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A Relative Density Ratio-Based Framework
for Detection of Land Cover Changes

in MODIS NDVI Time Series
Asim Anees, Jagannath Aryal, Małgorzata M. O’Reilly, and Timothy J. Gale

Abstract—To improve statistical approaches for near real-time
land cover change detection in nonGaussian time-series data, we
propose a supervised land cover change detection framework in
which a MODIS NDVI time series is modeled as a triply mod-
ulated cosine function using the extended Kalman filter and the
trend parameter of the triply modulated cosine function is used to
derive repeated sequential probability ratio test (RSPRT) statis-
tics. The statistics are based on relative density ratios estimated
directly from the training set by a relative unconstrained least
squares importance Fitting (RULSIF) algorithm, unlike tradi-
tional likelihood ratio-based test statistics. We test the framework
on simulated, synthetic, and real-world beetle infestation datasets,
and show that using estimated relative density ratios, instead
of assuming the individual density functions to be Gaussian or
approximating them with Gaussian Kernels, in the RSPRT statis-
tics achieves better performance in terms of accuracy and detec-
tion delay. We verify the efficiency of the proposed approach by
comparing its performance with three existing methods on all the
three datasets under consideration in this study. We also propose
a simple heuristic technique that tunes the threshold efficiently in
difficult cases of near real-time change detection, when we need
to take three performance indices, namely, false positives, false
negatives, and mean detection delay, into account simultaneously.

Index Terms—Change detection, extended Kalman filter (EKF),
model fitting, MODIS, relative density ratio, time series.

I. INTRODUCTION

L AND COVER change detection research has seen sig-
nificant recent contributions [1]–[19]. However, every

proposed framework has its limitations on global scale due to
particularity of the task at hand and the circumstances under
which it is developed. Hence, no single framework is optimal
in a wide range of scenarios simultaneously. Therefore, an effi-
cient change detection framework is always in demand for a
particular task and circumstances under consideration. In this
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study, our main focus is on the changes induced by beetle infes-
tations in pine forests, which is one of the major causes of land
cover changes in North America [2], [3]. We utilize coarse spa-
tial resolution MODIS data due to its free-of-cost availability
and high temporal resolution.

Many studies have been published which utilize coarse spa-
tial resolution data in addressing land cover change detection
[10]–[18], [20]. Some of these studies propose methods which
are not designed for detecting changes sequentially in near real
time [11], [12], [15], [17], [18], [20]. In order to be able to
mitigate the factors that are causing unwanted changes, early
detection is crucial [10], [14], [16]. Therefore, considerable
importance has been given to statistical approaches for near
real-time land cover change detection over the recent past [10],
[13], [14], [16], [21], [22].

The term “near real time” theoretically means that the algo-
rithm can detect a change event with a small delay (in terms
of number of observations) after the time point at which it
has actually occurred, using only current and past observations.
However, in remote sensing, its meaning is relative, depending
on the type of application, i.e., types of changes being targeted
and the data being used. Some changes are gradual and any
change detection method may take a considerable number of
observations before detecting them, still the methods are termed
as near real time. For example, the studies published in [10],
[14], and [16] introduced near real-time methods for detecting
changes in MODIS time-series data. The number of obser-
vations required by these methods before detecting changes
may sound nonreal time, but because of the type of changes
addressed in these studies, i.e., beetle infestations (slow and
gradual), they are declared as near real time.

Some existing methods [13], [20] derive test statistics from
the raw vegetation index time series or the error between the
model and observed time series [10], but it was suggested
in [14] and [16] that calculating change metrics from the
parameter time series (time-varying parameters of the fitted
model) achieve better performance. There are two main issues
when we consider these statistical approaches for near real-
time land cover change detection. First, most of them either
assume that the underlying density functions under null or alter-
native hypothesis are Gaussian [10], [14], [16], or they use
Gaussian kernels to estimate the individual density functions
[13]. The real-world data may often be far from being Gaussian.
This results in errors in estimated or assumed underlying dis-
tributions, which achieve suboptimal performance [23], [24].
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Second, commonly two performance indices, namely: false
positives (FP) and false negatives (FN), are considered while
evaluating the change detection methods [13]. Evaluation of
a near real-time method can be based on three performance
indices, namely FP, FN, and mean detection delay (MD),
instead of only FP and FN as in the case of offline change detec-
tion methods [13], [14]. Increasing threshold normally reduces
FP rate, but increases MD and FN, and vice versa. Therefore,
finding an optimal tradeoff manually between acceptable val-
ues of the three performance indices becomes challenging. Note
that the readers should not confuse MD with the computational
time or computational complexity of the algorithm here. MD is
the average detection delay calculated in terms of the number of
time points (observations) between the actual point of change in
the ground truth data (or selected reference point) and the point
where change alarm is raised. Therefore, its units depends upon
the temporal resolution of the data under consideration, which
may vary from application to application. We use generic units
(observations or time points) for MD in this manuscript, which
can be interpreted easily in different applications, according to
the temporal resolution of the time-series data being used.

It was argued in [23]–[27] that approximating individual
densities or assuming the individual densities to be Gaussian
leads to more errors. However, when the test statistics are
based on density ratios, we can avoid estimating individ-
ual densities or assuming them to be Gaussian as shown in
[23], [24]. It was shown in [23], [25], and [26] that direct
density ratio estimation performs better than estimating indi-
vidual densities using Gaussian Kernels or assuming them to
follow Gaussanity. A number of studies have proposed dif-
ferent methods for direct density ratio estimation, e.g., kernel
mean matching [28], the logistic regression method [29], and
Kullback–Leibler importance estimation procedure (KLIEP)
[25]. KLIEP was shown to be promising in change detection
framework [23]. A more recent algorithm in this regard, namely
unconstrained least squares importance fitting (ULSIF), was
proposed in [26] and shown to have optimal nonparametric con-
vergence rate [30], optimal numerical stability [31], and higher
robustness than KLIEP [32]. However, [27] reported a potential
weakness of density ratio-based approaches that density ratios
can be unbounded, and proposed relative ULSIF (RULSIF)
algorithm, which uses relative density ratios that are always
bounded. RULSIF was shown to achieve better estimation and
nonparametric convergence than ULSIF. Although the existing
remote-sensing literature on land cover change detection con-
tains several methods based on traditional likelihood ratios with
individual densities either assumed to be Gaussian, or estimated
using Gaussian kernels, there is no study to our knowledge that
has exploited the usefulness of relative density ratio estimation
as proposed in [24], [27].

