
THE REVIEW OF SYMBOLIC LOGIC

Volume 6, Number 4, December 2013

LP+, K3+, FDE+, AND THEIR ‘CLASSICAL COLLAPSE’

JC BEALL

University of Connecticut and Northern Institute of Philosophy, University of Aberdeen

Abstract. This paper is a sequel to Beall (2011), in which I both give and discuss the philo-
sophical import of a ‘classical collapse’ result for the propositional (multiple-conclusion) logic LP+.
Feedback on such ideas prompted a spelling out of the first-order case. My aim in this paper is to do
just that: namely, explicitly record the first-order result(s), including the collapse results for K3+ and
FDE+.

§1. Introduction. In Beall (2011), I made explicit a ‘collapse result’ for the (multiple-
conclusion) propositional logic LP+, and left implicit the corresponding result for the dual
(Strong Kleene) logic K3+.1 Such logics are philosophically motivated by paradoxical
phenomena – cases of apparent ‘over-determinacy’ (gluts) or ‘under-determinacy’ (gaps).
Such logics are also notoriously weak. But what the collapse results make plain is the
sense in which such logics ‘collapse’ into (the stronger) classical logic in the absence of
(let us say) over-/under-determinacy. Such collapse results, I argued in Beall (2011), carry
philosophical interest: they illuminate a natural way of responding to the weakness of such
logics.

Feedback on such ideas has convinced me that the first-order case is worth formulating.
My aim here is to do just that: namely, explicitly record the first-order result(s) – including
K3+, and FDE+. Though I give a few remarks on the topic at the end of the paper, my aim
here is not to further expound the driving philosophical interest in such results; that is a
matter for a much larger project (Beall, 2013a). My aim here is to be as concise as possible
without being cryptic. I rely on the setup (and proofs) in Beall (2011), and focus on the
LP+ case.

§2. First-order LP+. LP (Asenjo, 1966; Asenjo & Tamburino, 1975; Priest, 1979)
is dual to K3 (Kleene, 1952), both sublogics of classical logic. Following Beall (2011)
I focus on the model-theoretic account of LP+.2 Moreover, I sacrifice (widely available)
details for the sake of brevity and clarity. Priest (2008) provides full discussion of the first-
order model theory of LP (and an adequate tableau system) – and of the dual K3 logic –
and readers not familiar with details are encouraged to consult Priest’s given work.

2.1. LP validity. We assume a standard first-order syntax (though, for simplicity, we
ignore function signs and identity), taking ∃ and ¬ and ∨ as our primtive connectives
(defining ∀ and ∧ and → in the usual way).

Received: April 29, 2013.
1 Superscript ‘+’ is used for the multiple-conclusion generalization of the corresponding single-

conclusion logic. In Beall (2011, Appendix) I presented an adequate two-sided sequent system
for LP+. The first formulation of this (propositional) system in print was due to Avron (1991),
to whom I’m grateful for correspondence on this point.

2 I briefly sketch an adequate sequent system in the appendix.
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LP+, K3+ , FDE+, AND THEIR ‘CLASSICAL COLLAPSE’ 743

Our interpretations are structures I = 〈D, d〉, where D 
= ∅ and d assigns each constant
an element of D and assigns each n-ary predicate a (total) function – the so-called intension
of the predicate – from Dn into V = {1, .5, 0}. Combined with variable assignments ν,
we have a denotation function δ defined in the familiar way: δ(t) = ν(t) if t is variable;
otherwise, δ(t) = d(t).

With such structures in hand, we define the notion of semantic value in terms of valu-
ations, which are (total) functions from wff (standardly defined) and variable assignments
into V . Leaving reference to the given structures implicit, the semantic value |A|ν of
wff A (relative to variable assignment ν) is defined along standard (many-valued) lines,
where A and B are any wff:

1. Atomic: |Pt0t1 . . . tn|ν = d(P)(〈δ(t0), δ(t1), . . . , δ(tn)〉).
2. Negation: |¬A|ν = 1 − |A|ν .

3. Disjunction: |A ∨ B|ν = max{|A|ν, |B|ν}.
4. Quantifier: |∃x A|ν = max{|A|ν[x] : for each x-variant ν[x] of ν}.3

DEFINITION 2.1. (LP model). An LP model M is a pair 〈I, ν〉, where I is an LP interpre-
tation and ν a variable assignment.

