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[1] The mass accumulation rates of sedimentary components (carbonate, organic carbon, opal, barite, reactive
phosphate, iron, terrigenous minerals, etc.) are used in many paleoceanographic reconstructions to learn about
temporal and spatial changes in surficial Earth processes including wind stress and direction, oceanic circulation,
weathering rates, marine productivity and ecosystem structure, climate change, and more. In most studies it is
assumed/desired that the sediment accumulation represents the production and deposition of particles from the
overlying water column since substantial horizontal transport imply homogenization of paleoceanographic
proxies and little confidence in any paleoceanographic time series. In this note we highlight some discrepancies
between the different approaches used to reconstruct sediment mass accumulation rates and specifically discuss
the consequences of these discrepancies to the reconstruction of paleoproductivity in the equatorial Pacific. We
pose research questions and suggest possible approaches/research strategies for the community to solve
them. INDEX TERMS: 4267 Oceanography: General: Paleoceanography; 4558 Oceanography: Physical: Sediment transport; 4863

Oceanography: Biological and Chemical: Sedimentation; KEYWORDS: paleoproductivity, sediment focusing, equatorial Pacific
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[2] The equatorial Pacific, an area with relatively high
biological productivity, plays an important role in the global
carbon cycle [Chavez and Barber, 1987; barber and Chavez,
1987; Mix, 1989; Murray et al., 1994; Archer and Maier-
Reimer, 1994; Cane, 1998]. Changes in the strength of the
biological pump (e.g., carbon export to depth (Cexport)) may
affect the climate system by modulating CO2 fluxes between
the ocean and atmosphere [Broecker, 1982; Berger et al.,
1989; Hansell et al., 1997]. In order to better understand
the role of the biological pump in the equatorial Pacific and
delineate the relationship between Cexport and climate, better
constraints on fluctuations in Cexport must be established.
Indeed, since the early days of modern oceanography
efforts were concentrated on reconstructing past changes in
Cexport in this oceanic area [Arrhenius, 1952; Goldberg and
Arrhenius, 1958; Hays et al., 1969].
[3] Awide range of proxies have been used over the years

including accumulation rates of sedimentary components
related directly or indirectly to Cexport such as organic
matter, calcium carbonate, opal, barite or excess Ba [Muller
and Suess, 1979; Muller et al., 1983; Calvert, 1987;
Sarnthein et al., 1988; Pedersen, 1983; Pedersen et al.,

1988, 1991; Mix, 1989; Berger et al., 1989; Mix, 1989; Lyle
et al., 1988, 1992, 2002; Isern, 1991; Rea et al., 1991;
Herguera, 1992; Kemp et al., 1995; Snoeckx, 1995; Snoeckx
and Rea, 1994; Leinen et al., 1986; Yang et al., 1995;
Paytan et al., 1996a; Farrell et al., 1995; Pisias and Mix,
1997; de Garidel-Thoron et al., 2001]; changes in forami-
niferal or diatom assemblages [Herguera and Berger, 1991,
1994; Herguera, 2000; Mix et al., 1999; Loubere, 1999,
2000, 2002; Schrader and Sorknes, 1990]; elemental ratios
that relate to particle flux such as Al/Ti, 10Be/230Th and
231Pa/230Th [Murray et al., 1993, 1995, 2000; Bacon, 1988;
Anderson et al., 1983, 1990; Lao et al., 1993] and other
proxies [Perks and Keeling, 1998; Stoll and Schrag, 2000].
Accurate interpretation of these records is complex due to
the fact that each and every one of these proxies responds
not only to changes in Cexport but also to multiple other
processes including variable preservation, organisms’
response to environmental changes, delivery from multiple
sources, changes in particle scavenging and in oceanic
circulation, and other, not always well understood, param-
eters [Berger et al., 1989; Zahn et al., 1994].
[4] The prevailing view to emerge from studies of the

