of the bulge in the interface near
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Figure 2: The inviscid solution for two different times t = 2 and t = 10,
obtained from the linearized (red, dashed line) and non-linear (blue, solid
line) solutions of sections 3 and 2, respectively. Here, D = 1.05, FT = FB =
10, β = 0.8, ηT = ηB = 0.1, and the scales on the two axes are equal. The
two small red circles indicate the locations of the two sources.

25



x

 y

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

 y

Density  ;  D = 1.05  ;  F
T
 = F

B
 = 10  ;  β = 0.8  ;  η

T
 = η

B
 = 0.1

−3 −2 −1 0 1 2 3
−5

−4

−3

−2

−1

0

1

2

3

4

5

t = 2 t = 10

Figure 3: Density contours for the viscous Boussinesq solution, at the two
different times t = 2 and t = 10. The non-linear inviscid solution is overlaid
on these diagrams, and is indicated with a heavy dashed line. Here, D = 1.05,
FT = FB = 10, β = 0.8, ηT = ηB = 0.1, and the scales on the axes are equal.

the two poles on the y - axis.
The non-linear inviscid solutions in Figure 2 are contrasted against the

predictions of the viscous Boussinesq theory of section 4, in Figure 3. Here,
contours of the perturbation density ρ̄ are plotted at the same two times t = 2
and t = 10. The non-linear inviscid interfaces are then superposed on these
diagrams as heavy dashed lines. In both these images, the viscous density
perturbation function ρ̄ is essentially zero in the outer region (although small
ripples due to Gibbs’ phenomenon [28, page 515] give the mottled appearance
in the outer regions of both diagrams). In the inner region, ρ̄ falls to the value
−(D−1), as required by the condition (54). Between these zones is a narrow
interfacial region in which ρ̄ makes a rapid but smooth transition from one
value to the other.

At the early time t = 2, it is clear from Figure 3 that there is very good
agreement between the viscous and inviscid results, as to the location of the
interface. As time develops, however, the situation is less clear, although a
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Figure 4: Density contours for the viscous Boussinesq solution, at the time
t = 10. The streamlines at this time are overlaid on these contours, and are
indicated with solid (black) lines. Here, D = 1.05, FT = FB = 10, β = 0.8,
ηT = ηB = 0.1, and the scales on the axes are equal. The two small red
circles indicate the locations of the two sources.

visual inspection of the solution at t = 10 in Figure 3 nevertheless suggests
that the inviscid interface gives a credible estimate for the location of the
corresponding viscous interfacial zone. However, at these later times, the
Boussinesq approximation itself becomes somewhat questionable, since it is
found that the density perturbation ρ̄ forms sharp negative depressions near
the locations (x, y) = (0,±β) of the two sources. In these two regions, the
perturbation density ρ̄ is approximately−0.9, which violates the assumptions
of Boussinesq theory, that this quantity should be small in comparison to 1.
It therefore seems likely that a full viscous solution at this later time may
differ from this current one based on Boussinesq theory, at least near the two
outflow points, and this awaits a future study.

The viscous solution at time t = 10 is shown again in Figure 4, as con-
tours of the density perturbation function ρ̄. This is the same as the second
diagram in Figure 3 except that some streamlines have been overlaid on this
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Figure 5: The non-linear inviscid solution for two different times t = 0.5 and
t = 1.5. The linearized interface at time t = 1.5 is also shown as a blue
chain-dot line. Here, D = 1.05, FT = FB = 10, β = 0.8, ηT = 0.1 and
ηB = −0.1, and the scales on the two axes are equal. The two small red
circles indicate the locations of the source (top) and sink (bottom).

image. These streamlines are calculated as contours of the streamfunction
Ψ in the representation (44), and the solution is shown only over the region
−3 < x < 3, −3 < y < 3 for ease of viewing. Clearly the logarithmic
singularities at the two source points (x, y) = (0,±β) are the dominant fea-
tures of the flow behaviour, and indeed there is no appreciable change to the
streamline pattern over very different times. As expected, the flow field is
top-bottom symmetric about the streamline Ψ = 0 that lies along the x-axis;
it also bifurcates at the origin, and lies also along the portion of the y-axis
−β < y < β connecting the two sources, which are shown with small circles
on this diagram.