DEFINITION 2.2. (LP satisfaction). Let A be any wff and X any set of wff. An LP model M
satisfies A iff |A|ν ∈ {1, .5}, and M satisfies X iff M satisfies each element of X.4

DEFINITION 2.3. (LP dissatisfaction). Let A be any wff and X any set of wff. An LP model
M dissatisfies A iff |A|ν = 0; and dissatisfies X iff M dissatisfies each element of X.

Finally, we define LP validity
lp

⊆ ℘(S) × S per the usual recipe:5

DEFINITION 2.4 (LP). X
lp

A iff no LP model satisfies X and dissatisfies A.

2.2. LP+ validity. The multiple-conclusion generalization of LP is the standard
multiple-conclusion idea: namely, expand the relation of validity from ℘(S) × S to
℘(S) × ℘(S).

DEFINITION 2.5. (LP+). X
lp

+
Y iff no LP model satisfies X and dissatisfies Y .

An important observation for present purposes is a notable relation between invalidities in
LP and corresponding validities in LP+. Example: while we have the notable invalidity

∃y H y, ∀z(¬H z ∨ Gz) 

lp

+ ∃yGy

we also have the corresponding LP+ validity:

∃y H y, ∀z(¬H z ∨ Gz)
lp

+ ∃yGy, ∃x(H x ∧ ¬H x)

3 The notion of an x-variant is the standard one: ν′ is an x-variant of ν just if ν′ differs from ν at
most on x .

4 NB: It is here and only here – viz, (dis-) satisfaction – where K3 model theory differs from
LP. In K3, satisfaction and dissatisfaction are defined in terms of |A|ν = 1 and |A|ν ∈ {.5, 0},
respectively.

5 Here, we let S comprise all sentences of the language, and count validity as a relation from sets
of sentences to sentences (not open sentences).
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744 JC BEALL

It is this pattern of inconsistent-conclusion claims (or, in K3, ‘complete-premise claims’)
that our target result captures – a ‘collapse’ of LP+ to classical logic.

§3. The classical collapse: LP+. The proof has the structure of the proof in the propo-
sitional case (Beall, 2011); the key difference is defining the appropriate ‘inconsistency
set’, which is done by stacking existential quantifiers (dually, universal quantifiers for the
K3 case).

DEFINITION 3.1. Let σ(X) be the set of all subformulae (including formulae) in X.

DEFINITION 3.2. Let α(X) be the set of all atomic formulae Pt0t1 . . . tn in σ(X), where
the ti are any terms.

DEFINITION 3.3. (Inconsistency set). Let the vi be object variables and ti any terms. Then
ι(X) is the set of all formulae of the form

∃v0 ∃v1 . . . ∃vn (Pv0v1 . . . vn ∧ ¬Pv0v1 . . . vn)

for all formulae Pt0t1 . . . tn in α(X).6

DEFINITION 3.4. (Classical model for wff). Let A be an arbitrary formula (possibly with
free variables). An LP model M is classical for A just if |A|ν ∈ {0, 1}; and M is classical
for X just if classical for all elements of X. (If M is not classical for X, we say that M is
nonclassical for X.)

LEMMA 3.5. If an LP model M is nonclassical for X, then M does not dissatisfy X.
(Proof: M assigns .5 to – and hence satisfies – something in X.)

DEFINITION 3.6. (Purely classical model). We say that an LP model is purely classical iff
it is classical for all wff (i.e., iff it is a standard classical model).

LP model theory gives us a new (nonclassical) way of satisfying sentences but no novel
dissatisfaction. This feature is reflected in the following lemma.

LEMMA 3.7. (Classical twins). Let M be an LP model. If M is classical for X, then
there’s a purely classical model M ′ for X such that for any sentence A in X, M
(dis-)satisfies A iff M ′ (dis-)satisfies A.

Proof. The proof constructs (or gives the recipe for constructing) an LP model Mc =
〈I c, ν〉 to serve as M’s ‘purely classical twin’. Denotation remains per M

δc(t) = δ(t)

but we fix Mc’s treatment of predicates thus:

I c(Pn)(〈x1, . . . , xn〉) =
{

1 if I (Pn)(〈x1, . . . , xn〉) ∈ {1, .5},
0 otherwise.