changes in the accumulation rates of sedimentary compo-
nents that respond to changes in biological productivity and
Cexport is that many sites in the equatorial Pacific, with the
exception of the Peru Margin, [e.g., Schrader and Sorknes,
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1990; Ganeshram et al., 2000; Loubere, 2002] experienced
higher Cexport during glacial times than during interglacials.
Such calculations may, however, be a direct function of the
bulk sediment accumulation if the sedimentation rates vary
much more than the composition (e.g., %CaCO3 or%
organic C) [Middelburg et al., 1997]. Moreover, it is well
known that the accumulation rate of sediment at any given
place or time includes the vertical particle flux, which is
related to contemporaneous surface water biological activ-
ity, as well as any lateral input of material either from other
sites representing the same age or from predeposited older
sediments that are being redistributed. Such sediment redis-
tribution is common on continental slopes, seamount flanks,
and in areas where strong, confined, bottom currents pre-
vail, such as in the Southern Ocean [Heezen et al., 1966;
Gross et al., 1988; Lao et al., 1993; Gustafsson et al., 1998;
Biscaye et al., 1998; Hall and McCave, 2000]. Oceanic
coring expeditions since at least the 1980s have tried to
target areas of the seafloor that are away from topographic
structures that could potentially deliver allochthonous sedi-
ments. In addition, paleoceanographers have used various
methods in the past to identify and avoid coring sites overly
impacted by sediment redistribution. Typically, there are
geological-sedimentological indications for sediment redis-
tribution (features characteristic of redeposition) such as
evidence for sediment slumping, turbidity flow, grain size
sorting, ripple marks, discontinuities in seismic reflectors,
age disparity between different components of the sediment
etc. [Potter and Pettijohn, 1977; McCave, 1983; McCave et
al., 1995; Pearson et al., 2000; Ohkouchi et al., 2002;
Mollenhauer et al., 2002]. In open-ocean deep-basin areas,
such as those characterizing much of the deep equatorial
Pacific seafloor, substantial sediment redistribution is
unlikely to be prominent because of the sluggish bottom
currents and relatively flat topography.
[5] To more rigorously account for the accumulation of

sediments that are not deposited from the water column
directly above, scientists have used tracers that are produced
and delivered to the sediment at a constant rate, such as
excess (i.e., scavenged) 230Th [Bacon, 1984; Suman and
Bacon, 1989; Francois et al., 1990] or 3He [Marcantonio et
al., 1995, 1996, 1999, 2001a]. The most important and
fundamental requirement from such accumulation rate indi-
cators is that at any given time and at any location their
production in the water column (or delivery to the water
column) and their transfer from the water column to the
sediment is well-known and constant with time [Bacon,
1984; Farley, 1995].
[6] For 230Th, the production rate is governed by the

amount of dissolved uranium in the overlying water col-
umn, a parameter which is indeed known and constant. The
transfer of 230Th to the sediment relies on the highly
particle-reactive nature of Th [Francois et al., 2004]. This
value is less well-constrained than the production rate, but
for the purposes of applying the 230Th normalization pro-
cedure, it has been assumed to be equal to the production
rate. Modeling efforts suggest this assumption is reasonable
in most parts of the ocean, with deviations producing errors
in flux of at most 30% [Henderson et al., 1999]. Indeed,
excess 230Th based sediment accumulation calculations

have been widely used to account for sediment redistrib-
utions in areas prone to such processes, like the Southern
Ocean [Francois et al., 1993; Kumar et al., 1994; Frank et
al., 1995, 1996; Dezileau et al., 2000; Fagel et al., 2002;
Chase et al., 2003].
[7] The use of 3He as a constant flux proxy relies on

its presumed constant flux to the sediments from extra-
terrestrial particles. This proxy has been used less fre-
quently than 230Th mostly because only a few labs are
currently capable of performing this analysis. There is
also still some debate regarding the validity of the notion
of constant extraterrestrial 3He flux [Farley, 1995; Farley
and Patterson, 1995; Patterson and Farley, 1998]. It is
interesting that at some sites, where both 230Th and 3He
were utilized simultaneously, these records yielded gener-
ally consistent accumulation rates despite their totally
different source functions, which requires a mechanism
that will simultaneously concentrate or dilute interplane-
tary dust particles and the particles responsible for Th
adsorption in the water column [Marcantonio et al., 1995;
Thomas et al., 2000]. At other sites however, some
inconsistencies between accumulation rates derived from
these two indicators has been observed, suggesting that
the application of these tools could at times be more
complex than realized [Marcantonio et al., 2001b].
[8] Recently, both 230Th and 3He have been applied to