It is of interest now to examine the converse situation in which one sin-
gularity is a source and the other a sink. To achieve this, the top one at
(x, y) = (0, β) is taken to be a source of strength ηT = 0.1 while the bot-
tom singularity at (0,−β) is a sink, with strength ηB = −0.1. It should
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be recalled, however, that the labels “top” and “bottom” are used purely
for convenience to describe the diagrams, since the only actual gravitational
attraction in this problem is the force directed radially inward towards each
of the two singularities.

The interface r = R(θ, t) computed using the non-linear inviscid solution
of section 2 is shown in Figure 5, for the two different times t = 0.5 and
t = 1.5. The algorithm fails for times t > 1.5, and the physical reason
for this is evident from Figure 5. Near the sink at (0,−β), the interface is
progressively drawn in towards this singularity as time advances. In fact, the
interfacial curvature κ is also monitored in this calculation, and the spectral
method of section 2 permits it to be computed to high accuracy from the
formula

κ =
2R2

θ −RRθθ +R2[
R2

θ +R2
]3/2 , (56)

which is given for example, in the text by Anton [29, page 785]. The sub-
scripts denote partial derivatives. As time progresses, the magnitude of the
curvature computed from equation (56) steadily increases at the point on the
interface closest to the line sink at (0,−β), and at the last time t = 1.5 for
which the algorithm can yield a solution, the curvature forms a large spike
at this point. Evidently a curvature singularity will ultimately form at the
interface, reminiscent of the Moore singularity [4] in Kelvin-Helmholtz flow,
and the effects of this are visible in Figure 5 as the interface forms a cusp
as it is drawn into the line sink. The linearized interface computed from
equation (30) at this last time t = 1.5 is also shown in Figure 5, and is drawn
as a chain-dot line. Interestingly, it agrees closely with the non-linear result
at this same time almost everywhere, except in the two small regions near
each pole; in particular, it cannot predict the sharp inward-facing cusp at
the bottom of the diagram, that is associated with the incipient curvature
singularity, and this is to be expected.

The Boussinesq viscous solution for this same case is illustrated in Fig-
ure 6. Contours of the density perturbation function ρ̄ are shown; again,
the function is approximately zero in the outer region, apart from small os-
cillations related to Gibbs’ phenomenon, and these are responsible for the
mottled appearance of the background. There is a narrow viscous interfa-
cial region in which the density function ρ̄ drops rapidly but smoothly to
its interior value −(D − 1). The non-linear inviscid interface at this same
time t = 1.5 (shown previously in Figure 5) is also drawn on this diagram,
as a heavy dashed line. Although this was the largest time for which the
non-linear interface could be found, it is clear from Figure 6 that the inviscid
solution nevertheless gives a very good estimate of the location of the viscous
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Figure 6: Density contours for the viscous Boussinesq solution, at the time
t = 1.5. The non-linear inviscid solution is overlaid on this diagram, and is
indicated with a heavy dashed line. Here, D = 1.05, FT = FB = 10, β = 0.8,
ηT = 0.1, ηB = −0.1, and the scales on the axes are equal.
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Figure 7: Density contours for the viscous Boussinesq solution, at the time
t = 3. The streamlines at this time are overlaid on these contours, and are
indicated with solid (black) lines. Here, D = 1.05, FT = FB = 10, β = 0.8,
ηT = 0.1, ηB = −0.1, and the scales on the axes are equal. The two small
red circles indicate the locations of the source and the sink.

