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a b s t r a c t

The introduction of Spartina to intertidal marshes last century in many areas of the world transformed
estuarine geomorphology, threatened native species and habitats, and impeded coastal access and use.
This study investigated erosion/accretion trends of marsh surfaces following removal of invasive Spartina
across a substantial intertidal marsh area. Marsh surface changes were monitored within a 0.6 ha
experimental site where Spartina anglica cover was removed, and compared with surface changes at a
comparable control site. Erosion/accretion rates were measured for over two years using a grid transect
network, creek cross sectional profiles, and seaward edge delineation. Results showed that a significant
erosion of the marsh surface occurred at the experimental site relative to the control site, using two
different statistical analyses. Analysis of mean monthly change found erosion rates at the experimental
site to be 13.2 mm a�1 relative to 2.0 mm a�1 at the control site, a rate that was six times greater. Analysis
of overall change from the beginning to the end of the study showed that erosion was significantly more
pronounced at the experimental site relative to the control site, and increased from the landward edge to
the seaward edge at both sites. This study demonstrates the need for consideration of geomorphic
processes when managing invasive plants in dynamic environments, and indicates that large scale
Spartina removal will cause coastal erosion, bringing potential consequences to adjacent near shore
waters and ecosystems.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Invasive species are recognised as a key threat to biodiversity
and ecosystem functioningworldwide (Pejchar andMooney, 2009),
and in environments of high sediment mobility such as dune sys-
tems and estuarine intertidal zones, they also influence
morphology, through change to processes of accretion and erosion.
Spartina species are such ecosystem engineers (Jones et al., 1994,
1997; Guti�errez et al., 2000; Strong and Ayres, 2013), in that they
influence the environment in which they live by creating or
modifying habitat. Spartina species are monocotyledonous plants
with stiff, robust stems and fleshy interwoven leaves which slow
the velocity of tidal waters, and trap suspended sediment at a
higher rate than other marsh species (Thompson,1991; Li and Yang,
2009). Reduced flow velocities in dense Spartina promotes sedi-
ment deposition (Bouma et al., 2005a), leading to high
R. Sheehan), Joanna.Ellison@
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sedimentation rates (Ranwell, 1964). Subsurface components of
Spartina anglica consist of extensive systems of robust rhizomatous
roots, which protect inter-tidal mud from erosion (Van Eerdt, 1985;
Brown, 1998; Brown et al., 1999), and contribute organic matter to
sediment accumulation (Li and Gao, 2013).

Spartinawas intentionally introduced in Europe, the USA, China,
Australia and New Zealand last century (Strong and Ayres, 2009),
for the benefits of marsh sediment accretion leading to land
extension and coastal protection (Chung, 2006; Strong and Ayres,
2009; Wan et al., 2009; Zuo et al., 2012). Negative consequences
subsequently became recognised, such as replacement of native
vegetation, and destruction of important migratory shorebird and
waterfowl habitat (Hedge and Kriwoken, 2000; Strong and Ayres,
2013; Boon et al., 2014). In China, three introduced Spartina spe-
cies are estimated to have caused annual economic losses of US
2000 million dollars, and are now declared as notorious invasive
species (Sun et al., 2015). In Australia, S. anglica became considered
to be an invasive species (Laegdsgaard, 2006; Boon et al., 2014),
threatening the ecological integrity of estuarine wetlands of inter-
national importance (Wells, 1995; Doody, 2008). Furthermore,
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sediment buildup and dense vegetation impacted coastal access,
brought threats to coastal infrastructure and aquaculture
(Kriwoken and Hedge, 2000; Doody, 2008), and resulted in estua-
rine morphological transformation (Sheehan and Ellison, 2014).

As perceptions changed, control programs commenced of in-
festations of S. anglica and other invasive Spartina species (Roberts
and Pullin, 2008; Doody, 2008; Sheng et al., 2014). Chemical control
using herbicides has been most widespread (Doody, 2008; Sheng
et al., 2014), however mechanical removal to control smaller in-
festations has also been used in areas such as San Francisco Bay and
Puget Sound, USA, the north east coast of England, and Port Gawler,
South Australia (Hedge et al., 2003; Doody, 2008; Strong and Ayres,
2013). Some infestations in Washington State, San Francisco Bay
and parts of Europe, New Zealand and Australia approached erad-
ication, while others proved too large (Guenegou et al., 1991;
Kriwoken and Hedge, 2000; Reeder and Hacker, 2004; Taylor and
Hastings, 2004; Grevstad, 2005; Bortolus, 2006; Sheng et al., 2014).

While investigations have been conducted to determine the
direct effects of control methods on sediments and biota (Frid et al.,
1999; Hammond and Cooper, 2002; Roberts and Pullin, 2008;
Buckley and Han, 2014; Lampert et al., 2014), little research has
been carried out to investigate any undesirable long-term
geomorphological impacts of large scale Spartina removal. There
may be potential for sediment erosion following marsh defoliation
(Kirby,1994), which could have negative consequences in increased
estuarine turbidity and changes to sediment budgets.