In this study, one of our main aims is to highlight and
re-emphasize the usefulness of relative density ratios in remote-
sensing applications. We investigate the advantages of using
relative density ratio estimation in supervised near real-time
classification of change and no-change events within the
MODIS NDVI time series. Our proposed change detection
framework models MODIS 8-days 500-m NDVI time series
by a triply modulated cosine function [17], [18] and uses the

extended Kalman filter (EKF) [33] to derive its time-varying
parameters. As suggested in [1], [14], and [15], changes which
affect the trend of the signal can be captured in the trend
parameter of the triply modulated cosine function. Therefore,
our proposed framework learns relative density ratios from
the trend parameters of the change and no-change training
sets using the RULSIF algorithm [24]. Once the training is
done, these estimated relative density ratios are used to derive
repeated sequential probability (RSPRT) [33] statistics online,
which can be compared to a tuned threshold to detect changes
in near real time.

We also address the issue of finding an acceptable trade-
off between FP, FN, and MD while tuning the threshold.
Traditionally, performance of the any change detection method
is analyzed based only on accuracy. In such cases, the threshold
tuning can be done with the help of receiver operating charac-
teristics (ROC) curve or calibration curve [34]. The ROC curve
helps in finding a tradeoff between TP and FP, and the calibra-
tion curve plots accuracy against different values of threshold.
However, in our case, we have to consider MD as well, along
with accuracy, which means that the optimal tradeoff has to be
found between three performance indices, namely FN (instead
of TP), FP, and MD. We formulate a cost function depend-
ing on FP, FN, MD (or alternatively kappa-coefficient [35] and
MD) and the threshold, which is minimized iteratively to find
a threshold value that gives acceptable tradeoff between these
performance indices. Finally, we compare our proposed frame-
work with three recently published land cover change detection
methods for land cover change detection in MODIS NDVI
time-series data which use either KDE to estimate the individ-
ual densities or assume them to be Gaussian, while deriving
the test statistics [13]. We show that our proposed framework
achieves better accuracy with lower detection delays.

The main contributions of this study are as follows: 1) a
supervised near real-time change detection framework that
can detect land cover changes in MODIS NDVI time-series
data quicker and with more accuracy than recently published
methods; 2) highlighting and re-emphasizing the usefulness
of density/relative density ratio estimation [23], [24], [27] in
the remote-sensing community while showing its suitability
for supervised change detection in MODIS time-series data;
and 3) an effective strategy for tuning the threshold auto-
matically in near real-time scenarios when more than two
performance indices have to be considered, and also in those
scenarios where manual threshold selection is cumbersome,
e.g., cross-validation experiments.

The research questions addressed in this study are: 1) Is
the relative density ratio estimation a viable option for super-
vised change detection in MODIS time series data? 2) Do
RSPRT/CUSUM (CUmulative SUM) statistics [33], [36], [37],
when derived from the parameter time series, improve perfor-
mance compared to when derived from the raw time series
[13]? 3) Does using the relative density ratios, estimated by
RULSIF [23], [24], [27] in RSPRT statistics improve the per-
formance compared to estimating the individual densities [13]
or assuming them to be Gaussian [10], [14]?

This paper is organized as follows. Section II explains the
RULSIF algorithm for relative density ratio estimation, the
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proposed supervised land cover change detection framework,
and the proposed threshold tuning technique. Section III gives
brief descriptions of the three existing methods used in this
study for comparison and performance evaluation of our pro-
posed framework. Section IV explains the datasets used in
this study. Section V presents the numerical results, their
comparison, and discussion. Section VI concludes this paper.

II. MATERIALS AND METHODS

A. RSPRT With Relative Density Ratio Estimation (M1)

MODIS time-series data contain seasonal variations which
need to be taken into account while designing any change
detection method [17], [38]. Different types of functions have
been used to model MODIS vegetation index time series, in
land cover change detection framework, over the recent past
[10]–[12], [14], [16]–[18]. Some recent studies have argued
the usefulness of triply modulated cosine function and its time
varying parameters, in land cover change detection framework
[14], [16]–[18]. In order to get trend and seasonal variations
separately, we model the vegetation index time series of a given
MODIS pixel by a triply modulated cosine function as in [14],
[16]–[18]

yt = μt + αt sin (2πft+ φt) + vt (1)

where yt and vt are the observation and noise value from an
unknown distribution, at time t = 1, 2, . . .. The above model is
based on many unknown parameters, namely the frequency f ,
and the time-varying parameters mean μt, amplitude αt, and
phase φt. The parameter f is determined by the data being used
for analysis. In our case, the MODIS 8-day 500-m time series
has a cycles length of 1 year with 46 observations per year,
hence f = 1/46. The values of μt, αt, and φt can be estimated
from the observations yt according to (1) using a nonlinear esti-
mator. As proposed in [18], EKF can be used to derive the
time-varying parameters of (1). In EKF formulation, the model
given in (1) can be written as a pair of state and measurement
equations as

xt = v(xt−1) +wt (2)

and

yt = h(xt) + vt (3)

where xt = [μt, αt, φt]
T is the state vector, v is the relationship

between the previous state and the current state, wt is 3× 1
vector of process noise at time t, vt is the measurement noise at
time t, h is the relationship between the current state xt, and the
predicted measurement yt. The EKF predicts the state vector at
time t recursively [18], using the observations till time t.