interfacial zone in this case.
The viscous solution is capable of continuing to much later times than

the non-linear inviscid solution, since it is not limited by the formation of an
interfacial cusp and consequent curvature singularity, as occurs in the inviscid
case. Figure 7 shows the Boussinesq viscous solution at the substantially later
time t = 3. Here, contours of the density perturbation function ρ̄ are shown,
and the viscous interfacial zone dividing the inner and outer fluid regions is
clearly visible. In the outer region, ρ ≈ 1 and inside the interface ρ ≈ 0.95,
as expected for this case D = 1.05. However, near the upper singularity
at y = β = 0.8, there is a small region where the density drops to about
ρ ≈ 0.9, and this is visible in Figure 7 as a small dark (blue) region near
the source. As time continues, the density drop becomes more pronounced
near this point, and eventually a time is reached at which the assumption
|ρ̄| << ρ, inherent in the Boussinesq approximation, becomes invalid. Thus
the Boussinesq approximation itself ceases to be appropriate for large enough
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Figure 8: Vorticity contours for the viscous Boussinesq solution, at the time
t = 3. Here, D = 1.05, FT = FB = 10, β = 0.8, ηT = 0.1, ηB = −0.1, and
the scales on the axes are equal.

times, and a more complete description of fully viscous flow would be needed.
The streamline pattern at this time t = 3 is also overlaid on the density

contours in Figure 7, and is shown using solid (black) lines. It has been cal-
culated using the series representation (44), although it is clearly dominated
by the behaviour near the two singularities. Thus the streamlines in Figure
7 have the dipole-like appearance of a standard source–sink pair.

It is of interest to consider briefly the behaviour of the vorticity ζ in this
case, and this is done in Figure 8 for the same solution as in Figure 7, at the
time t = 3. For ease of viewing, only the portion of the solution over the
region −3 < x < 3, −3 < y < 3 is shown, and the function is computed from
its spectral representation (45). For a purely inviscid solution, the vorticity
ζ would be identically zero everywhere outside the two line singularities,
and so this quantity gives a direct measure of the effects of viscosity on the
solution. It is found that the vorticity is essentially zero over the entire flow
field, much as for the inviscid case, except for the viscous interfacial zone;
thus, the vorticity is concentrated in a narrow loop surrounding the inner
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Figure 9: The non-linear inviscid solution for two different times t = 0.1 and
t = 0.8. The initial speed has been perturbed at the third odd radial mode
K = 3 with amplitude ϵ = 0.1. Here, D = 1.05, FT = FB = 10, β = 0.8,
ηT = 0.1 and ηB = −0.1, and the scales on the two axes are equal. The two
small red circles indicate the locations of the source (top) and sink (bottom).

fluid zone. This is consistent with what was observed previously by Forbes
[9] for planar Rayleigh-Taylor flow. As time progresses, the vorticity in the
present problem focusses increasingly at the interfacial zones closest to the
two singularities, and this is evident from Figure 8.

Since these flows are unstable in the Rayleigh-Taylor sense, with the outer
fluid taken to be more dense than the inner one, it is to be expected that they
will be unstable. Accordingly, perturbations made to the initial state may be
expected to grow with time. This is explored in Figure 9. Here, two interface
shapes are given at the two times t = 0.1 and t = 0.8, and for exactly the
same set of parameter values as those used in Figure 5. However, in Figure 9,
a perturbation was made to the initial velocity, and the subsequent different
evolution of the solutions in Figures 5 and 9 is due entirely to that fact.

Suppose an initial perturbation is made only to the K-th radial inviscid
mode, in equations (7) and (8). Then the radial velocity component in each
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fluid would be calculated from the first equation in (2) to give

u1(r, θ, 0) =
ηT
2π

(
r − β sin θ

)(
r2 − 2βr sin θ + β2

)
+

ηB
2π

(
r + β sin θ

)(
r2 + 2βr sin θ + β2

)
+ ϵKrK−1 cos(Kθ), if r < 1

u2(r, θ, 0) =
ηT
2π

(
r − β sin θ

)(
r2 − 2βr sin θ + β2

)
+

ηB
2π

(
r + β sin θ

)(
r2 + 2βr sin θ + β2

)
+ ϵKr−K−1 cos(Kθ), if r > 1. (57)