Taking the constructed ‘twin’ to be the theorem’s target purely classical model, the proof
proceeds by induction on the structure of formulae. (Exercise.) �

6 We include the case where P is a 0-ary predicate in α(X), in which case there are no free variables,
and so no existential quantifiers. This is the case established in Beall (2011).
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LP+, K3+ , FDE+, AND THEIR ‘CLASSICAL COLLAPSE’ 745

DEFINITION 3.8. (ν-variant model). Let M and M∗ be LP models. M∗ is a ν-variant of M
just if the two models are exactly alike except perhaps for their variable assignments.

LEMMA 3.9. Let M be an LP model; and let M be nonclassical for A (i.e., assigns
the value .5 to A). Then there’s some atomic subformula Pt0t1 . . . tn of A for which M∗
is nonclassical, where M∗ is some ν-variant of M.7 (Proof is via induction, and left for
reader.)

Let c
+

be the multiple-conclusion generalization of classical consequence (defined model-
theoretically per above).

THEOREM 3.10. (LP+ collapse). X c
+

Y iff X
lp

+
Y ∪ ι(X).

Proof. The RLD follows from (elementary) reasons given in Beall (2011).

LRD. Suppose that X c
+

Y and let M be an LP model that satisfies X .

CASE 1. M is classical for X . There are two relevant subcases for Y .

1. M is nonclassical for Y . By Lemma 3.5, M does not dissatisfy Y , and hence does
not dissatisfy Y ∪ ι(X).

2. M is classical for Y . In this case, M is classical for X ∪ Y . By Lemma 3.7, there’s
a purely classical model M ′ for X ∪ Y that agrees with M on the (dis-) satisfaction
status of each element of X ∪ Y . Since M satisfies X , so too does M ′. But, then,

M ′ does not dissatisfy Y , since X c
+

Y ; and so M does not dissatisfy Y ; and hence
M does not dissatisfy Y ∪ ι(X).

CASE 2. M is nonclassical for X . Then, by definition, there’s some A in X for which M is
nonclassical. Hence, by Lemma 3.9, there’s some subformula Pt0t1 . . . tn of A for which
some ν-variant M∗ of M is nonclassical. But, then, by LP model theory (viz., clause for
existentials),8 M itself is at least nonclassical for the sentence

∃x ∃y . . . ∃z (Pxy . . . z ∧ ¬Pxy . . . z)

and so M does not dissatisfy ι(X), and so does not dissatisfy Y ∪ ι(X). �

§4. The classical collapse: K3+. In Beall (2011) I noted that K3+ enjoys a dual result
but did not give the result explicitly. I pause here to explicitly record the result.

DEFINITION 4.1. (Completeness set). Let the vi be object variables and ti any terms. Then
e(X) is the set of all formulae of the form

∀v0 ∀v1 . . . ∀vn (Pv0v1 . . . vn ∨ ¬Pv0v1 . . . vn)

for all formulae Pt0t1 . . . tn in α(X).

Just as ι(X) is the ‘inconsistency set’ for X , we have e(X) the dual: it is the ‘completeness
set’ or ‘exhaustive set’ (so to speak) for X .

7 Thanks to Joshua Schechter for spotting an error in an earlier version of this lemma.
8 As an anonymous referee noted, the following step also assumes, in addition to the clause for

existentials, the fact – sometimes called ‘agreement property’ – that if models differ only on
variables not occurring in A, they agree on the value of A.
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746 JC BEALL

THEOREM 4.2. (K3+ collapse). X c
+

Y iff e(Y ) ∪ X
k3

+
Y.

Proof. This follows the proof for LP+ exactly, mutatis mutandis. �

REMARK 4.3. Just as LP model theory gives us a new way of satisfying sentences but
no new ways of dissatisfying sentences, K3 model theory delivers no new way of satisfying
sentences but does give a new way of dissatisfying sentences. Hence, among the required
changes to get the proof for K3+ is Lemma 3.5: if a K3 model M is nonclassical for X,
it does not satisfy X.

§5. The classical collapse: FDE+. Putting the foregoing collapse results together
gives the corresponding collapse result for the logic FDE (Anderson & Belnap, 1975;
Anderson et al., 1992), which has both LP and K3 as proper extensions: it is both ‘para-
complete’ and ‘paraconsistent’, affording both a new way of dissatisfying sentences and
a new way of satisfying sentences. Where e(Y ) and ι(X) are as above, the result is a
straightforward combination:

THEOREM 5.1. (FDE+ collapse). X c
+

Y iff e(Y ) ∪ X
fde

+
Y ∪ ι(X).