Estimation of the state vector at every time point t using
EKF results in time series of the parameters. The next step is
to compute the change metrics/test statistics to classify change
or no-change events. As shown in [1], [14], and [15], the trend
changes, e.g., changes due to beetle infestations create sig-
nificant impact on μt; hence, we calculate our test statistics
from μt. Many types of control charts exist in literature, e.g.,

Shewhart control charts [33], [36], [39], moving average con-
trol charts [33], [36], RSPRT/CUSUM control charts [33], [36],
[37], generalized likelihood ratio (GLR) control charts [33],
[36] etc., which can be applied in deriving the test statistics.
However, RSPRT/CUSUM detect small changes quicker (takes
lesser number of observations or data points after the change
has occurred) than rest of the control charts [33], [36]. Since
the type of change we are targeting here is of gradual nature,
we use RSPRT to derive test statistic St from μt time series as

St =

⎧⎨⎩St−1 + ln
pH1

(μt)

pH0
(μt)

, if St−1 + ln
pH1

(μt)

pH0
(μt)

> 0

0, if St−1 + ln
pH1

(μt)

pH0
(μt)

≤ 0
(4)

where pH∗(μt) is the likelihood of vector random variable μt

at time t, under hypothesis H∗, and S0 = 0. The vector random
variable μt = [μt, μt−1, . . ., μt−k+1] in (4) is derived with a
sliding window of length k in order to capture the relationship
of μt with its immediate past. The value of k can be chosen
by the user (normally k ≥ 10, we used k = 10). The no-change
and the alternate hypotheses H0 and H1, respectively, can be
defined as

H0 : St ≤ λ
H1 : St > λ

(5)

where λ is a carefully selected threshold. Equation (4) can be
compacted as

St = (St−1 + st)
+ (6)

where (�)+ = sup(0, �) for some value of �, st = ln
pH1

(μt)

pH0
(μt)

.
The change alarm at at time t can be raised according to

at =

{
1 if St > λ,

t ≥ k
0 if St ≤ λ,

(7)

for a carefully selected threshold λ.
The likelihood ratio in RSPRT is often found either by

assuming the individual density functions to be Gaussian [33]
or by estimating the individual density functions using kernel
density estimation (KDE) [13]. Both the methods can lead to
suboptimal results because the real-world data rarely satisfy
Gaussanity condition, and density estimation too is a difficult
problem to solve [23], [24], [27], [40]. Estimating the density
ratios directly, without estimating the individual distributions,
is comparatively easier and achieves better performance [23],
[24], [27], [40]. Although many algorithms have been used for
direct density ratio estimation, e.g., KLIEP [23], [25], ULSIF
[24], [26], [24], [27] suggested that RULSIF algorithm, which
considers relative density ratios, achieves better estimation and
nonparametric convergence. Therefore, we use relative density
ratios, estimated directly from change and no-change train-
ing sets using RULSIF algorithm [27], in (4). Let Ytr be
the training set containing change and no-change ground truth
examples. After deriving the parameters of (1) using EKF,
the change and no-change training sets of the μt parameter
denoted, respectively, by Yc = {μi}ni=1 and Ync = {μ′

i}mi=1,
can be formed by sliding a window of length k over change and
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no-change μt time series as μt = [μt, μt−1, . . ., μt−k+1] start-
ing at t = k, and putting the window values, at each time point,
in the respective sets. According to the RULSIF formulation the
relative density ratio can be given by [24] and [27]

rβ(μ) =
p(μ)

βp(μ) + (1− β)p′(μ)
=

p(μ)

p′β(μ)
(8)

where p(μ) represents the density of change samples, p′(μ)
represents the density of no-change samples, μ is an arbitrary
data sample, and 0 ≤ β < 1. The β-relative density ratio rβ(μ)
can be estimated by a kernel model as [24], [27]

rβ(μ) ≈ g(μ;θ) =

n∑
i=1

θiK(μ,μi) (9)

K(μ,μi) = exp

(
−‖μ− μi‖2

2σ2

)
(10)

where θ = [θ1, θ2, . . ., θn] is the parameter vector, σ (0) is
the kernel width, and n is the number of change examples in
the training set. The appropriate value of σ was selected as
explained in [24].

Note that the complexity of problem increases with the
increase in size of the training dataset because the number of
kernels being used and hence the number of θ parameters which
need to be estimated is equal to the number of samples in train-
ing set. This works well for small training sets, but it introduces
memory and computation time issues in case of the large train-
ing sets. Therefore, we use a small but sufficient number of
centers selected randomly from the training set, instead of using
all the samples of the training set as centers. We adapt (9) as

rβ(μ) ≈ g(μ;θ) =

d∑
i=1

θiK(μ,ηi) (11)

where {ηi}di=1 is a set of d number of centers chosen randomly
from the training set. As formulated in RULSIF, the squared
loss between the true and estimated relative density ratios J(μ)
is given by [24] and [27]

J(μ) =
1

2

∫
p′β(μ) (rβ(μ)− g(μ;θ))

2
dμ

=
1

2

∫
p′β(μ) (rβ(μ))

2
dμ

−
∫
p(μ)g(μ;θ)dμ

+
β

2

∫
p(μ) (g(μ;θ))

2
dμ

+
1− β

2

∫
p′(μ) (g(μ;θ))2 dμ.

(12)

The parameter vector θ can be estimated by minimizing J(μ).
Ignoring the terms independent of g(μ;θ) in (12), the following
optimization problem is formulated according to RULSIF [27]

min
θ∈Rn

[
1

2
θT Ĥθ − ĥTθ +

γ

2
θTθ

]
(13)

=⇒ θ =
(
Ĥ + γIn

)−1

ĥ (14)

where Ĥ is a d× d matrix, Id is an d dimensional identity
matrix, ĥ is a vector of length d, and γ ≥ 0 is a regularization
parameter. The (l, l′)th element of Ĥ , for all 1 ≤ l, l′ ≤ d, is
given by [27]

Ĥl,l′ = β_
n

n∑
i=1

K(μi,ηl)K(μi,ηl′)

+
1− β

m

m∑
j=1

K(μ′
j ,ηl)K(μ′

j ,ηl′) (15)

and lth element of ĥ can be given by [27]

ĥl =
1

n

n∑
i=1

K(μi,ηl). (16)

Once the parameter vector θ has been estimated, it is used in
(11) to estimate the relative density ratio of any μt which is
then used in (4) to calculate the test statistics. First, we find
the relative density ratio sequences for all the examples in the
training set. The threshold λ is then tuned using this training
set. Then, in the similar way relative density ratio is found
at any time t in test time series as well, and change alarm
can be raised according to (7). Both the training and testing
phases of the proposed framework have been summarized in
Algorithms 1 and 2, respectively. It is worth noting here that the
authors of [13] and [41] mentioned that both independent and
identically distributed (i.i.d.) assumptions were not met in their
formulation of CUSUM. After removing the seasonality, the
unchanged μt parameter time series has slightly reduced corre-
lation but not enough to be considered as negligible. However,
our formulation considers all the no-change samples as com-
ing from a single distribution, unlike CUSUM formulation in
[13], [41]. Therefore, the no-change samples can be considered
as identically distributed, and the change is detected when this
assumption is violated, i.e., when a sample from a significantly
different distribution is encountered.