This study undertook an investigation into the consequences of
large scale Spartina removal on the erosion or accretion trends of
marsh surfaces across the intertidal zone, in an estuary where its
introduction half a century ago led to profound estuarine intertidal
morphology change (Sheehan and Ellison, 2014). The aim of this
study was to remove a substantial area of invasive Spartina across a
land to sea sector of marsh, and investigate the subsequent con-
sequences to the marsh surface morphology, as a result of erosion/
accretion trends.

2. Methods

2.1. Study area

The Tamar Estuary is the largest estuary in North Tasmania
(100 km2), with the majority of freshwater inflow at the estuary
head from the North and South Esk Rivers, and extends 70 km along
a bedrock confined drowned river valley (Pirzl and Coughanowr,
1997; Ellison and Sheehan, 2014). Mean daily temperatures are
between 5 and 25 �C, annual rainfall about 675 mm, and wind di-
rections dominantly northewesterly through to northerly, with
some south-easterly influences. The tidal range in the central part
of the estuary is 2.6 m (Ellison and Sheehan, 2014).

Spartina anglica was introduced to the Tamar Estuary last cen-
tury on behalf of the Launceston Port Authority at Windermere
(Fig. 1) in an attempt to reduce estuarine siltation issues (Ranwell,
1967; Phillips, 1975; Pringle, 1993). The upper estuary was prone to
siltation at a time when the estuary served as a major shipping
channel, and it was believed that vegetating the mudflats would
promote vertical accretion, to better define the channel and
enhance scour, therefore reducing the reliance on expensive
dredging operations.

Subsequently, S. anglica spread throughout the estuary, partic-
ularly seaward of the initial planting sites to areas not subject to
siltation. The total area was estimated to be 374 ha in 2006
(Sheehan and Ellison, 2014), and is Australia's largest infestation. Its
introduction and continued spread has transformed the intertidal
zone from gently grading mudflats, sandy beaches and gravels into
laterally extensive S. anglica monocultures composed of fine
grained sediments (Phillips, 1975; Pringle, 1993; Bird, 2008), that
have trapped extensive volumes of sediment to substantially
change the estuarine morphology (Sheehan and Ellison, 2014).
Since the 1990's government and community programs have
worked to control spread and remove smaller Spartina infestations
around Tasmania (Kriwoken and Hedge, 2000).

2.2. Study design

A study locationwas selected on the central western coast of the
estuary south of Swan Point (Fig. 1), and a control and experimental
site each of 0.6 ha was established at the location separated from
each other by a distance of 200 m, yet remaining in the same
embayment with similar aspect. The location is in a relatively
remote area of the estuary, largely out of view and away from roads
and dense residential areas, so minimising risks of disturbance
during the experiment. The marsh at this location (Latitude 41�

1505400 S; Longitude 146� 580900 E) extends seaward some 120 m
from Mean High Water (MHW), with sediment depths of about
50 cm accumulated under Spartina, upon a substrate of sands and
gravels (Sheehan and Ellison, 2014).

The study location is in a wide section of the Tamar Estuary,
flanked by extensive and gently grading sandflats which are
exposed during low tide, and extend ca. 1 km seaward to the main
channel. The Tamar is a tidally dominated estuary and the gentle
grade and width of the sandflats south of Swan Point result in the
attenuation of wave energy before reaching the Spartinamarsh. The
seaward margin of the marsh at this part of the estuary was poorly
defined, with clumps of S. anglica extending seaward onto the
sandflat. Typically there was little change in elevation between the
marsh and the sand flat, and an absence of erosional scarps or
micro-cliffs.

This study compared erosion/accretion rates between an
experimental site where Spartina anglica cover had been removed,
and a control site, where S. anglica cover remained intact. Erosion
rods were used, which if hammered into the ground below the
marsh show accretion/erosion trends of the marsh surface over
time (Nolte et al., 2013). Changes are interpreted as either erosion
(increase in rod length exposed above the marsh surface) or ac-
cretion (decrease in rod length exposed above the marsh surface).
To compare erosion/accretion between the two treatments, Acetyl
rods were used, with a diameter of 6 mm and lengths ranging
between 0.5 and 1 m depending on the thickness of marsh sedi-
ments. These were pre-cut in the laboratory, and the top of the rod
melted on a hot plate so that the measuring surface was flat. The
rods were inserted into the marsh perpendicular to the surface and
firmly embedded in the lower sandy substrate by about 50mm, and
leaving 50 ± 2 mm protruding from the marsh surface.