These equations (57) represent a perturbation of the even K-Fourier mode,
and are achieved in the inviscid case simply by setting P1,K = ϵ, P2,K = −ϵ
in the initial conditions; note this is entirely consistent with the linearized
solution (24). The corresponding odd perturbation is produced at the K-
th Fourier mode by replacing the terms cos(Kθ) with sin(Kθ) in equation
(57), and this initial condition is similarly generated by setting Q1,K = ϵ,
Q2,K = −ϵ at time t = 0.

The solution in Figure 9 was achieved with an initial perturbation K = 3
at the third odd radial Fourier mode, with amplitude ϵ = 0.1. At time
t = 0, the interface is originally a circle of unit radius, and the velocity was
started from the initial configuration Q1,3 = ϵ, Q2,3 = −ϵ with amplitude
ϵ = 0.1. By the first time t = 0.1 shown in Figure 9, the third mode
distortion is weakly visible. This mode continues to develop, and the last
time for which the algorithm of section 2 converges is t = 0.8, and this final
configuration is also shown in Figure 9. The third-mode distortion is by
now very strong. When the curvature is examined for the interface at this
time, using equation (56), it is found that the portion closest to the upper
singularity at (x, y) = (0, β) contains a large spike. Evidently a curvature
singularity forms at the interface, above this upper source, for some time
slightly larger than t = 0.8, analogously to the result of Moore [4]. This
accounts for the failure of the algorithm for times larger than that shown in
Figure 9.

The Boussinesq viscous solution may also be started with the perturbed
initial velocity, precisely as for the inviscid solution. The radial outflow in
equation (57), and the corresponding component in the azimuthal θ-direction,
are used to represent this radial perturbation at the K-th mode in purely
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Figure 10: Density contours for the viscous Boussinesq solution, at the times
t = 0.2, t = 0.6 and t = 0.8, t = 1.2. An initial perturbation of amplitude
ϵ = 0.1 was made to the third odd radial mode, K = 3. The non-linear
inviscid solution is shown for the first three times using a heavy dashed line
overlaid on the diagram. Here, D = 1.05, FT = FB = 10, β = 0.8, ηT = 0.1,
ηB = −0.1, and the scales on the axes are equal.
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cartesian coordinates. The x-component of the perturbed contribution to
the velocity may then be written

uE
C(x, y, 0) =

{
ϵKrK−1 cos

(
(K − 1)θ

)
, if r < 1

ϵKr−K−1 cos
(
(K + 1)θ

)
, if r > 1,

(58)

for a perturbation to the K-th even mode. The odd mode uO
C(x, y, 0) at the

same radial orderK is obtained by replacing the two cosine terms in (58) with
sine functions. This horizontal velocity component is now compared with the
Fourier-series representation obtained by differentiating the streamfunction
(44) according to the relations (38). The orthogonality relations for the
trigonometric basis functions then yield

Amn =
2

nπL

∫ L

−L

∫ B

−B

uE
C(x, y, 0) sin

(
mπ(x+ L)

2L

)
cos

(
nπ(y +B)

2B

)
dy dx

m = 1, . . . ,M, n = 1, . . . , N (59)

as the appropriate initial conditions for these Fourier coefficients. The odd-
mode coefficients are obtained by replacing uE

C(x, y, 0) with uO
C(x, y, 0) in this

formula. The integrals in equation (59) are evaluated using Gauss-Legendre
quadrature and the routine of von Winckel [27], as previously.

Figure 10 shows the Boussinesq viscous solution for the same situation
as illustrated in Figure 9. An initial perturbation of amplitude ϵ = 0.1
has been made to the third odd mode, K = 3, and the coefficients then
computed numerically from the odd-mode equivalent of equation (59). In
these diagrams, contours are shown for the perturbed density function ρ̄
computed from its series representation (47). In each of these diagrams, the
viscous interfacial region is clearly visible, and corresponds to the narrow
zone across which the density changes rapidly but smoothly.