Algorithm 1. Training(Ytr,k, β, σ, γ)

Given the training set Ytr, k, β, σ, and γ

1) Derive the parameters xt = [μt, αt, φt] for all training
time series using EKF.

2) Make separate sets for change and no-change samples,
Yc = {μi}ni=1 and Ync = {μ′

i}mi=1, respectively.
3) Chose d samples from Yc randomly as kernel centers

(η = {ηi}di=1).
4) Use η,Yc, and Ync in (13) to (16) to estimate the

parameter vector θ of the (11).
5) At every time point t of the training time series estimate
rβ(μt) using (11).

6) Use the estimated rβ(μt) in place of
pH1

(μt)

pH0
(μt)

in (4) to
calculate RSPRT statistic St.

7) Using RSPRT statistics of the whole training set, tune an
optimal threshold (λ) that minimizes false negatives (FN),
false positives (FP), and mean detection delay (MD).

OUTPUT (θ, λ, η)
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Algorithm 2. Test(yt, k, η,Yc and σ)

Given all the observations till current time t (yt), k, η, Yc,
and σ

1) Derive the parameters xt = [μt, αt, φt] of (1) using EKF.
2) Derive a test sample μt = [μt, μt−1, . . ., μt−k+1]

T .
3) Estimate rβ(μt) using (11).

4) Use the estimated rβ(μt) in place of
pH1

(μt)

pH0
(μt)

in (4) to
calculate RSPRT statistic St.

5) Use (7) to evaluate the change alarm at.
OUTPUT (at)

B. Automatic Threshold Tuning

Tuning a threshold manually on training dataset, while tak-
ing care of three performance indices, i.e., FN , FP , and MD,
is a challenging task. Here, we formulate a simple, yet effec-
tive constrained optimization problem, which will yield a tuned
threshold. Since all the three performance indicators are desired
to be as low as possible, an over all cost function-based includ-
ing the effect of all of them can be designed, which can then be
minimized. A simple choice can be Euclidean norm written as

Lq =
√

(FPq)2 + (FNq)2 + (ψ ×MDq)2 (17)

where Lq is the cost at the qth iteration of the optimization
algorithm and ψ is the weight that increases or decreases the
dependence of the cost function/optimization on MD. A prop-
erly selected ψ also caters for the scale difference betweenMD
and rest of the two indicators. Its value can be selected against
a desired accuracy in the first run of the cross-validation and
kept the same throughout the rest of the experiment. Note that
FP , FN , and MD are derived from (7) which means that
they are dependent on λ and hence the cost function as well.
So, ideally, minimization of the cost function in (17) subject to
λ > 0 should yield optimal value of λ for a specific value of
ψ. However, at some instances, the cost function may remain
(flat) unchanged with the change in the value of λ, as shown in
Fig. 1 (top). This is undesirable because the optimization algo-
rithm may get stuck in such “flat” regions and stop prematurely.
Mathematically, the flat regions in Fig. 1 (top) violate

P

{∣∣∣∣dLq

dq

∣∣∣∣ > 0 | E
[
dLq

dq

]
< 0

}
= 1 (18)

for all q < N , where N is the iteration number at which the
optimization algorithm converges and LN < Lq �=N . The oper-
ators P {•} and E{�} represent probability and expectation,
respectively. In order to tackle this issue we slightly modify (17)
and introduce stochasticity in it as

L′
q =

√
(FPq)2 + (FNq)2 + (ψ ×MDq)2 + εq (19)

where L′
q is the value of stochastic cost and εq is a small ran-

dom number drawn from uniform or Gaussian distribution, in

Fig. 1. Threshold (λ) versus cost (top). Threshold (λ) versus stochastic cost
(bottom).

Fig. 2. Weight (ψ) versus MD plot. Increasing weights (ψ) decreases the
acceptable MD values. The unit of MD is time points = number of time points
or number of observations.

qth iteration. The effect of randomness/stochasticity has been
shown in Fig. 1 (bottom). It can be seen in Fig. 1 (bottom)
that (19) satisfies (18). Note that the condition in (18) is not
strict. So, there is still a possibility that the optimization algo-
rithm may get trapped in local minimum and stop prematurely,
without converging to an optimal value of λ. Therefore, the
minimization must be carried out several times (e.g., 10–20
times), each time with different initial value of λ, and the one
with the lowest value of the cost function after convergence
should be selected. Our experiments with different optimiza-
tion algorithms suggest that genetic algorithm (GA) is able to
optimize (17) successfully.

The weight ψ varies the importance of MD in the cost func-
tion, i.e., increasing ψ will cause minimization to occur at lower
values of MD and vice versa. This relationship can be seen in
Fig. 2 which shows ψ versus MD plot. Mathematically, it can
be written as

E

[
dMD

dψ

]
< 0. (20)

An alternative for the above threshold selection strategy
can be based on kappa-statistic (κ) [35], [42] and MD. Use
of κ-statistic in remote sensing to measure homogeneity is
somewhat controversial and there has been some criticism by

κ =
N × (TP ′ + TN ′)− {(TP ′ + FP ′)× (TP ′ + FN ′) + (TN ′ + FP ′)× (TN ′ + FN ′)}

N2 − {(TP ′ + FP ′)× (TP ′ + FN ′) + (TN ′ + FP ′)× (TN ′ + FN ′)} (21)
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some authors on the accuracy assessment based on κ-statistic,
because its value depends strongly on the marginal distributions
[43]–[45]. However, it is still the most widely used statistic,
hence the usage here. It can be calculated as [(21), shown
at the bottom of the previous page] where TP ′, TN ′, FP ′,
and FN ′ are the true values (not percentages) of true posi-
tives, true negatives, FP, and FN, respectively, andN = TN ′ +
FN ′ + TP ′ + FP ′. The optimal threshold, corresponding to
acceptable values ofMD or κ-coefficient, can be selected from
“κ-coefficient versus MD” plots. This can also be achieved by
minimizing a cost function based on κ andMD using GA, sub-
ject to desired constraints onMD and/or κ, which can be easily
programmed and integrated in cross-validation experiments.
We used this strategy in our cross-validation experiments (see
Section V-D). The advantage of κ-statistic-based threshold
selection strategy is that it incorporates all the performance
indices into a single coefficient and the threshold selection
becomes more convenient as it can be selected from a plot of
two variables. However, if there are some special constraints on
TP and TN (or FP and FN ) which need to be followed in a
certain application, then the former threshold selection strategy
is more convenient.

