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Abstract

Assessing patterns of fisheries activity at a scale related to resource exploitation has re-
ceived particular attention in recent times. However, acquiring data about the distribution
and spatiotemporal allocation of catch and fishing effort in small scale benthic fisheries re-
mains challenging. Here, we used GIS-based spatio-statistical models to investigate the
footprint of commercial diving events on blacklip abalone (Haliotis rubra) stocks along

the south-west coast of Victoria, Australia from 2008 to 2011. Using abalone catch data
matched with GPS location we found catch per unit of fishing effort (CPUE) was not uniform-
ly spatially and temporally distributed across the study area. Spatial autocorrelation and
hotspot analysis revealed significant spatiotemporal clusters of CPUE (with distance thresh-
olds of 100’s of meters) among years, indicating the presence of CPUE hotspots focused
on specific reefs. Cumulative hotspot maps indicated that certain reef complexes were con-
sistently targeted across years but with varying intensity, however often a relatively small
proportion of the full reef extent was targeted. Integrating CPUE with remotely-sensed light
detection and ranging (LiDAR) derived bathymetry data using generalized additive mixed
model corroborated that fishing pressure primarily coincided with shallow, rugose and com-
plex components of reef structures. This study demonstrates that a geospatial approach is
efficient in detecting patterns and trends in commerecial fishing effort and its association with
seafloor characteristics.

Introduction

Globally, fisheries provide a pivotal source of food and income; hence, the sustainable mainte-
nance of these limited renewable resources is critical to their longevity. However, detailed
information about the spatial and temporal footprint of fisheries (i.e. the intensity and spatio-
temporal variability) is often lacking [1-3]. In many fisheries, vessel monitoring systems are

PLOS ONE | DOI:10.1371/journal.pone.0122995 May 20, 2015

1/20


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0122995&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://frdc.com.au/Pages/home.aspx
http://frdc.com.au/Pages/home.aspx

@' PLOS ‘ ONE

Assessing Patterns in Fishing Effort of an Important Marine Mollusc

Competing Interests: The authors have declared
that no competing interests exist.

used to assess fishing activity and to inform marine spatial planning, particularly at large spatial
scales [4, 5]. Compiling data from these sources has some constraints such as low spatial reso-
lution, incomplete coverage of vessel tracks, and a lack of explicit linkages between data about
actual fishing sites and CPUE reports [6, 7]. Recent assessments have shown that the benefits
outweigh the costs of having access to detailed field-based information for both assessment
and compliance purposes [5], leading to installation of global positioning system (GPS) units
to geo-locate catch data on fishing vessels from small scale fisheries. GPS integration with data
loggers have recently been trialed to assess fishing process in artisanal sea urchin [8] and scal-
lop fisheries [9]. Due to the links between the spatial dimension of the distribution of a target
species and the behavior of the fleet, spatially-explicit CPUE data increases the potential to de-
cipher such connections [8, 10-12].

Marine resources do not exhibit random patterns, particularly in the case of benthic species,
with stocks and species forming clusters (such as mussel beds) over local and regional scales [4,
13, 14]. Heterogeneity in species distribution may also result from species behavioral traits,
population dynamics, habitat preferences, or fishing strategies [15]. In this regard, previous
studies have trialed geo-statistical approaches, such as spatial autocorrelation and cluster analy-
sis in assessing temporal (i.e. seasonal) and spatial patterns of exploitation among target species
[16-18]. Examples of such research include predictive modeling of species abundance [19, 20],
determining locations of biological hotspots and productive areas [21, 22], and monitoring
fishing fleet activity to identify patterns in fishing pressure [23, 24]. The availability of GPS-
enabled data loggers and their integration with geo-statistical approaches has the potential to
provide new avenues for investigating patterns in productivity at hotspots identified across im-
portant fishing zones. In turn, this knowledge is expected to help with analyzing cumulative
CPUE and spatiotemporal changes through time [10].