The inviscid non-linear solution is also overlaid on the density contours
in Figure 10, for the first three times t = 0.2, 0.6 and 0.8 shown. Beyond
this last time, the inviscid solution fails to converge due to the formation of
a curvature singularity on the interface, near the top source point, as seen
previously in Figure 9. At early times, there is reasonable agreement between
the predictions of the inviscid theory and the location of the interfacial zone
for the viscous model, and this is evident in the first diagram at time t = 0.2
in Figure 10. However, in the viscous solution, the source at y = β = 0.8
and the sink at y = −β = −0.8 soon begin to dominate the flow, creating a
diamond-shaped interfacial zone. As time progresses, this becomes increas-
ingly dissimilar to the inviscid result, and this is due to the vorticity that is
generated in the interfacial zone, in the viscous solution. The final diagram
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Figure 11: Density contours for the viscous Boussinesq solution, at the time
t = 1.2, for a solution started with a perturbation at the odd third mode,
K = 3 with amplitude ϵ = 0.1. The streamlines at this time are overlaid on
these contours, and are indicated with solid (black) lines. Here, D = 1.05,
FT = FB = 10, β = 0.8, ηT = 0.1, ηB = −0.1, and the scales on the axes are
equal. The two small red circles indicate the locations of the source and the
sink.

shown in Figure 10, at time t = 1.2, shows strongly an elongated interface
with a significant outflow near the source at y = β. There is no corresponding
inviscid solution for this time.

The solution at time t = 1.2 from Figure 10 is shown again in Figure
11. The diamond-shaped viscous interfacial zone is again clearly visible,
and the locations of the source and sink at y = ±β are indicated on this
diagram with two small circles. In addition, the streamline pattern at this
same time, computed from the representation (44), is overlaid on the figure
and illustrated with solid (black) lines. It is interesting to contrast this
Figure 11 with the situation in Figure 7, recalling that both pictures were
generated using the same parameter values. The only difference between the
two occurred in their respective initial conditions; the density profiles and
streamlines in Figure 7 represent a solution started purely from the velocity
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Figure 12: The non-linear inviscid solution for two different times t = 0.1
and t = 0.5. The initial speed has been perturbed at the third even radial
mode K = 3 with amplitude ϵ = 0.1. Here, D = 1.05, FT = FB = 10,
β = 0.8, ηT = 0.1 and ηB = −0.1, and the scales on the two axes are equal.
The two small red circles indicate the locations of the source (top) and sink
(bottom).

state determined from the source and the sink, whereas those in Figure 11
resulted from a small perturbation to the odd third radial Fourier mode at the
initial time t = 0. As a result, the streamline pattern in the unperturbed case
in Figure 7 is dominated by the source and sink pair, whereas the streamlines
in the perturbed case in Figure 11 are considerably more complicated. In
this case, vorticity has clearly been generated at the viscous interfacial zone,
and is responsible for the presence of several vortices located around the
region. As a result, the streamlines clearly show several looped regions that
indicate the locations of these vortices. As a check, the vorticity for this
case has been computed from its series representation (45); this is not shown
here in the interests of space, but clearly confirms the presence of vortices
arranged around the interfacial zone, at the same locations as shown by the
streamlines in Figure 11.
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Figure 13: Density contours for the viscous Boussinesq solution, at the times
t = 0.2, t = 0.4 and t = 0.8, t = 1.2. An initial perturbation of amplitude
ϵ = 0.1 was made to the third even radial mode, K = 3. The non-linear
inviscid solution is shown for the first two times using a heavy dashed line
overlaid on the diagram. Here, D = 1.05, FT = FB = 10, β = 0.8, ηT = 0.1,
ηB = −0.1, and the scales on the axes are equal.