The proof is left as exercise.

§6. Philosophical interest. The foregoing results explicitly record the sense in which
LP and, dually, K3 (and, more generally, FDE) ‘collapse’ to classical logic. One might
wonder whether there is any philosophical interest in these results. The answer, as sug-
gested in Beall (2011), is affirmative, though I only sketch the idea here.

LP and K3 enjoy a good deal of philosophical interest: they are natural candidates for
underwriting theories of paradoxical phenomena (Asenjo, 1966; Asenjo & Tamburino,
1975; Beall, 2009; Dunn, 1969, 1976; Field, 2008; Horsten, 2011; Kripke, 1975; Priest,
2006; Routley, 1979). But these logics have an apparently big defect: they are very weak.
In LP, for example, material detachment (henceforth, detachment) – similarly, disjunctive
syllogism – fails, where A ⊃ B is defined as ¬A ∨ B:9

A, A ⊃ B 

lp

B

And there’s nothing (at least nothing obvious) one can add to the premise set to remedy the
situation – at least if the resulting language is to remain safe from the sorts of paradox that
motivate the weaker logic to begin with. The question has always been: what to do about
such weakness?

The foregoing ‘collapse results’, especially in the multiple-conclusion setting, nicely
illustrate a response to the weakness of the given logics. Consider, in particular, the LP+
case. While detachment fails, we nonetheless have the following validity, the cousin of
detachment:

A, A ⊃ B
lp

+
B, A ∧ ¬A

Notice that the premise set fails to imply any proper subset of the conclusion set. One way
of thinking about what’s going on is that logic has left us with a ‘choice’. When we ask
logic what follows from {A, A ⊃ B}, logic tells us that {B, A ∧ ¬A} follows, not that B

9 Indeed, in LP there is no (nontrivial) detachable connective at all (Beall et al., 2013).
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LP+, K3+ , FDE+, AND THEIR ‘CLASSICAL COLLAPSE’ 747

follows. But how do we choose between B and A ∧ ¬A? Since logic has left us with the
choice, we are left to rely on extra-logical principles to make our choice (e.g., principles
about rationally rejecting contradictions or etc.).

The case with K3, and more generally, FDE, is precisely the same. The logic itself is
weak in various respects; however, by relying on extra-logical principles of acceptance
(e.g., that in, say, physics we should accept all instances of excluded middle or etc.)
we overcome the weakness of logic in our application of the logic – our acts of inference
from choices that logic leaves us (Beall, 2013a; Harman, 1986).

6.1. Theory expansion. The philosophical application of these ideas can be seen from
a different, though closely related, perspective.10 Think about theory expansion, where
theories, in this context, are sets of sentences. Theory expansion is often achieved via
closure operators (more below); but this can, in some cases, leave more expanding to
do – at no fault to the closure operator. Let me (briefly) explain.

In our efforts to expand our theories, we construct closure operators under which we
expand (by closing) our theories. In most cases, logic itself is insufficient as a closure
operator, usually because it’s silent on the nonlogical vocabulary of the theory. This is why
closure-operator construction often utilizes nonlogical rules: rules that are not delivered by
logic but are motivated by the theory’s phenomena.11

The LP closure operator, constructed by constraining the LP+ operator to singleton
conclusions, is this:

Cn(X) = {A: X
lp

A}
As with other subclassical closure operators, the problem with the LP closure operator is
its weakness. In many cases, we want B to be in the expansion of our theory {A, A ⊃ B},
but the LP closure of {A, A ⊃ B} doesn’t contain B. That’s just the failure of detachment.

6.2. Expansion via shrieking. One natural response to the problem is to strengthen the
logical closure operator with nonlogical rules. The most natural approach is the ‘shrieking
approach’ (Beall, 2013b,c; Priest, 2006). The basic idea can be conceived as follows.12

Logic (let us say, LP) dictates a wide class of models – the class of models deemed
‘logically possible’ according to logic. Closing our theories under logic (i.e., the logical
closure operator defined over the given class of models) takes our theories as far as logic
itself goes; but we might have theoretical reasons to close our theories under a stronger-
than-logic closure operator. We might, in other words, have theory-specific reasons to

10 I’m grateful to an anonymous referee for prompting this expanded discussion of some of the
philosophical ideas around the collapse results.