Identification of patterns of catch and effort in benthic fisheries is, however, not enough on
its own to inform harvest strategies aimed at ensuring long term profitability. It is also impor-
tant to understand how these patterns are associated with seafloor physical characteristics, be-
cause of a strong association between substrate structure and benthic species preferred habitat,
upon which fishing pressure is superimposed [25, 26]. Acquiring this type of data has been lim-
ited in the past. Newly established remote sensing instruments, such as LIDAR systems might
provide an opportunity to identify seafloor characteristics of exploited mollusk habitat. Bathy-
metric LIDAR uses laser pulses to acquire feature characteristics by recording the signals re-
flected from the seabed and the ocean surface to infer depth [27]. LIDAR-derived digital
elevation models (DEM) have been applied to generate marine-based 3-D architecture in shal-
low marine habitats [28]. Seafloor features may be determined that influence both the habitat
preferences of aquatic species and the scale and pattern of demersal fishing [23, 29].

Blacklip abalone (Haliotis rubra) is a commercially important mollusk in Australia. It is en-
demic to the region of southern Australia extending from mid New South Wales along the
mainland east coast to as far as the south west of Western Australia as well as the coastal waters
of the island state of Tasmania. This species represents a high proportion of Australia’s abalone
wild fishery, comprising 82% of the total catch landed during 2010 [30]. In Victoria, however,
harvest quotas have declined substantially in recent years, with several factors suggested, in-
cluding illegal fishing, the creation of no-take marine parks, overfishing, and disease [30]. As a
consequence, various strategies have been adopted to enhance management of the fishery [30,
31]. These have generally focused on increased spatial resolution in assessment and manage-
ment coupled with greater stakeholder engagement in co-managing the fishery. In terms of as-
sessment this has included the use of GPS data loggers to geo-locate catch data, structured or
directed fishing approaches to harvest abalone from specific stocks recovering from disease im-
pacts, and acquiring improved knowledge about the spatial trends in growth and maturation
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rates in south west fishery of Victoria [32]. It was in this context that this study focused on ana-
lyzing CPUE data for H. rubra using GIS-based spatial statistics. Specifically, we aimed to (1)
determine the spatial and temporal trends in the distribution of CPUE, and identify productivi-
ty hotspots, and (2) assess associations between the patterns of CPUE and the structure of the
seafloor at the reef scale by using high-resolution LiDAR-derived seafloor variables. The infor-
mation presented here is anticipated to provide an insight into the key determinants of catch
and effort patterns in benthic fisheries. The knowledge acquired may be applied towards better
informed selection of harvest strategies that balance or optimise financial profits for fishing en-
terprises while obtaining improved outcomes in ecological performance such as preventing
stocks to be overharvested.

Materials and Methods
Ethics statement

Fishing effort data for blacklip abalone was captured by the Western Abalone Divers Associa-
tion (WADA) as part of annual commercial quota licence agreement for reef zones designated
by the Department of Environment and Primary Industries for state managed waters of Victo-
ria. The field studies did not involve endangered or protected species. GPS coordinates of the
study area location can be found on each of the geographic maps.

Study site

The study area encompassed the western abalone fishing zone on the south west coast of Victo-
ria, Australia. This is a statutory management region that extends from the Hopkins River in
Warrnambool to the Victorian-South Australian interstate border on the western side of Dis-
covery Bay (Fig 1). Geographically, the area was bounded by 140° 56' to 142° 31' E and 38° 06'
to 38°26'S, with a coastal length of approximately 200 km. The exposed open coast encom-
passed a mosaic of reef and bare sediment, with near shore patchy reef extensions from the in-
tertidal zone to deeper offshore waters. Geomorphology across the study area ranged from low
to high complexity. Algal assemblages were mostly dominated by kelp and fucoid beds that
serve as appropriate habitats for many benthic fish and invertebrates. Three of the main abalo-
ne fishing subzones, Discovery Bay, Julia Bank and Lady Julia Percy Island (Fig 2), were select-
ed for the assessment of CPUE distribution patterns. These subzones contain some major reef
extensions of interest to commercial fisheries and despite their disaggregation they have in
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Fig 1. Map of the study area. Fishing subzones and fishing effort localities at Discovery Bay, Julia Bank, and Julia Percy Island subzones along the south

west coast of Victoria, Australia.

doi:10.1371/journal.pone.0122995.g001
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Fig 2. Distribution of GPS records around Julia Percy Island. An example of the distribution of fishing
effort recorded by GPS units around Julia Percy Island.

doi:10.1371/journal.pone.0122995.9002

common that all were unaffected by a novel outbreak of the disease abalone viral ganglioneuri-
tis (AVG) which decimated populations of abalone (H. rubra) in adjacent subzones during
2006-08 [33]. Apart from absence of disease, these three subzones were selected because of: (1)
the availability of GPS records of commercial diving locations for abalone from 2008 to 2011,
(2) the high numbers of abalone that have been harvested from these areas in recent years, (3)
diversity in specific seafloor characteristics such as geology, rugosity and depth. These reefs be-
came the mainstay of the fishery during the period immediately post-disease while other areas
of the zone remained closed for several years in response to the AVG outbreak [34].