To conclude this presentation of results, it is of interest to consider the
same solution, but now perturbed at the third even radial Fourier mode. The
inviscid situation is depicted in Figure 12. Once again, the parameters are
identical to those in Figures 5 and 9, and only differs from those other two
cases in the nature of the initial condition. The behaviour of this non-linear
inviscid solution is markedly different to the situation shown in Figure 9.
Thus, although there is clearly the unstable growth of a perturbation at the
third mode, it is roughly orthogonal to that shown in Figure 9. Eventually,
the inviscid solution fails for a time slightly larger than t = 0.5, and an
examination of the interfacial curvature, calculated from equation (56), shows
that now a curvature singularity begins to form at the point on the interface
closest to the sink at the bottom of the diagram. At this point, the interface
evidently develops an inward-facing cusp, as it is eventually drawn in towards
the sink.
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The corresponding viscous solution is shown in Figure 13. Contours of
the density perturbation function ρ̄ at the two relatively early times t = 0.2
and 0.4 are presented in Figure 13; for these first two times, the non-linear
inviscid solution also exists, and the interface predicted by that model is
overlaid on each picture, and sketched using a heavy dashed line. There is
reasonable agreement between the two at very early times, but the two start
to differ markedly as time progresses. Eventually, the inviscid solution fails
slightly later than t = 0.5, with the formation of a curvature singularity at
the interface near the lower sink point, but the non-linear model continues
to produce results for later times. Two of these are also presented in Figure
13, for times t = 0.8 and t = 1.2. It is interesting to contrast these with
the corresponding solutions in Figure 10, for the same parameter values and
at the same two times, but starting with an odd third-mode perturbation.
The even perturbation used in Figure 13 produces very differently-shaped
outflows, which now have no plane of symmetry and a more elaborate shape.

As for the odd perturbation in Figure 11, the solution at time t = 1.2
produced from an even initial perturbation is displayed in Figure 14. The
viscous interfacial zone is clearly visible in this diagram, and the locations
of the source and sink are indicated with small circles. Unlike the odd case
discussed earlier, it is evident that the interface in this even case now passes
almost directly into these two singularities. In addition, the streamlines
for this situation have again been computed from the representation (44)
and have been overlaid on the density contours and drawn with heavy dark
lines. Their pattern is very different to that shown earlier in Figure 11, and
indicates the location of the vortices which are arranged around the interface
for this case. Again, the vorticity in this situation has been computed, and
while not presented here, it confirms the streamline pattern shown in Figure
14.

6 Discussion and Conclusion

In this paper, viscous and inviscid planar outflow from two line sources has
been considered. These two sources lie within an inner fluid region in which
the fluid is less dense than the surrounding fluid. An interface is present
between the two, and it deforms in response to the movement of the fluid
produced by the sources. Each source is massive, and so generates its own
inwardly-directed gravitational field. The outflow is therefore unstable in
a Rayleigh-Taylor sense, since a heavier surrounding fluid is being pushed
outwards by the lighter inner fluid. As a result, the shape of the interface
is evidently strongly influenced by the initial conditions for the flow, even in
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Figure 14: Density contours for the viscous Boussinesq solution, at the time
t = 1.2, for a solution started with a perturbation at the even third mode,
K = 3 with amplitude ϵ = 0.1. The streamlines at this time are overlaid on
these contours, and are indicated with solid (black) lines. Here, D = 1.05,
FT = FB = 10, β = 0.8, ηT = 0.1, ηB = −0.1, and the scales on the axes are
equal. The two small red circles indicate the locations of the source and the
sink.
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the presence of the two sources.
A linearized solution has been developed for the inviscid model, under the

assumption that the interface remains approximately circular throughout its
evolution. It has been shown that the flow experienced by the inner fluid
is equivalent to one in which there are image sources located at the inverse
distances of the actual sources from the origin, being thus situated within the
surrounding outer fluid. For the fluid outside the interface, there are likewise
equivalent image sources, and these are positioned at the locations of the
two actual sources within the inner fluid. An elegant closed-form expression
is obtained for the interface shape within the early period of its growth; it
agrees well with the numerically obtained non-linear inviscid solution at early
times, but eventually the two differ significantly, since the key linearizing
assumption, that the interface remains roughly circular, fails to hold true for
later times. This is to be expected.