several sites in the equatorial Pacific that had not been
suspected of sediment redistribution based on traditional
site selection and sedimentary indicators (e.g., evidence for
slumping, sorting, age anomalies, etc). Surprisingly, at all
sites investigated so far (Figure 1, Table 1) the sediment
accumulation rates calculated in the traditional manner,
from linear sedimentation rates and sediment dry bulk
densities, are significantly different than the accumulation
rates based on excess 230Th and/or 3He normalization
[Yang and Elderfiled, 1990; Paytan et al., 1996a; Mar-
cantonio et al., 1995, 1996, 2001a, 2001b; Schwarz et al.,
1996; Stephens and Kadko, 1997; Higgins et al., 1999,
2002; Loubere et al., 2003, 2004]. In particular, while
most of the sites investigated using traditional mass
accumulation rate calculations or just sediment composi-
tion (wt % barite or organic C etc.) [Paytan et al., 1996a;
Averyt and Paytan, 2004] indicate increased accumulation
of various biologically related proxies (e.g., organic C,
opal, CaCO3 or barite) during glacial periods, when using
230Th and/or 3He normalized accumulation rates the signal
disappears or even reverses (e.g., lower accumulations
during glacial periods). The implication is that the fast
rates of accumulation of biogenic material during glacials
were driven not by fast rates of surface productivity and
export, but rather by extensive lateral transport of sediment
into the investigated sites during glacial periods (e.g.,
sediment focusing and redistribution). The majority of
cores investigated reveal focusing factors (the ratio of
measured 230Thex flux to the sediment to that expected
from production in the water column) higher than 1 and in
some cases focusing of up to 8 fold have been reported
[Loubere et al., 2004]. A few sites of sediment winnowing
have also been identified [Higgins et al., 2002] (Figures
1a–1b). The transported sediment must have been of the

PA4017 PAYTAN ET AL.: EQUATORIAL PACIFIC FOCUSING

2 of 6

PA4017



same age as the vertically accumulating sediment (e.g.,
syndepositional) since isotope-based age models do not
identify deposition and mixture with significantly older
material that would result in age anomalies (e.g., older
than expected ages for glacials). Moreover, sedimentation
rates obtained from bulk carbonate 14C and from excess

226Ra in barite (dominated by the fine fraction) are in good
agreement with sedimentation rates based on foraminifera
isotope analyses (coarse fraction) indicating that sediment
redistribution, if it occurred, was of similar age distribution
as the vertical sediment flux [Pearson et al., 2000;
Ohkouchi et al., 2002].

Figure 1. Locations of cores in the (top) eastern equatorial Pacific and (bottom) western equatorial
Pacific, where sediment focusing during glacial times has been implied from either 230Th or 3He data.
Open circles are sites with focusing factors greater than 1, and stars are sites with focusing factors equal
or less than 1. Data are from: Yang and Elderfield [1990], Marcantonio et al. [1996], Schwarz et al.
[1996], Higgins et al. [1999], Marcantonio et al. [2001a], Higgins et al. [2002], and Loubere et al.
[2003].
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[9] This observation challenges our conventional under-
standing of oceanic processes and thus hampers any poten-
tial interpretation of paleoproductivity (or any accumulation
rate based records) for this region and possibly other, yet to
be tested, oceanic regions. The widespread records of high
accumulation of biogenic components during glacial times
throughout the equatorial Pacific, at all depth scales and at
horizontal scales that can exceed 1000 km (see list of
references above), if explained by sediment focusing, imply
that deep currents move huge amounts of sediment and
selectively deposit it near the equator. One way to explain
these observations is to invoke significant climatically
driven changes in ocean circulation (either at mid water or
deep water depths or both) that would induce extensive
basin wide sediment focusing [Hall et al., 2001; Schwarz et
al., 1996; Walsh et al., 1997]. What is the nature and origin
of the climatically driven dramatic changes in deepwater
circulation? Can we reconstruct these circulation changes?
Are these circulation changes associated with changes in
deepwater chemistry? Are there known climatically related
mechanisms that will drive such circulation changes? What
is the flow path and strength of such currents? Could these
changes in circulation have had other consequences? Can
coupled ocean-atmospheric circulation models reproduce
these changes? It is very possible that sediment focusing
and lateral transport from surrounding topographic heights
to some of these sites (in particular those with very high
focusing factors) has occurred but it is puzzling that this is
evident at so many sites from different depths and that this
phenomena is climatically related and does not involve at
least at some sites major composition or size-dependent
fractionation [Thomas et al., 2000; Averyt and Paytan,
2004].
[10] Alternatively, it may be that the processes that control