11 Terminology is nonuniform (at best) around this topic. Some researchers talk of the ‘logic of
such-n-so’ (e.g., logic of knowledge, logic of necessity, etc.), where the such-n-so is a notion or
operator that is beyond bare logic on traditional criteria (e.g., ‘topic neutrality’, or etc.). In my
view, what researchers are doing when they’re doing so-called logic of knowledge (to take one
example) is coming up with nonlogical rules that are thought to be essential to the right closure
operator for the theory of knowledge. Logic doesn’t tell you that knowledge ‘delivers’ truth;
however, the appropriate closure operator for the theory of knowledge (say, K ) should deliver
as much via a standard (nonlogical) rule: K (A) delivers A, where the delivers relation is simply
delivers according to the closure operator.

12 NB: my aim here is not to give a full discussion (or details) of how the shrieking method works;
I give it only as an example that helps to illustrate some of the philosophical issues addressed by
the ‘collapse results’ discussed in this discussion.
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748 JC BEALL

invoke a closure operator that properly extends the purely logical closure operator
(i.e., if the logical operator puts A in the closed theory, so does the stronger closure
operator, but the latter puts more into the theory than the purely logical operator does). And
this, at least on one (model-theoretic) way of thinking, drives the basic ‘shrieking method’.

Letting A! (pronounced ‘A shriek’) be A∧¬A, we construct nonlogical ‘shriek rules’ for
given predicates in the language of the theory.13 For simplicity, consider a unary predicate
P in the language. Letting T be the theory’s closure operator, predicate P’s shriek rule is
a nonlogical rule – part of the constructed closure operator – of the form:14

∃x (Px!) T ⊥
Such rules, conceived model-theoretically, have the effect of restricting the class of LP
models. Indeed, given the classical collapse result for LP+, as in §3, it is not difficult to
see that such shriek rules, if applied to all predicates of the theory’s language, result in
an in-effect classical theory:15 the resulting theory is (negation-) inconsistent on pain of
triviality. For just this reason, if we have ‘shrieked’ (given shriek rules for) all predicates
in A, then we get the effect of detachment via our theory’s (stronger-than-logic) closure
operator; {A, A ⊃ B}, according to the bolstered closure operator, ‘delivers’ B for all
A and B, since (we’re assuming) we have shrieked A itself (and all predicates in it):

A! T ⊥
The models recognized by T are (for lack of better terminology) T -admissible models.
Any T -admissible model in which A! is true is the trivial model; and any T -admissible
model in which {A, A ⊃ B} is true is one in which B is true. This isn’t the validity of
detachment; but it is a sort of ‘detachment’ – theory-specific detachment, tied specifically
to a theory’s closure operator.

6.3. When shrieking ends: extra-logical choices. But now a question emerges: if the
‘shrieking method’ suffices for getting suitable closure operators for our theories, ones
that deliver the effect of detachment, then why do we need to talk about ‘choices that logic
leaves us’ and ‘extra-logical principles of acceptance/rejection’ and the like? More crudely:
why not just say that detachment (or disjunctive syllogism, etc.) is logically invalid but that
it is ‘good by the lights of our bolstered closure operator’? If, in response to the weakness
of our logic (e.g., failure of detachment or of disjunctive syllogism, etc.) we construct a
stronger-than-logic closure operator that delivers all of the effects of having detachment,
then we haven’t really lost detachment or disjunctive syllogism or the like at all – and so
the issue seems to be little more than terminological. But it’s not so simple.

In our efforts to expand our theories, we invoke logic’s closure operator. The result
of such closure delivers fewer claims than we think our theory should contain. In turn,

13 Priest (2006) advanced (what I call) the shrieking idea early on, though his formulation suffers
from using a logical-strength conditional (and his formulation is more coarse-grained than the
predicate-tied approach I’ve advanced elsewhere). See Beall (2013b) for discussion, and Beall
(2013c) for the basic method.

14 In what follows, ⊥ is some sentence that, according to either logic or the bolstered (theory-
specific) closure operator, implies all sentences.