Data acquisition and analysis grids

Catch and fishing effort data from six commercial divers harvesting H. rubra were provided by
WADA for the three study subzones (total ~1422 diving hours). These data were recorded
using a boat-based GPS system that logged catch localities and size information for years
2008-2011, a period during which much of the zone was closed to fishing to promote post-
disease recovery. However, 8 subzones from the entire western zone were open to blacklip aba-
lone fishing operations, of which, GPS records from 3 subzones were considered due to the
quality and continuity of their records over the four-year study period. Commercial harvest of
abalone is undertaken using a boat equipped with a hookah system that delivers compressed
air from the surface to the diver underwater via an umbilical pressure hose of approximately
100 m in length. GPS units integrated into electronic shellfish measuring boards were mounted
onboard individual fishing vessels. These systems log data about a diver’s catch during a single
fishing event. As bags of abalone are brought aboard a diver’s vessel each abalone is passed
(swiped) through the spring-loaded jaws of the measuring board which records the maximum
shell length, time, date, latitude and longitude [10]. One potential issue with such a system is
that the geo-located data logged is indicative of the swipe not the dive locality; we assumed that
swiping occurred proximally to catch locations because divers usually stay within less than 100
m of the vessel to reduce umbilical drag [35]. The main violation of this assumption was in
those instances where the vessel drifted away from the dive site before the catch was measured
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by swiping through the measuring machine. Outliers were removed from the data prior to
analysis. These outliers were identified by querying time stamps to identify high vessel speeds
indicative of transit between sites [10]. This was also corroborated using LiDAR identifying
mismatch between reef locations and diver records. Fine-scale rectangular grid-based maps of
1 ha cell size (100 m x 100 m) were created for each study site using the Repeating Shapes Arc-
GIS extension tool [36]. The amount of catch (kg) for each abalone diver on each fishing day
was estimated by using the allometric relationship: W = 0.000412(SL/10)*”® where SL is
swiped-abalone shell size in millimetres [37]. Reported catch was then divided by fishing hours
derived from fishers’ logbook data to estimate CPUE. We assumed that effort was evenly dis-
tributed across GPS locations. CPUE estimates were then derived for each grid by a spatial join
in ArcGIS 10 (ESRI) to collate all diver records (CPUE) for each 1 ha cell.

LiDAR-derived seafloor topographic variables

The airborne LiDAR bathymetric data used in this study were acquired through Fugro LADS
Corporation Pty Ltd in 2007 for the entire coastline of Victoria, Australia. All LIDAR data were
collected using a LADS MKk II acquisition system coupled with a GEC-Marconi FIN3110 inter-
nal motion sensing system and a dual frequency kinematic GPS. This system was mounted to a
DeHavilland Dash-8 aircraft using a fixed wing platform. The flight lines were spaced at ap-
proximately 220 m, with an acquisition swath width of 240 m, leaving a swath overlap of
around 10 m. The LiDAR system contains two laser scanners: (1) a near infrared laser at 1064
nm, which is reflected at the water surface, and is used to collect topographical data and (2) a
green laser at 532 nm, which is continuous in the water column, and is used to capture the re-
flectance of the laser light from the seabed. Elapsed time between two echo pulses and the
speed of light in the water determines the seabed depth. Primary point soundings and LiDAR
bathymetry data were gridded in a 5-m DEM as a continuous representation of the seabed sur-
face. This DEM had a maximum depth of 37 m, and was used to generate a suite of secondary
products referred to as seafloor topographic derivatives (Table 1). These variables were selected
for several reasons: (1) their potential ability to capture variation in seafloor roughness, (2)

Table 1. Secondary derivative products generated from LiDAR bathymetry.