III. EXISTING METHODS

A. Original CUSUM With KDE (M2)

A supervised method, implementing CUSUM, was proposed
in [13] for land cover change detection in MODIS NDVI time-
series data. In this method, CUSUM statistics are derived from
raw MODIS NDVI time series. The individual density functions
required for calculating likelihood ratios are derived for every
time point in the year/cycle using KDE. The MODIS product
used in this study has the time resolution of 46 images/ year.
Therefore, using this method, estimation of total of 92 density
functions (46 density functions separately for both change and
no-change hypotheses) is required. Once the density functions
are estimated, the likelihood ratio (density ratio) of an obser-
vation at any time point in the cycle is calculated using the
trained density functions of change and no-change for that par-
ticular time of the cycle/year. The likelihood ratio is then used
to calculate the CUSUM statistic sequentially, which is then
compared with a tuned threshold to detect any change event.
Since this study uses MODIS NDVI data and the method is
based on CUSUM statistics with estimated individual densities,
comparison with this method will give us a good insight into
advantages of model fitting and using estimated/trained relative
density ratios rather than estimated/trained individual densities.

B. Near Real-Time Disturbance Detection (M3)

Another method that was published recently in [10] is the
“near real-time disturbance detection in MODIS data.” In this
method, MODIS NDVI time series is modeled using a function
with constant, ramp, sine, and cosine terms. First, the function
is fitted to the reference (no-change) period using nonlinear
least squares fitting and its unknown parameters are derived.
Then, using these parameters, the future observations are pre-
dicted using the model. The difference between the predicted

and observed values gives noise time series. The MOSUM
(MOving SUM) statistics [46], [47] are then derived from the
noise time series and compared with a threshold, tuned accord-
ing to functional central limit theorem [48], in order to detect
any change events. Since this method uses noise time series to
derive test statistics and also Gaussanity assumption which is
implicit in central limit theorem, comparison with it will give us
a good insight into benefits of using parameter time series and
also relative density ratio estimation over assuming individual
densities to be Gaussian.

C. Near Real-Time Detection of Beetle Infestation (M4)

One of the most recent studies that addresses near real-time
detection of land cover changes, specifically beetle infestations
in pine forests, using MODIS NDVI data was published in [14].
In this method, nonlinear least squares approach is used to fit
a model to the NDVI time series and derive its time-varying
parameters. Based on the fact that beetle infestation affects the
trend of the signal significantly, the trend component of the
model is used to derive the test statistics. It is assumed that the
underlying densities of the change and no-change parts of the
trend component are nearly Gaussian with difference in their
means. Based on this assumption, the log-likelihood ratio of
the value of the trend component, at any particular time point, is
calculated. This log-likelihood ratio is then compared to a tuned
threshold to declare a change or no-change event. The thresh-
old is tuned by finding a good tradeoff between the likelihood
ratios of change and no-change training sets.

IV. DATASETS

A. Simulated Data

One main problem that is often encountered in case of near
real-time change detection is that the ground-truth data with
accurate labels/time point of change events is hard to find [11].
Most often, partial information is known, e.g., changed and
unchanged pixels are known, but the exact time points at which
the changes occurred in the respective time series are unknown,
hence making the performance evaluation difficult and compro-
mised. Many studies have used and highlighted the importance
of simulated data, in which, changes are introduced at desired
time points [10]–[12], [14], [16], [49]. Such data can be help-
ful in evaluating performance, sensitivity, and robustness of the
method to different magnitudes of noise. We also generated a
simulated dataset following a similar procedure as used in [10],
[11], [12], [14], and [16].

First, the deterministic part or seasonal cycles were gener-
ated using asymmetric Gaussian function as proposed in [12]
and [14]

g(l) ≡ g(l; a, b, ρ1, ρ2) = a×

⎧⎪⎨⎪⎩
exp

[
− (l−b)2

ρ1

]
, if l > b

exp
[
− (b−l)2

ρ2

]
, if l < b

(22)

where ρ1 and ρ2 control the width of the left and right hand
sides, whereas a and b are the amplitude and the position of the
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maximum or minimum with respect to the time l, respectively.
We used a = 0.7, b = 23 + �l/46� × 46, and ρ1 = ρ2 = 100
in (22). The simulated time series were generated by

S(l) = g(l) + Φ(l) + ϑl (23)

where ϑl is a noise value at l, drawn from Gaussian distribu-
tion with zero mean. The Φ(l) in (23) is the simulated gradual
change introduced in the time series, and can be given by

Φ(l) =

{[
(1)

�l/�� − (0)
�l/��

]
× ς × (l − �), if l ≤ ξ

Φ(ξ), if l < ξ
(24)

where ς , �, and ξ are the slope, start point, and end point of the
introduced change, respectively. Note that simulating remotely
sensed data with vegetation phenology, inter-annual variabil-
ity, disturbance events, and signal contamination is challenging
[11]. Therefore, testing the method on a variety of datasets is
necessary.

B. Synthetic Data

Simulated dataset is far from real-world data and the factors
involved in it. To get as much close as possible to the real-world
data, yet knowing the exact time points of the change events,
another type of data, namely, synthetic dataset, has also been
used [13], [17], [18], [50], [51]. This data can be created from
sure change and no-change parts of the real-world time series.
First, all the time series are standardized according to the range
of the no-change part and then different no-change parts are
concatenated with different change parts randomly, creating a
large number of time series. So, all the time series have natu-
ral factors involved in them as well as the exact time points of
change events are also known.