Three erosion/accretion monitoring studies were established
within each of the sites (Fig. 2): a transect study to investigate
marsh surface erosion/accretion trends, an edge retreat study to
focus on change at the seaward edge, and a creek study to inves-
tigate changes in tidal creek cross sectional profiles.

2.2.1. Transect study
Given the large scale of the study sites, the number of points

required for statistical validity, and the need to complete each re-
measurement in one low tide, a grid transect design using
erosion rods was used (Kirby et al., 1993; Kirby, 1994; Gilman et al.,
2007; Nolte et al., 2013). With the S. anglica sediment accumulation
at this area of the estuary being <1 m (Sheehan and Ellison, 2014),
rods could be inserted firmly into the sand/gravel pre-Spartina
surface beneath the fine grained marsh muds (Fig. 2).

Six transects perpendicular to the shoreline were established in
both the experimental and control sites between the landward



Fig. 1. Map of the Tamar Estuary, Tasmania, showing location of the study area.
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bank and the sand flats seaward of the S. anglica marsh (Fig. 2).
Acetyl rods were placed every 10 m along each transect to a dis-
tance of 100 m from MHW (Fig. 2). Thereafter rods were placed
every 5m towithin 3m of the seawardmarsh edge, and then at 1m
intervals to the seaward edge. In areas such as the upper and lower
banks where micro-cliffing was anticipated, rods were placed at
each minor break in slope. For the outer marsh edge, this involved
placing a rod at the edge on the marsh surface, and another on the
Fig. 2. Diagrammatic representation of the experimental and control study areas'
sample design, with grid transect based, seaward edge and creek cross section studies.
sandflat surface. Both the experimental and control sites had iso-
lated Spartina clumps extending onto the sand bank seaward of the
laterally extensive sward. Where transects intercepted these
clumps, rods were placed at both the upper clump and lower
sandflat surfaces. Rods were classified as either landward bank
rods, marsh rods, sandflat rods or clump rods (Fig. 2) to allow
determination of erosion/accretion rates for each of these
landforms.

2.2.2. Edge study
The seaward margin of the marsh of both sites had isolated

Spartina clumps offshore of the main marsh (Fig. 2). The edge was
therefore defined as the seaward-most extent of the continuous
sward, and rods were placed every 2 m along this margin to
determine marsh retreat or progradation. Rods were also placed
around themargins of offshore clumps as part of the transect study.

2.2.3. Creek study
Three tidal creek cross sections were monitored in major creeks

of the lower, mid and the upper marsh at both the experimental
and control sites. At each cross section, nine erosion rods were
installed across the creek, placed at each major break in slope, and
across the creek channel base. Marsh surface rods were placed 1 m
either side of the channel edge, top edge rods were placed 0 cm and



M.R. Sheehan, J.C. Ellison / Estuarine, Coastal and Shelf Science 164 (2015) 46e55 49
10 cm from the creek top edge, and channel rods were placed at the
lower edges and central thalweg.

For replication, mud surface elevation across each creek transect
was recorded using a surveyors level at the beginning and end of the
study to determine change in cross sectional shape over this period.
Analuminiumplateof 1mmthicknesswasplacedateachpointwhen
surveyed, to prevent the survey pole base from sinking into themud.

2.3. Removal of Spartina

The experimental site was treated with the monocot herbicide
Fusilade to cause Spartina mortality. Permits were obtained from
the State Government, and their staff assisted in the treatment
following experience gained from successful control programs of
small infestations in other estuaries (Hedge and Kriwoken, 2000;
Department of Primary Industries, Water and Environment,
2002). Three follow-up treatments were required within 6
months of the initial treatment for total removal. Maintenance
sprays were carried out each subsequent summer to control seed
set and vegetative spread from the surrounding marsh.

2.4. Measurement

All rods from both the experimental and control sites (Fig. 2)
were measured monthly during the same low tide period for over
two years. A small, thin stainless steel ruler was placed on the mud
surface at the base of the rod in order to give an average surface in
the event that rods had caused localised scouring or sedimentation.
The protruding rods were consistently measured on the south side,
from the top of the rod down to the ruler, using a stainless steel
carpenter's square to ensure horizontality. Measurements of indi-
vidual rods were rejected if observations suggested the rod had
been influenced by local processes such as coning or mounding
(Nolte et al., 2013), or if rods had been bent or lost.

2.5. Statistical analysis

2.5.1. Transect study
Changes over time to marsh levels and sandflat surfaces

seaward of the marsh were analysed from all monthly rod mea-
surements along transects from both the control and experimental
sites. The first analysis was of yearly erosion rates calculated for
each rod using the difference in the length of the exposed rod be-
tween two consecutive measurements (i.e. T1 and T2), and
applying the following equation:

Erosion rate
�
mm a�1

�
¼ ðRod length T2� rod length T1Þ

h
date T2 � date T1

365

i

Scatter plots of mean monthly erosion/accretion rates against
time were plotted for each treatment, and linear trend lines fitted.
As this study was principally concerned with the overall difference
in erosion rates between treatments with time, trend lines were
considered to give the best estimate of general linear trends.
Separate regression lines were fitted to the estimated average rate
of erosion per month for each rod.