Layer Variable definition Software
Bathymetry Provides a measure of depth for the entire study ENVI 4.7
area.
Bathymetric BPI is a measure of a defined elevation at a ArcGIS extension benthic

Position Index

special location relative to the overall landscape,
and involves the difference of height at a focal
point compared to the mean elevation of
surrounding cells. Locations with higher elevation
have positive values, while lower elevations have
negative values. Values near zero represent flat
regions [38].

terrain modeler (BTM version
1.0) [39]

Complexity Second derivative of the slope surface indicating ENVI 4.7
the rate of change in slope values. This parameter
encompasses the three-dimensional arrangement
of structural elements over a seafloor surface [29].
Rugosity The rugosity is topographic roughness with the ArcGIS extension benthic
ratio of the surface area to planar area across the terrain modeler (BTM version
neighbourhood of the central pixel. 1.0)
Vector VRM is terrain ruggedness indicating the variation ~ ArcGIS extension benthic
Ruggedness in three-dimensional orientation of grid cells within  terrain modeler (BTM version
Measure a neighbourhood. 1.0)

doi:10.1371/journal.pone.0122995.1001
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Fig 3. LiDAR-derived seafloor variables. Artificially illuminated LIDAR bathymetry of the study area magnified over the Julia Bank fishing subzone and
examples of the five LIDAR derived seafloor topographic derivatives.

doi:10.1371/journal.pone.0122995.9003

their probable importance in determining the distribution of abalone assemblages, and (3)
their likely impacts on the strategies of fishing operations. These derivatives represent variation
in seafloor characteristics, and susceptibility to sediment accumulation (bathymetric position
index [BPI]) and the surface area of the reef structure (complexity, rugosity and vector terrain
ruggedness [VRM]) (Fig 3). Collinearity between derivatives was checked to retain the least
correlated variables in the analyses. Therefore, complexity and BPI were kept and other vari-
ables including rugosity and VRM were eliminated due to high correlation with complexity
(>0.7). The BPI value provides an indication of whether any particular pixel forms part of a
positive (e.g., crest) or negative (e.g., trough) feature of the surrounding terrain. The BPI is
based on the variation among cells within a specified radius or annulus; it may be calculated at
a variety of user-defined scales so as to capture local and broad-scale variations in bathymetric
position. In this study, BPI was calculated at an outer radius of 150 m and an inner radius of 50
m. The rugosity is seabed roughness with lower values indicating smooth areas and higher val-
ues showing high-relief regions. VRM shows variations in terrain ruggedness with values from
0 (no terrain variation) to 1 (complete terrain variation). Topographic complexity is a second
derivative of the slope surface. This factor has also been described as a major driver of ecosys-
tem structure and function that can influence multitude of process including species abun-
dance [25].
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Spatial autocorrelation and hotspot analysis

Spatial statistics tools in ArcGIS 10 Software (ESRI) were used to analyze spatial and temporal
patterns in CPUE data. Global Moran's I [40] was applied to compute autocorrelation in
CPUE within the 1 ha analysis grids for each year. Using the distance, location, and values of
cells, Moran’s Index was calculated with values ranging between -1 (dispersed pattern) and +1
(clustered pattern), with values near zero indicating random distribution. Several distance clas-
ses (including 125, 250, 500, 750, 1000, and 1500 m) were considered to determine the distance
band where autocorrelation and clustering patterns occur in CPUE distribution. This approach
evaluates whether CPUE across the space of analysis grids occur non-randomly and if so, then
whether these are dispersed or clustered. Fixed distance band and Euclidian distance were ad-
justed for the autocorrelation analyses.

Once the global patterns in the dataset were determined, the local Getis-Ord Gi statistic [41]
was used to determine those areas with high and low values of CPUE, which were designated
as hotspot and coldspot areas, respectively. This approach determines statistically significant
local autocorrelation and dependence among neighboring cells. The 250-m distance band was
chosen for hotspot analysis following the analysis of Moran’s autocorrelation where this dis-
tance band resulted in high z-score values as an indication of clustering patterns in CPUE data.
This threshold selection was also on the basis of the scale of the analysis grids.

Significant values of hotspots analyses (z-score > 1.65) were extracted from each hotspot
map to make a binary layer for each year. Output hotspot maps were then classified into 4 clas-
ses according to the significant values of z-score using the union overlay tool in the ArcGIS en-
vironment to generate four-year cumulative hotspot maps. Each hotspot class illustrates the
particular area based on number of years fished, with classes 1 to 4 indicating whether a specific
region was characterized by one to four years with significant hotpots indicative of sustained
fishing pressure.