Non-linear inviscid solutions are computed to very high accuracy using a
modification of the spectral method originally proposed by Forbes, Chen and
Trenham [24]. In every case examined, it has been found that the solution
eventually fails beyond some critical time, at which a curvature singularity
is evidently formed at the interface. A similar situation was encountered by
Forbes [19] in a study of radial Rayleigh-Taylor flow, and is consistent with
the original work of Moore [4]. Where, precisely, the curvature singularity
forms is sensitively dependent on the initial conditions for the flow. When
one of the sources has negative strength, and so becomes a sink, it is often
observed that the singularity at the interface forms near that sink; this agrees
with intuition, which suggests that the interface might be drawn inwards
toward the sink, and eventually form a cusp, at which the curvature becomes
infinite. However, there are some initial conditions for which the curvature
singularity forms close to the source, and one such instance has been shown
in Figure 9.

Viscous solutions have also been presented, using the Boussinesq approx-
imation to replace the true viscous interface with a region in which the fluid
density changes rapidly but smoothly from its inner value to the density of
the outer fluid. A new spectral method has been developed, to account for the
presence of multiple singularities within the fluid. The governing equations
are first multiplied by the terms required to cancel the singular behaviour at
the sources, and then spectrally decomposed. Necessarily this means that the
orthogonality of the basis functions cannot be used to give simple differential
equations for the Fourier coefficients, and a matrix equation must instead be
solved for the derivatives of these coefficients at each time step. However,
the coefficient matrix is time-independent, and so can be computed once at
the beginning of the algorithm, stored, and not recalculated. As a result, the
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algorithm retains its numerical efficiency. In fact, it has also been found that
caching the basis functions in the representations (44), (47) at the beginning
of the procedure also leads to a great reduction in computer run time.

The Boussinesq viscous solutions are found to agree well with the non-
linear inviscid solutions at early times, and this fact gives confidence in the
results. However, as time progresses, the two sets of results may diverge,
and this may be due to different physically-based causes. Firstly, the inviscid
solution ultimately fails because the interface develops a curvature singularity
at some finite critical time. This is consistent with the discovery of a similar
effect in Kelvin-Helmholtz (shear) flows by Moore [4]. Viscous solutions do
not experience such singular behaviour, in part because their interfacial zone
is of finite width, rather than occurring as a singular mathematical line, and
also because they have the capacity to generate vorticity at the interface,
which is impossible in the inviscid solution. Indeed, Forbes [9] observed
numerically that, in a viscous Boussinesq solution of the classical planar
Rayleigh-Taylor problem, the viscous solution placed a small intense region
of vorticity at precisely the time and location at which the corresponding
inviscid solution sought to generate a curvature singularity. A second factor
affecting the evolution of the viscous interface is the possible formation of
vortices around the interfacial zone; their number and location is strongly
influenced by initial conditions.

A large number of solutions has been generated in the course of this
study, although most are not presented here. Unlike the case of a single
line source studied by Forbes [19], overturning plumes forming mushroom-
cloud like structures have not been obtained here. Care has been taken in
this paper to ensure that the viscous solutions shown conform to the basic
premise of Boussinesq theory, namely, that the density perturbation should
remain small relative to the background density; in the present dimensionless
variables, this condition reduces to |ρ̄| << 1. Nevertheless, there are many
situations in which this basic requirement ceases to hold. One such example
concerns the case when the two sources differ very markedly in strength; in
that case, a time is soon reached at which the density near one of the sources
evidently forms a large spike, remniscent of a Dirac delta function. Clearly
such a situation violates the requirement of a small perturbation density, and
so it must be the case that Boussinesq theory will fail to be valid in such
circumstances, after a certain time. At present, it is unclear what a more
complete viscous solution might give, and that remains a topic for future
study. In addition, Lee and Kim [30] have pointed out that Boussinesq
theory, as applied by Forbes [9] to planar Rayleigh-Taylor flow, is deficient
in the sense that it always predicts rising bubbles and falling drips that
are symmetrical about the undisturbed surface, while more complete viscous
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models and experiments do not always confirm this prediction. Thus a more
exact viscous theory may yet generate further interesting outcomes in this
problem, but must be left for future study.
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7 Appendix