C. Real-World Beetle Infestation Data

We used yearly survey maps and shape files maintained by
the U.S. and British Columbia forest services [52]–[54] to
identify the areas with beetle infestations in the pine forests
of Colorado, Utah (United States), and British Columbia
(Canada). The regions with no beetle infestation history till the
end of 2005 were selected. These regions were then marked
on the Google Earth and their geographical coordinates were
recorded. An online tool (MODLAND Tile Calculator) [55]
was then used to identify the corresponding MODIS tile using
the geographical coordinates. Once the MODIS tile was known,
one MODIS image of 500-m spatial resolution was fed into
a software, namely ENVI (version 5). Using the geographical
coordinates of the marked regions, their pixel coordinates, in
any MODIS image of 500-m spatial resolution, were found
with the help of ENVI. After recording all this information,
the MODIS product MCD43A4.005 was downloaded for the
desired tiles starting from January 2001 to December 2011,
and the time series of the selected pixels were extracted. All
the change and no-change examples from both the regions
were combined and two (change and no-change) datasets were
prepared.

The MODIS product MCD43A4.005 is available since 2000.
It provides 500-m 8-day composite reflectance data which are
bidirectional reflectance distribution function (BRDF)-adjusted
for Nadir reflectance, atmospherically corrected and cloud free.
The data acquired for the year 2000 had a lot of missing values;
hence, it was discarded and the time-series data were acquired
from January 2001 onward. Although we did not encounter any
missing values in our analysis, however, rare missing values can
be replaced with interpolated values.

V. RESULTS, COMPARISON, AND DISCUSSION

A. Results for Simulated Data

We generated 500 change and 500 no-change examples
according to the methodology used in [10]–[12], [14], and [16]
summarized in Section IV-A. The seasonal cycles were gen-
erated using asymmetric Gaussian function, the change was
introduced by adding a ramp of slope 0.0025 [ς = 0.0025 in
(24)] to the signals at known positions in order to replicate a
gradual change, and the noise introduced into the signal was
drawn randomly from the noise distribution with standard devi-
ation of 0.08. Randomly selected 50% samples of the dataset
was taken as the training set and the rest 50% was taken as
the test set. The purpose of this dataset was to analyze the per-
formance of the proposed framework (M1) on a dataset with
known change points and to compare it with the performances
of the existing methods. Moreover, it can also be used to ana-
lyze the robustness of the proposed method M1 against different
magnitudes (standard deviations) of noise.

All the four methods, M1–M4, were implemented keeping
the training and test sets exactly the same to ensure fair com-
parison. A wide range of threshold values were used for each
method to exploit its performance range and capabilities. The
results of all the methods, M1–M4, have been summarized in
Figs. 3 and 4 and Table I. Note that all the four methods have
different ranges of threshold values, but here we have scaled
all of them to a single range of 0–80, for the sake of simplic-
ity in comparison. The absolute values of the thresholds are not
important here because we only want to graphically present the
best possible performances by each of the methods considered
here. Fig. 3 (top) presents the “threshold versus κ-coefficient”
plots of all the methods. We note that all the methods can
achieve accuracies close to κ = 1. The value of κ-coefficient
increases with the increase in the threshold value, but as a con-
sequence, the mean detection delay also increases as shown
in Fig. 3 (bottom). Fig. 4 summarizes the plots of Fig. 3 and
gives a more obvious comparison by plotting MD against the
corresponding κ-coefficients, for each method considered here.
Fig. 4 basically shows different tradeoffs between kappa (accu-
racy) and MD for each method, which is analogous to the ROC
curve that plots tradeoffs between TP and FP when only accu-
racies (without MD) are considered. Focusing on the significant
region of this plot, i.e., after κ = 0.6, we observe that although
the difference between the plots is not very large, M1 and M4
perform slightly better than the rest of the two methods. This
fact is also obvious from the comparison shown in Table I for
the same accuracy of 99%.
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Fig. 3. Comparison between performances of proposed (M1), original CUSUM
(M2), near real-time disturbance detection (M3), and near real-time beetle
infestation detection (M4) methods, on simulated data. Threshold (λ) versus
κ-coefficient (top). Threshold (λ) versus MD (bottom). The unit of MD is time
points = number of time points or number of observations.

Fig. 4. Comparison of “kappa-coefficient versus MD” performances of pro-
posed (M1), original CUSUM (M2), near real-time disturbance detection (M3),
and near real-time beetle infestation detection (M4) methods on simulated
data. The unit of MD is time points = number of time points or number of
observations.

TABLE I
COMPARISON BETWEEN NEAR REAL-TIME PERFORMANCES OF OUR

PROPOSED METHOD (M1) AND THE EXISTING THREE METHODS, ON

SIMULATED DATA, AT ACCEPTABLE TRUE POSITIVES, TRUE NEGATIVES,
AND ACCURACY

TP, true positive; TN, true negative, Acc., overall accuracy; MD, mean detection
delay; and λ, threshold value. M1, proposed framework; M2, original CUSUM
method; M3, near real-time disturbance detection method (M3), and M4, near
real-time beetle infestation detection method. The units of TP, TN, Acc. are
“%” and that of MD is tp, number of time points or observations.

We note that the results achieved here were according to
our expectations because the simulated data lack the effects
of the complex natural phenomenon which are present in the
real-world NDVI data. Moreover, the noise in simulated data
is Gaussian that satisfies the Gaussanity assumptions in M2–
M4, and the points of actual changes in the training data are
known exactly, hence no mislabeling that can affect the training
adversely. Nevertheless, these results illustrate the correctness

Fig. 5. Robustness of the proposed method against different magnitudes of
noise in the simulated dataset. Noise standard deviation (Noise Std.) versus
overall accuracy (top). Noise standard deviation (Noise Std.) versus detection
delay (bottom). The unit of MD is time points = number of time points or
number of observations.

of the approaches in that their tendency is to detect the real
changes and avoid no-change events.

The performance of M1 was also checked on simulated
datasets with different magnitudes (standard deviations) of
noise. The results are summarized in Fig. 5. Fig. 5 (top) shows
that the accuracy drops very slightly with the increase in the
standard deviation of the signal noise, and remains above 90%
even at standard deviation as high as 0.15. Fig. 5 (bottom)
shows a very slight increase in the detection delay, from 42
at noise std. = 0 to 53 at noise std. = 0.15. These results
show the robustness of the proposed framework M1 to different
magnitudes of signal noise.