Integration of CPUE with LiDAR derivatives

Mean values of LIDAR derivatives within each grid cell across two study subzones (Julia Bank
and Discovery Bay; where bathymetric information were available) were extracted to integrate
with four-year log-transformed CPUE data. Within this framework, generalized additive
mixed model (GAMM) with a Gaussian distribution was used to model the relationship be-
tween CPUE and LiDAR-derived complexity, depth and BPI data. This modeling approach is a
non-parametric regression method that is capable to account for dependence between observa-
tions by adding a correlation structure to the additive model. GAMM was constructed using
the gamm function within the mgcv R package (R 2.15.3) [42]. Covariates were fitted as smooth
functions using a thin plate regression spline and year was used as a random effect. Model se-
lection was based on the lowest akaike information criterion and a visual examination of resid-
ual plots. The boundaries of targeted reefs were also digitized to identify reef areas using
available LiDAR coverage. Reef area was then compared against CPUE patterns to quantify the
proportion of the reef extent that was fished over four years within the study subzones.

Results
Spatial autocorrelation

Across the three fishing sites, Moran’s I analysis showed that CPUE was spatially clustered.
Most significant clusters were found at shorter distances. For instance, high clustering was
often observed at 125, 250, and 500 m distance bands, with Moran’s I decreasing at larger dis-
tance thresholds. Moran’s I and z-score values were higher in 2010 and 2011 compared to 2008
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and 2009 for the three analyzed subzones (Fig 4). In addition, higher Moran’s z-score values

were obtained at Julia Bank compared to the other two study subzones (Fig 4B).

Hotspot analysis

The results of the local Getis-Ord Gi statistic indicated that the observed clustering patterns in
CPUE were caused by the accumulation of grid cells with high values of fishing effort intensity
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in particular regions (Figs 5-7). Significant spatial and temporal shifts in CPUE between 2010
and 2011 were observed. In addition to the observed trends, the intensity and size of hotspots
at Julia Bank tended to be larger nearer to the center of this subzone (Fig 6). In comparison,
these patches often occurred in the southwest and northeast of the region at Julia Percy Island
(Fig 7). The overlaying of hotspot data layers classified as temporal coverage classes showed
spatial variation in CPUE over the four years. Hence, the persistence of CPUE hotspots indicat-
ed temporal consistency in the spatial location of hotspot regions (Fig 8). The results clearly
showed that commercial divers targeted certain sites across the four study years, with hotspot
regions being temporally concentrated in the center of both Julia Bank and Discovery Bay, and
to the south west of Julia Percy Island.

Integration of CPUE and LiDAR bathymetry

The integration of four-year CPUE with seabed topographic variables using GAMM indicated
a significant association with reef structure and depth (Table 2). According to GAMM results,
CPUE distribution was associated with high reef complexities, and CPUE values increased
with increase in seabed complexity (Fig 9). The relationship with BPI provided that CPUE
rates were dense toward areas identified as crest (ridge) or trough (valley) (BPI values > 0 and
values < 0 respectively) with comparably small CPUE rates falling on flat bottoms (BPI val-
ues = 0). Smooth curve for depth showed abalone CPUE from this study mostly tended to
occur in shallow waters of about 10 m (Fig 9). Further exploration of bathymetric layers re-
vealed the ranges of diving depths over fishing years; from 24.8-4.8 m at Julia Bank and 16.0-
3.0 m at Discovery Bay (Fig 10). Interestingly, at Discovery Bay, none of the fishing effort local-
ities occurred at depths greater than 16 m, with the reefs at this site being about 9 m shallower
compared to Julia Bank. Comparison between CPUE patterns (area h) and reef area showed
that ~ 30% of the fishable reefs extent at Julia Bank was targeted over four years while this was
~ 60% for the reefs at Discovery Bay. More exploration of CPUE patterns within the targeted
reefs also indicated that ~20 (at Julia Bank) to 50% (at Discovery Bay) of the reefs with optimal
diving depth 5-15m were under fishing operations over four years.