230Th and 3He flux and their relation to Cexport have been
different in past (in particular glacial) times. It is unlikely
that the water column production rate of 230Th has changed.
However, could scavenging processes not common or

observed in the present-day ocean have resulted in the
accumulation of more excess 230Th than expected during
glacial times in the equatorial Pacific? Is it possible that
higher particle flux coupled with changes in circulation
resulted in enhanced delivery and scavenging of 230Th in
this area? Is it reasonable to assume that the residence time
of Th in the ocean has been different in the past and thus
more localized scavenging of Th may result? Could changes
in the burial of authigenic U, which is not accounted for
since it may not have been preserved in the sediment, have
affected the excess 230Th calculations? Could extraterrestrial
3He flux to earth be modulated by the same processes that
affect climate? Will 3He particles be scavenged and con-
centrated in certain parts of the ocean due to changes in
productivity and particle dynamics? Note that in order to
discount focusing, enhanced burial during glacials of both
excess 230Th and 3He needs to be accounted for, at least
where these records agree with each other.
[11] Resolving these issues will require investigating

processes that may result in increased sediment focusing
as well as those affecting the chemistry of scavenged and/or
cosmogenic elements such as Th and 3He. Specifically,
future research directions should focus on: understanding
oceanographic mechanisms of sediment focusing including
resolving the issue of sediment budget by identifying both
the source and sink regions for the re-deposited sediments;
detailed effects of sediment focusing on different compo-
nents of the sediment; and, use of high-resolution seismic
reflections to identify lateral heterogeneity in sedimentation.
In addition, studies of particle flux and scavenging dynam-
ics to gain a more quantitative understanding of radionuclide
adsorption/desorption processes and relation to particle
aggregations; and, evaluation of factors that control lateral
transport of Th in the water column. Finally, physical
oceanographic models coupled with sediment, particle,
and radionuclide dynamics should be constructed and tested
using sedimentary observations from regionally representa-
tive sediment cores. Additional research recommendations
are laid out in the work of M. Lyle et al. (Do geochemical
estimates of sediment focusing pass the sediment test in the
equatorial Pacific?, submitted to Paleoceanography, 2004).
[12] In conclusion, before we can determine whether

biological productivity and Cexport were higher or lower in
the glacial ocean we have to critically and thoroughly assess
our fundamental understanding of geological (sedimentary
processes), physical (circulation) and chemical (scavenging)
oceanography during time periods different than the present.
Whatever the cause of this inconsistency is it may have
important implications for paleoclimate interpretation, bio-
geochemical fluxes and ocean dynamics throughout the
equatorial Pacific Ocean and possibly globally.

Table 1. Comparison Between Sedimentation Rates Derived

Using Different Methods and Assumptions at TTN013-PC72

Method Used

Holocene
Sedimentation
Rate, cm/kyr

Last Glacial
Sedimentation
Rate, cm/kyr Reference

14C (bulk) 2.30 - Pope et al. [1996]
4C (bulk) 3.41 - Murray and Leinen [1996]
d18O 2.30 3.10 Paytan et al. [1996a]
d18O 2.45 3.11 Murray et al. [1995]
226Ra 2.95 - Paytan et al. [1996b]
230Thex 1.06 1.21 Marcantonio et al. [1996]
3He 0.95 1.67 Marcantonio et al. [1995]
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