B. Results for Synthetic Data

We prepared 1000 change and 1000 no-change examples fol-
lowing the process explained in Section IV-B, and also used in
[13], [17], [18], [50], and [51]. A randomly selected set of 50%
of the samples was taken as training set and the rest 50% as
test set. The results have been summarized in Figs. 6 and 7
and Table II. Fig. 6 (top) shows that the value of κ increases
with the increase in the threshold, except for M4 that decreased
after reaching its peak. The increase in threshold also causes
increase in the detection delays, as shown in Fig. 6 (bottom),
because the test statistic has to attain bigger values in order to
raise the change alarm. Fig. 7 summarizes the plots of Fig. 6 by
plotting MD against the corresponding κ-coefficients, for each
method considered here. The plots in Fig. 7 are analogous to
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Fig. 6. Comparison between performances of proposed (M1), original CUSUM
(M2), near real-time disturbance detection (M3) and near real-time beetle
infestation detection (M4) methods, on synthetic data. Threshold (λ) versus
κ-coefficient (top). Threshold (λ) versus MD (bottom). The unit of MD is time
points = number of time points or number of observations.

Fig. 7. Comparison of “kappa-coefficient versus MD” performances of pro-
posed (M1), original CUSUM (M2), near real-time disturbance detection (M3)
and near real-time beetle infestation detection (M4) methods on synthetic
data. The unit of MD is time points = number of time points or number of
observations.

TABLE II
COMPARISON BETWEEN NEAR REAL-TIME PERFORMANCES OF OUR

PROPOSED METHOD (M1) AND THE EXISTING THREE METHODS, ON

SYNTHETIC DATA, AT ACCEPTABLE TRUE POSITIVES, TRUE NEGATIVES,
AND ACCURACY

ROC curves and give a more obvious comparison. Here, the dif-
ference between the performances is slightly more obvious than
in case of simulated data because the data values and noise are
real, only the changes introduced are synthetic, i.e., due to con-
catenation of known no-change and change parts. Considering
the significant part of the curves, i.e., the region after κ ≈ 0.6
on the horizontal axis, our proposed method M1 performs bet-
ter than the rest until the point around κ ≈ 0.90, where M1 and
M2 become similar in performance. Table II also highlights this
where detection delays are compared for all the four methods
against the same accuracy of 97%. The M1 and M2 have similar
results, better than M3 and M4. Furthermore, M4 performs bet-
ter than M3. The reader should not be confused by the M4 curve
hooking back in Fig. 7. This behavior is quite possible because

Fig. 8. Comparison between performances of proposed (M1), original CUSUM
(M2), near real-time disturbance detection (M3), and near real-time beetle
infestation detection (M4) methods, on real-world data. Threshold (λ) versus
κ-coefficient (top). Threshold (λ) versus MD (bottom). The unit of MD is time
points = number of time points or number of observations.

Fig. 9. Comparison of “kappa-coefficient versus MD” performances of pro-
posed (M1), original CUSUM (M2), near real-time disturbance detection (M3),
and near real-time beetle infestation detection (M4) methods on real-world
data. The unit of MD is time points = number of time points or number of
observations.

TABLE III
COMPARISON BETWEEN NEAR REAL-TIME PERFORMANCES OF OUR

PROPOSED METHOD (M1) AND THE EXISTING THREE METHODS, ON

NEAR REAL-TIME NDVI DATA, AT ACCEPTABLE TRUE POSITIVES,
TRUE NEGATIVES, AND ACCURACY

MD is not a function of the κ-coefficient. The κ-coefficient
is calculated from TP, TN, FP, and FN, which depend on the
threshold value. Two different thresholds can yield exactly the
same κ-coefficient with different values of MD. The hooked
curve shows exactly the same behavior, i.e., same κ-coefficients
with different values of MD.

The noise is far from Gaussian in this case, but still the
change points in the training data are known exactly, hence no
mislabeling. Therefore, M2 still trains very well, hence small
difference between the results of M1 and M2. The fact that
M2 performs better than M3 and M4 can be attributed to the
difference between the types of test statistics being used in
these methods. The M2 uses CUSUM statistics which is more
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TABLE IV
RESULTS OF 50% CROSS-VALIDATIONS (10 RUNS) OF M1 ON ALL THE THREE DATASETS. IN EVERY RUN RANDOMLY SELECTED 50%

OF THE DATA SAMPLES OF A PARTICULAR DATASET IS TAKEN AS TRAINING SET, AND THE REST AS TEST SET

TP, true positive; TN, true negative; Acc., overall accuracy; κ, kappa-coefficient, MD, mean detection delay; λ, threshold value; Sim. =
simulated dataset; Syn., synthetic dataset; R.W., real-world NDVI beetle infestation data. The units of TP, TN, and Acc. are “%”, and
that of MD is tp = number of time points or observations.

robust to nonGaussanity and detects small/gradual changes ear-
lier than the statistics based on simple likelihood ratios [36]
as used in M3 and M4. The M4 performing better than M3
confirms the findings of [14].

C. Results for Real-World MODIS NDVI (Beetle Infestation)
Data

The simulated and synthetic datasets provided important
insights, but these datasets do not include all the complexities
that are encountered in the real-world data, e.g., atmospheric
variations, light variations, and lack of information about the
exact time points of the changes. Therefore, analysis on the
real-world data is necessary. We tested all the methods on
355 change and 355 no-change examples of beetle infestation
data, collected as explained in Section IV-C. The results have
been summarized in Figs. 8 and 9 and Table III. As explained
before, all the four methods have different ranges of thresh-
old values, but we have scaled all of them to a single range
of 0–80, for the sake of simplicity in comparison. The abso-
lute values of the thresholds are not important here because
we only want to graphically present the best possible perfor-
mances by each of the methods considered here. Fig. 8 shows
similar trends for each method as in the case of synthetic data
since the two datasets are close in nature to each other. Fig. 8
(top) presents the “threshold versus κ-coefficient” plots of all
the methods. The κ values of M2, M3, and M4 drop after reach-
ing their peaks, whereas the κ value of M1 remains constant.
Fig. 8 (bottom) presents the “threshold versus MD” plots of all
the methods. The MD generally increases with the increase in
threshold value, for all the methods. Fig. 9 summarizes the plots
of Fig. 8 by plotting κ-coefficient against the corresponding
accuracies, for each method considered here. The plots in Fig. 9
are analogous to ROC curves and give a clearer comparison. It
can be seen in Fig. 9 that our proposed method M1 performs
better than the other three methods by a significant margin.
For the similar values of κ-coefficient, M1 incurs much lower
detection delay than the rest of the three methods. Furthermore,
M1 can still get close to κ = 1, unlike rest of the methods
which peaked at significantly lower κ values than M1. Table III
compares the performances of all the methods at acceptable
accuracies (95.3% for M1, 90%, 90%, and 91% for M2, M3,
and M4, respectively). It can be noticed that M1 incurs much

lower detection delay at a higher accuracy/kappa than rest of
the three methods.