Discussion

Geospatial approaches applied in this study demonstrated the spatiotemporal patterns and
clusters in the distribution of CPUE for the commercially important blacklip abalone. Integrat-
ing bathymetric LIDAR data and CPUE using GAMM indicated that CPUE mainly coincided
with complex reef structures in shallow waters. Until relatively recently, the resolution of ma-
rine environmental data has been too coarse to compare with resource exploitation. The avail-
ability of both bathymetric data and precisely positioned fishing effort localities enabled us to
utilize geo-statistical approaches that better reflect the scale at which trends in effort target

the resource.

Although analyses of CPUE patterns are frequently considered in fisheries, these patterns
are often assessed at a coarse scale (kms) that is much larger than the scale of harvest [43]. In
this study, GPS-based individual effort records provided an improved data source at finer spa-
tial scale. A recent study trialing grid based analysis of GPS data for monitoring small-scale div-
ing for the sea urchin (Paracentrotus lividus) also demonstrated the usefulness of fine-scale
benthic fisheries assessments [8]. In common with many other fisheries, our study showed that
abalone fishing is a non-random and heterogeneously distributed process [44, 45]. At an ap-
propriate analytical scale, patterns in CPUE can be expected to provide evidence about whether
shifts or continuity in fishing pressure is occurring in response to a given fishing strategy. It
might also be potentially useful in providing trends in stock dynamics across particular zones.
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doi:10.1371/journal.pone.0122995.g006
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data were not available).

doi:10.1371/journal.pone.0122995.9007

For example, in the case of spatially structured target species such as abalone, when the abun-
dance of a stock begins to decline commercial divers tend to explore a more expansive area of
reef in order to maintain catch rates [46]. Consequently, divers spend less time at sites with low
aggregations of abalone, and subsequently move to alternative stocks in preference to persisting
with reducing catch rates. This behavior reduces relative effort concentration, and CPUE be-
come more evenly spread across a particular fishing zone. It may also create hyper-stability in
CPUE making it a poor indicator of abundance or biomass until the resource becomes severely
depleted. However, fishermen generally apply more effort to sites that have provided historical-
ly higher catch rates or return to known zones of high productivity [47].

In addition, the observed CPUE distributional patterns are likely caused by the preferences
of individual divers with regard to environmental constraints or stock dynamics. Although the
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Fig 8. Cumulative hotspot distribution map. Cumulative CPUE hotspot map overlays (based on the number of years that CPUE was clustered) for (A)
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doi:10.1371/journal.pone.0122995.9008
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Table 2. The approximate significance levels (p-value), estimated degrees of freedom (edf) and F sta-
tistics (F stat.) for each of the explanatory variables used in generalized additive mixed model applied
on blacklip abalone CPUE data.

Parameters edf F stat. p-value
Complexity 2.71 34.8 <0.001
Depth 4.78 5.0 <0.001
BPI 1.0 27.7 <0.001

doi:10.1371/journal.pone.0122995.t002

behavior of abalone fishers were poorly understood in the past [48], they often prefer fishing
grounds close to ports and avoid adverse weather conditions and exposure to high wave energy
[49]. Reducing travel time at sea and associated fuels costs are also important factors that influ-
ence the choice of fishing location. More accessible areas often receive high fishing pressure
eventually making them unattractive to divers due to low yields caused by overexploitation.
This preference for intensively fishing the more accessible locations makes abalone stocks vul-
nerable to serial depletion that often ultimately leads to stock collapse [50]. One possible solu-
tion to this problem suggested by Prince [51] is to match the scale of management to the scale
of resource dynamics expressed as micro-management for micro-stocks. This contrasts with
current practice where statutory management arrangements applied by Government agencies
occur at a broad scale, typically 100s km, while abalone dispersion and fishing activity occur at
the small spatial scale (10-100s of meters). However, using cost-effective and precise GPS
tracking might provide managers an effective snapshot of spatial and temporal changes in
CPUE under the current harvesting regime and at the individual reef scale. Such spatial assess-
ments can also assist towards selecting appropriate fishing strategies such as implementing
regulated catch caps and rotational fishing patterns at subzonal resolution to prevent stocks
becoming overfished.