15 By classical theory, in this context, I mean a theory closed under classical logic or under any
closure operator that, via nonlogical rules, strengthens – but assumes as basic – the classical
closure operator.
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LP+, K3+ , FDE+, AND THEIR ‘CLASSICAL COLLAPSE’ 749

we bolster logic with nonlogical rules in our effort to construct a more appropriate, stronger
closure operator. In the case under discussion, namely, LP-based theories, we construct
stronger operators via nonlogical shriek rules (among other nonlogical rules).16 But, of
course, we cannot forget the phenomena that drove us ‘below’ classical logic to begin
with, such as the paradoxes (e.g., truth-theoretic paradoxes, or the like)! Accordingly, we
cannot shriek all predicates of the language: we can’t shriek the ones that deliver gluts!

Where does this leave us? The answer points back to the importance of extra-logical
principles of acceptance/rejection etc. Consider, in particular, the predicates that we do not
shriek. Let G be such a predicate. Since we do not have shriek rules for G (or anything
with their effect), we have nothing in the closure operator of our theory beyond what basic
logic delivers. And now we are back to the need for extra-logical principles in the face of
‘choices’ that logic gives us. In short, we want to expand our (say, super theory of) theory
{Gb, Gb ⊃ Pb}, where P can be shrieked or not, and b is some name. We have no special
nonlogical rules governing G, and so our theory’s overall closure operator simply looks to
logic for what follows. Logic doesn’t sanction detachment, and so we don’t get Pb from
logic. What logic does sanction is the cousin of detachment:

{Gb, Gb ⊃ Pb}
lp

+ {Pb, Gb!}
But our aim is to expand our theory. Logic gives us the choice between Pb and Gb!, but it
fails to zero in on exactly one of them. The rational route towards expansion is the familiar
one: we now rely on extra-logical principles of acceptance and/or rejection. In the current
case, we rely on a longstanding rejection principle:

IR. Reject contradictions (i.e., sentences of the form A ∧ ¬A)!

Relying on this principle, we reject Gb! and expand our theory with Pb. This is something
we do; our closure operator is not up to the task.

Bolstering closure operators via (nonlogical) shriek rules goes a long way towards living
without detachment, disjunctive syllogism, or the like; but not every predicate can be
shrieked – the paradoxical phenomena that motivated going subclassical can’t be shrieked.
When the shrieking stops, we are left with the choices that logic leaves us; and that’s where,
I have suggested, extra-logical principles come into play.

There is much more to be said on this topic, but the general philosophical interest in the
given ‘collapse results’ is (I hope) clear. What these results suggest is that, when nonlogical
(say, shriek) rules are inappropriate, the weakness of the logics (or closure operators built
on top of them) is overcome via other resources: we rely on extra-logical resources to
reject all elements of ι(X) or, dually, accept all elements of e(X), and in so doing ‘return’
to patterns of classical inference.17

§7. Acknowledgments. In addition to very useful comments from anonymous ref-
erees, I am very grateful to a number of people whose feedback on the ideas in Beall

16 All of these claims apply to the other target subclassical cases, though in the case of K3+ one
adds nonlogical ‘exhaustion’ rules or axioms. (One doesn’t have to add shriek rules to K3+-based
closure operators, since shrieking is already part of the logic itself.) I focus on LP.

17 This idea is not at all incompatible with ideas in the literature (Beall, 2009; Belnap & Dunn, 1973;
Field, 2008; Priest, 2006), but it does cast a new light on available resources for nonclassical
theorists (e.g., nonclassical truth theorists, etc.).
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(2011) directly motivated this note: Michael Glanzberg, Volker Halbach, Ole Hjortland,
Leon Horsten, Hannes Leitgeb, Toby Meadows, Julien Murzi, Stephen Read, and Stewart
Shapiro. Additionally, I’m grateful for support from the MCMP in Munich, and for a very
productive MCMP conference on truth theories that greatly benefited my work. I’m also
grateful for ongoing discussion with other travelers in the ideas of this project: Aaron
Cotnoir, Hartry Field, Michael Hughes, Graham Priest, Greg Restall, Lionel Shapiro, and
Ross Vandegrift – and, out of alphabetical order but perhaps above all, very much David
Ripley. Additionally, I want to express special thanks to Henry Towsner, who quickly
confirmed the proof idea in an e-mail by in fact formulating his own version, and also
to Joshua Schechter who, as noted in a footnote, spotted an error in an earlier formulation
of Lemma 3.9 (and, hence, in corresponding proofs of theorems) – and also offered very
useful feedback. Finally, I’m grateful to participants in a NELLC meeting at Yale Univer-
sity in April 2012 during which some of these ideas were discussed, including Susanne
Bobzien, Phil Bricker, Agustin Ráyo, Marcus Rossberg, Zoltán Szabó, Bruno Whittle, and
especially Vann McGee, whose subsequent correspondence on the topic(s) continues to be
valuable.