In this Appendix, the integrals defining the constants Cn(β) and Sn(β) in
equation (28) are calculated in closed form, using the calculus of residues.
For convenience, attention is focussed purely on the two integrals in these
definitions, which are written here as

Kn(β) =

∫ π

−π

cos θ sin(nθ)

1− 2β sin θ + β2
dθ

Ln(β) =

∫ π

−π

cos θ cos(nθ)

1− 2β sin θ + β2
dθ. (60)

These are converted into contour integrals in a complex z-plane, in the
standard manner (see Saff and Snider [31, section 6.2]). The integrals can
be regarded as describing a single revolution on the unit circle |z| = 1,
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parametrized as z = exp(iθ). The two trigonometric functions are elimi-
nated according to the formulae

cos θ =
1

2

(
z +

1

z

)
; sin θ =

1

2i

(
z − 1

z

)
,

and the terms in equation (60) are expressed as

Kn(β) =
i

4β

[
J1 − J2 + J3 − J4

]
Ln(β) = − 1

4β

[
J1 + J2 + J3 + J4

]
. (61)

In this expression, the four terms

J1 =

∮
zn+1(

z − iβ
)(
z − i/β

) dz
J2 =

∮
z1−n(

z − iβ
)(
z − i/β

) dz
J3 =

∮
zn−1(

z − iβ
)(
z − i/β

) dz
J4 =

∮
z−n−1(

z − iβ
)(
z − i/β

) dz (62)

have been defined for convenience. Each of them is a contour integral about
the unit circle traversed once in the positive direction, as illustrated in Figure
15.

The two terms J1 and J3 appearing in equations (62) are straightforward
to evaluate, since they each only contain a simple pole at the single point
z = iβ within the unit circle (since β < 1). The residue at this point is easily
obtained, and it follows that

J1 = 2π
(
in+1

) βn+2(
β2 − 1

)
J3 = 2π

(
in−1

) βn(
β2 − 1

) . (63)

The integrand of the term J2 in equation (62) has both a simple pole at
z = iβ as well as a pole of order n − 1 at the origin z = 0. The residue of
the simple pole is easy to calculate, but that of the high-order pole at the
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Figure 15: The contour used in the complex plane, along which the integrals
in equations (62) are evaluated. The (red) stars denote the possible locations
of pole singularities.

origin is more difficult. It is appropriate to use partial fractions to re-write
this expression as

J2 =
β

i
(
β2 − 1

) ∮ 1

zn−1

[
1

z − iβ
− 1

z − i/β

]
dz.

In this form, the residue of the pole of order n− 1 at the origin may now be
obtained by differentiation, and a little algebra gives the simple final form

J2 = 2π
(
i1−n

) βn(
β2 − 1

) . (64)

A similar use of partial fractions is applied to the expression for J4 in (62),
since it too involves a simple pole at the point z = iβ and a pole of order
n+ 1 at the origin z = 0. This quantity can therefore be calculated to be

J4 = 2π
βn+2

in+1
(
β2 − 1

) . (65)

These four expressions in equations (63), (64), (65) are now substituted
into the expressions (61) for Kn and Ln, and yield the results

Kn = −πβn−1 cos
(
nπ/2

)
Ln = πβn−1 sin

(
nπ/2

)
.
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These formulae now give the final forms (29) in the text.
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