The GIS-based analyses used in this study also revealed the existence of clustering patterns
and hotspots in abalone CPUE, with temporal trends being observed across short distance
thresholds. In nature, organisms do not often exhibit uniform or random distribution, but ag-
gregate in some type of spatial structure or patch [52]. In the context of fisheries, particularly
benthic fisheries, the patchy spread of catch and effort is linked to the aggregation and occur-
rence of targeted species likely driven by suitable structure characteristics (i.e cryptic habitat
availability) and oceanographic parameters (i.e exposure) [8, 53]. This phenomenon highlights
the advantages of the spatial assessment of a fishery because it enables the location and intensi-
ty of fishing effort to be identified, along with how this information connects to target species
productivity [18, 54]. For instance, CPUE hotspots that were observed to be consistent over
time, as observed in the cumulative maps (Fig 8), might indicate the presence of highly produc-
tive or exploited grounds. An increase in the hotspot value of a given area may indicate intensi-
fied fishing effort, as observed in the southwest area of Julia Percy Island and the center of Julia
Bank. Hence, it would be the responsibility of managers to decide whether this increase in ef-
fort is sustainable within the context of additional data such as stock density and abundance
and, if not, whether downward revision in total allowable catch should be implemented for the
Island. Indeed catch targets on the three subzones considered in this study were set to zero for
the 2013-14 fishing season, and only a small catch target was set for Julia Percy Island during
2014-15. Conversely, a diminishing CPUE hotspot might indicate that an area is becoming less
productive, or there has been translocation of effort to a different location. The patterns ob-
served and increased intensity of effort at these locations may also be associated with manage-
ment changes such as the closure of AVG affected reefs during limiting the total available reef
estate for fishing. Displacement of effort as a consequence of disease was the primary reason
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for focusing effort on reefs on Julia Bank and in Discovery Bay that were seldom fished during
the years prior to AVG. Furthermore, stronger spatial clusters and temporal shifts in CPUE
were observed between 2010 and 2011 especially at Julia Bank subzone which is likely to be due
to the concentration of divers’ effort to meet total allowable catch. The greater depth and pat-
chy distribution away from the central Julia Reef area also meant that more exploratory search-
ing was required to locate dense aggregations that yielded acceptably high CPUE.

Interpreting patterns in fishing pressure nonetheless warrants a cautious approach, because
observed patterns might be dependent on the extent to which CPUE is associated with habitat
structure and the occurrence of target species [55, 56]. In this study, GAMM indicated that
CPUE was associated with reef complexes in shallow waters that exhibit high seafloor complex-
ity data. Observed coincidences between CPUE and seafloor structure is further supported by a
previous study that showed key blacklip abalone fishing grounds were associated with topo-
graphically complex reefs [57]. In addition, it has been well documented that depth and reef
complexity represent fundamental characteristics of benthic marine ecosystems that affect a
multitude of processes, including species richness and diversity [14, 58-61]. Consequently,
along with the depth and the cost of operations, reef complexity is likely to influence fishing be-
havior considering that fishers do not knowingly expend search effort in areas where the target
species is likely to be sparse or absent. In addition, CPUE mainly occurred between depths of 5
to 20 m. In some locations, major reef complexes also occur in areas deeper than 20 m, yet
these areas were not completely targeted with 100% coverage. Rather divers appeared to be
targeting specific areas that show these areas are perhaps more productive. For example, we ob-
served that only ~30% and 60% of the reef areas at Julia Bank and Discovery Bay were respec-
tively targeted by fishermen over four years. This may primarily be because of the increased
risks associated with hyperbaric exposure at these depths, but possibly also due to perceived
lower abalone biomass in these areas that would militate against achieving acceptable catch
rates. More research should be undertaken to help better address the question of whether par-
ticular subzones that are subject to intense fishing effort support persistent clusters of abalone
stocks. Extension of current knowledge about fishing-induced effects on abalone patches
should enable commercial abalone divers to make better informed decisions about how inten-
sively they should fish specific subzones to ensure that sufficient abalone resources persist for
the fishery to be sustained into the future.
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Conclusions

The analyses of fishing effort based on GPS tracking using hotspot analyses facilitated the de-
termination of CPUE intensity over time, and provided an opportunity to analyze the spatial
dynamics of the fishery at a localized reef scale. Abalone CPUE was unequally distributed
across the grounds, with observed trends appearing to be primarily concentrated in relatively
fine-scale areas with a history of high effort. In addition, the bathymetric data further illustrat-
ed that CPUE patterns closely coincided with seafloor type (i.e. shallow reef complexes). The
effective visualization and communication of these data to stakeholders (the commercial diving
organizations), could potentially provide a unique opportunity to establish a useful feedback
mechanism for integrating fisher knowledge into the fishery management system.
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