A. Appendix: a sequent system for LP+. An adequate two-sided sequent system for
(first-order) LP+ may be achieved via the flip-tableau method followed in Beall (2011,
Appendix). In this appendix I simply set out the system (with a note on adding identity),
rehearsing a lot of presentation from Beall (2011), and relying on the adequate first-order
LP tableau system (and proofs) available in Priest (2008).18 I note here, again, that Avron
(1991) was the first to record the propositional fragment of this system (and many related
systems).

A.1. Notation. Throughout, A and B are any sentences unless otherwise noted; �, 	,

 and � are any sets (not multisets) of sentences; and, following convention, the comma
is union and ‘�, A’ abbreviates ‘� ∪ {A}’. I use the turnstile for sequents. In the quantifier
rules, v is any variable; c is any (closed) term (constant, since we are ignoring function
signs); A(v/c) is the result of replacing all free occurrences of v in A with c; and [c] is any
‘new’ term (standardly defined).

A.2. Axioms.

A1. Identity: �, A � A,	, where A is any sentence.19

A2. Exhaustion: � � A, ¬A,	, where A is any atomic.20

18 As noted in Beall (2011, Appendix), the idea of this method is to take an adequate (so-called
tagged) tableau system for a given many-valued logic and ‘flip’ its rules to get the corresponding
sequent rules – following the policy of ‘positive tags on the left’ and ‘negative tags on the right’.
In what follows, I stick to the tableau system in Priest (2008) and its (cut-free) adequacy results.
(I do not explicitly formulate the K3+ system, but dualizing the rules – keeping the policy about
tags as above – will suffice.)

19 An alternative approach is to formulate Identity for all literals, and show that it holds for all
sentences; however, a direct ‘translation’ of the target tableau system (Priest, 2008), on whose
adequacy results I rely, takes Identity for all sentences as primitive. (NB: that one needs to take it
as primitive at least for all literals is a feature of the nonclassical negation at work.)

20 A negation ¬ connective is sometimes said to be exhaustive just when its version of excluded
middle holds, that is, just when A ∨ ¬A is valid. The role of our exhaustion axiom here is to
ensure LP+’s exhaustive negation.
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A.3. Operational rules. What is peculiar about negation in LP+ is its interaction with
other connectives. Classical rules are fine for conjunction and disjunction; it’s in negation’s
interaction with such connectives where the nonclassicality emerges. All of this is reflected
directly in the familiar tableau system(s) for LP (Priest, 2008); and the rules below simply
rewrite such tableau rules in two-sided set-set sequent form.

A.3.1 Classical ∧ rules.
�, A, B � 	∧ Left:

�, A ∧ B � 	

� � 	, A � � 	, B∧ Right:
� � 	, A ∧ B

A.3.2 Classical ∨ rules
�, A � 	 �, B � 	∨ Left:

�, A ∨ B � 	

� � 	, A, B∨ Right:
� � 	, A ∨ B

A.3.3 Negated conjunctions.

�, ¬A ∨ ¬B � 	¬∧ Left:
�, ¬(A ∧ B) � 	

� � ¬A ∨ ¬B,	¬∧ Right:
� � ¬(A ∧ B),	

A.3.4 Negated disjunctions.

�, ¬A ∧ ¬B � 	¬∨ Left:
�, ¬(A ∨ B) � 	

� � ¬A ∧ ¬B,	¬∨ Right:
� � ¬(A ∨ B),	

A.3.5 Negated negations.

�, A � 	¬¬ Left:
�, ¬¬A � 	

� � A,	¬¬ Right:
� � ¬¬A,	

A.3.6 Classical ∀ rules.
�, A(v/c) � 	∀ Left:

�, ∀v A � 	

� � A(v/[c]),	∀ Right:
� � ∀v A,	

A.3.7 Classical ∃ rules.
�, A(v/[c]) � 	∃ Left:

�, ∃v A � 	

� � A(v/c),	∃ Right:
� � ∃v A,	

A.3.8 Negated universals.