The reason behind such a significant difference between
the performance of M1 and the rest of the methods can be
attributed to three facts: 1) the test statistics in M1 derived from
the parameter time series which has been shown to be better
than the statistics derived from the raw NDVI time series [14];
2) RSPRT statistics are used in M1, which are more robust
to nonGaussanity and detects small changes faster than the
simple statistics based on likelihood ratios [36]; and 3) the like-
lihood ratios used in deriving RSPRT statistics were estimated
directly using RULSIF algorithm [27], which performs better
than the likelihood ratios derived from individual density func-
tions which are based on Gaussanity assumption or estimated
individually using Gaussian kernels. Furthermore, it is very dif-
ficult to obtain the exact ground reference data for long time
series [56]. The forestry departments, which are monitoring
those forests, also confirmed that the survey maps were man-
ual and subjected to errors; hence, the real-world data did not
have exact information about the change points in each time
series. Therefore, we took t = 230 as common reference point
for all the methods, i.e., the last point for known no-change
part in every time series, from which MDs were calculated.
However, this does not mean that the changes were known to
have occurred at that point. Majority of the time series changed
at later unknown points, which implies that the training data had
mislabeling at some points after t = 230. This suggests that M1
is more robust to mislabeling in the training data as compared
to the other three methods.

D. Cross-Validation and Automatic Threshold Tuning Results

We performed cross-validation experiments of the proposed
method M1 on all the three datasets. The cross-validation con-
sisted of 10 runs, where in each run 50% of the data samples
selected randomly were used as training and the rest 50% as test
sets. The results have been summarized in Table IV. The table
consists of two vertical halves and three horizontal parts. The
left vertical half summarizes the mean of performance indices
for the training and test sets of all the datasets, whereas the
right vertical half summarizes the standard deviations of the 10
runs. Each of the three horizontal parts of the table summarizes
the performance indicators for one of the three datasets. The
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value of ψ was selected, in the first run of the cross-validation
experiment on simulated data, against 98% accuracy and kept
fixed for rest of the experiments. The mean performance indices
of the training set and test set are very close to each other,
in case of all the three datasets. This suggests that the thresh-
olds selected from the training datasets are robust and perform
equally well on the unseen test data.

The threshold selected in each run of this cross-validation
experiment was selected automatically by our proposed thresh-
old tuning technique (based on κ-coefficient and MD) as
explained in Section II-B. Apart from tuning, another advantage
of this technique, especially in cross-validation experiment, is
that it can be incorporated in the code and a complete set
of cross-validation results can be generated in a single go,
without stopping and selecting the right threshold in each cross-
validation run. The table shows that the thresholds selected by
this technique on the training datasets perform nearly similar to
the test datasets. This shows the effectiveness of the proposed
threshold tuning technique. It is worth noting that the range
of the suitable threshold values may change from one dataset
to another, hence needs tuning on all the datasets separately.
However, the proposed threshold tuning technique avoids this
problem since the value of ψ selected for one dataset holds good
for rest of the datasets as well.

VI. CONCLUSION

In this paper, we proposed a supervised framework for near
real-time land cover change detection that uses EKF to fit a
triply modulated cosine function to a MODIS NDVI time series,
extracts its time varying parameters, and derives the RSPRT
test statistics from the trend parameter. Instead of using tradi-
tional likelihood ratios, we exploited the usefulness of relative
density ratios estimated directly using RULSIF algorithm as
proposed in [27], in deriving the RSPRT statistics. Our frame-
work slightly reduces the correlation in the parameter time
series, and unlike CUSUM formulation in [13] and [41], deals
with the no-change samples as identically distributed, which is
an important assumption of CUSUM. We tested the framework
on three different datasets, against different noise level, and also
performed cross-validation. Furthermore, we compared its per-
formance with three recently published near real-time change
detection methods in remote-sensing literature.

Our analysis of the proposed method on different datasets
considered here, and also its comparison with three published
methods helped us in finding the answers to the questions we
raised earlier in this manuscript. Our findings can be sum-
marized as follows: 1) the promising results of the proposed
method (M1) suggest that direct estimation of relative density
ratios, from the data, is a viable option for supervised classifi-
cation of remote-sensing time-series data; 2) the results of com-
parison between M1 and M2 [13] suggest that RSPRT/CUSUM
statistics, when derived from the parameter time series instead
of the raw data, achieve significant improvement in the perfor-
mance; and 3) utilizing the benefits of parameter time series
[14], [16], RSPRT statistics and relative density ratio esti-
mation simultaneously, enabled the framework to incur lower
detection delays, with higher accuracy than the rest of the
methods (M2–M4) which use traditional likelihood ratios with

individual densities either estimated using Gaussian kernels
[13] or assumed to be Gaussian in nature [10], [14]. The differ-
ence in the results was small in case of simulated and synthetic
datasets because some assumptions involved in the derivation of
M2–M4 were satisfied to some extent, e.g., Gaussanity assump-
tion, and there was no mislabeling. However, the difference
became more significant in case of the real-world beetle infes-
tation data when the Gaussanity assumption was violated and
there was considerable mislabeling as well in the training data.
This also suggests that the proposed framework is more robust
to mislabeling as compared to the other three methods.

We also proposed a simple heuristic technique for automatic
threshold tuning in near real-time change detection framework.
Unlike commonly considered two indices (FP and FN), this
technique considers three performance indices (FP, FN, and
MD), which are challenging to deal with simultaneously while
tuning the threshold. This technique proved useful in cross-
validation experiments and allowed us to generate the whole
set of results in a single execution, without having to select the
thresholds manually in each run. The threshold values presented
in Table IV were selected automatically by the framework using
this technique, which verifies that it can tune the thresholds
successfully.
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