�, ∃v¬A � 	¬∀ Left:
�, ¬∀v A � 	

� � ∃v¬A,	¬∀ Right:
� � ¬∀v A,	

A.3.9 Negated existentials.

�, ∀v¬A � 	¬∃ Left:
�, ¬∃v A � 	

� � ∀v¬A,	¬∃ Right:
� � ¬∃v A,	

A.4. Structural rules. Since we’re using sets, we rely on the (free) rules of contraction
and permutation. Cut, which is eliminable (but see Section A.3), is a rule:

� � 	, A A, � � 

Cut:

�,� � 	,


Weakening rules, namely,

� � 	Weakening Left:
�, A � 	

� � 	Weakening Right:
� � A,	

are both eliminable for a standard reason: the ‘nature’ of our sequents – the axioms govern-
ing them – already allow side premises (antecedents) and side consequents (succeedents).

A.5. Validity. We say that sequent � � 	 is valid just if derivable via the above rules.
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A.6. Some results.

THEOREM A.1. (Adequacy). �
lp

+
	 if and only if � � 	 is valid.

Proof. The soundness proof is straightforward. The completeness proof covered by
Priest (2008) for the corresponding tableau system carries over directly, where, as above,
the negative tableau tag corresponds to the right position in our sequents, and the positive
the left.21 �
THEOREM A.2. (Cut elimination). Any valid sequent derivable with Cut is derivable
without cut.

Proof. The given completeness proof is Cut-free, which, together with soundness,
affords a straightforward induction on proof length. �

A.7. Adding identity to LP. Adding identity to LP (similarly K3, FDE) is relatively
straightforward, at least model-theoretically. For LP ‘semantics’, we ensure that all ‘iden-
tity pairs’ 〈o, o〉 are in the extension of the identity predicate; however, unlike classical
logic (and K3), identity claims can be false too: ¬(t = t) can be true (e.g., if in a model
the intension of the identity predicate maps 〈δ(t), δ(t)〉 to the nonclassical value).

But adding identity in a sequent setting raises issues highlighted by Negri & von Plato,
issues brought to my attention by David Ripley (correspondence) and anonymous refer-
ees.22 In general, as Negri & von Plato illustrate, adding axioms for (say) identity in a
sequent setting ruins either the no-exceptions cut-elimination property (all cuts, including
those on identity claims, can be eliminated) or the no-exceptions subformula property
(holds for all sequents, including identity-involving ones).

In our LP+ case, we lose the general (i.e., no-exceptions) subformula property (one has
the subformula property except for identity claims); but we keep general (no-exceptions)
cut-elimination. The most straightforward ‘translation’ of our target tableau identity rules
delivers sequent rules that preserve cut-elimination, and indeed take a form in the family
of Negri & von Plato’s (2008) strategies for preserving general cut-elimination.

Following our ‘flipped-tableau translation’ strategy, we augment the sequent system with
identity by adding two (left) rules and a ‘drop’ rule:23

21 The only fiddle one needs to do is translate my talk of models (dis-) satisfying formulae and sets
of formulae into Priest’s use of so-called ‘relational models’. The ‘translation manual’ in Beall
(2011, Appendix) will serve to give the basic idea.

22 I have benefited greatly from correspondence with David Ripley on this issue.
23 The two left rules are straightforward ‘translations’ of the corresponding tableau rules:

c = c′, +
A(v/c), +

↓
A(v/c′), +

The ‘drop’ rule, in turn, ‘translates’ the tableau rule which, in effect, says that one gets any free
identity claim (positively marked) from nothing on any branch of the tableau, namely:

↓
c = c, +

This rule ‘translates’ into a sequent rule that breaks the general subformula property: it drops an
identity claim into nothing – the claim disappears (so to speak). The terminology of ‘drop rule’ is
from Ripley (2013a,b).
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Identity rules

�, A(v/c) � 	= Left-1:
�, c = c′, A(v/c′) � 	

� � A(v/c),	= Left-2:
�, c = c′ � A(v/c′),	

Identity drop rule
�, t = t � 	= Drop:

� � 	

The adequacy results in Priest (2008) cover the resulting system, which, as above, does not
have the no-exception subformula property but does enjoy general (i.e., no-exceptions) cut
elimination.
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