An Analysis of Variance (ANOVA) was then used to compare
trend line slopes between control and experimental treatments.
The ANOVA also included the covariate distance from shore (offset),
which adjusted for the observed variability known to be caused by
the offset, removing residual error. In this analysis, each rod was
treated as an independent measurement due to there being no
treatment replication, and given the lack of replication, P-values
and 95% CIs must be interpreted with caution.
A second analysis investigated the net change in elevation using
rod data from the first measurement (November Year 1) and the
last measurement (February Year 3) to compare overall change to
bed level both within and between sites. Net change analysis also
allowed a visual assessment of relative bed level change and the
determination of the degree of homogeneity in accretion/erosion
rates across sites and between treatments. Net change data were
used to produce contour maps and 3D relief models. While these
models do not represent actual marsh topography, they provide a
representation of the magnitude and direction of change. An in-
dependent sample t-test was performed to compare net change in
relative elevation between the control and experimental site. As-
sumptions for use of a t-test were checked and met.

A General Linear Model (GLM) was used to assess the effect of
the site, transect and distance from shore (offset) on relative
elevation change, using the experimental unit of the rod. Themodel
simultaneously assessed the combined effects of site, position in
the grid (Fig. 2) and distance from shore so that the spatial vari-
ability in relative elevation change could be quantified. A GLM of
this type has the underlying assumptions of:

1. All observations are independent;
2. The random variation (or residual) after fitting the model is

approximately normally distributed, and
3. The residuals display constant variance across the range of

values of the explanatory variables in the model (i.e. site, tran-
sect and offset).

A scatter plot showing change in relative elevation versus dis-
tance from shore concluded that variance of the residuals increased
as the distance from shore increased, therefore violating assump-
tion 3 of the GLM. This was addressed by performing a natural log
transformation, which can be used when there is evidence that the
residual variability increases with increasing (fitted) values of the
outcome (Welham et al., 2014). Such a log transformation more
appropriately models a multiplicative relationship such as a
percent increase rather than an additive one such as unit increase
(Welham et al., 2014). This is a mathematical feature of logarithms,
and by taking a log transformation, the residual assumptions were
satisfied, whereas without they were not. In doing this, however, it
was necessary to base the analysis on the original rod lengths
rather than on relative elevation, as the latter contained a number
of negative values for which a natural logarithm does not exist.
Since the relative elevation values were derived directly from the
subsequent change in rod lengths relative to the original length, it is
the equivalent analysis.

The rod lengths at T2 (which were all positive) were trans-
formed using the natural logarithm and modelled as a function of
the following explanatory variables:

- the natural logarithm of the rod lengths at T1 (continuous
variable)

- Site (a factor with 2 levels: control and experimental)
- Distance from shore in metres (continuous variable)
- transect (a factor with 6 levels: T1, T2, T3, T4, T5, T6)

The factor ‘Site’ tested for overall differences in rod length be-
tween the two treatments, which could presumably be attributed
to the removal of vegetative cover. The variable ‘Distance from
shore’ tested the relationship between rod length at time 2 and
distance from the shore at time 1. The factor ‘Transect’ compared
individual transects to determine if rod length varied laterally
within and across study sites. The factor Transect had six levels;
therefore pair-wise comparisons were conducted to identify where
the statistically significant differences occurred.



Fig. 4. A. Comparison of mean monthly erosion rates of the marsh surfaces of the
experimental and control sites, showing trend lines and smooth connecting lines.
Inset: Experimental site in June of year 2. B. Dot plots of the slope of trend line (average
change in rate per month) for the marsh surface, with each point representing up to 2
observations.
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2.5.2. Edge study
Temporal change of the outer marsh margin was investigated as

for the transect study, by fitting regression lines to estimate the
average rate of erosion per month at each rod. An independent
sample t-test was used to compare average monthly erosion rates
between control and experimental treatments. Assumptions for
use of a t-test were checked and met.

2.5.3. Creek study
The data set for the creek study, comprising of 9 pins across 3

transects at each site, was not considered sufficient to apply sta-
tistical analysis. Changes at each site were compared using a
geomorphic assessment of creek cross sectional shape, supple-
mented by the scatter plots and trend lines of mean monthly
erosion/accretion rates for the four landform types identified, of
marsh surface, top edge, channel edge and channel centre.

3. Results

This study provided a large data set of results from across the
entire marsh surface from the landward edge to sand flats offshore,
with each study site encompassing an area of 6000 m2 of marsh.
Monthly measurement of erosion rods at the control and experi-
mental sites for over two years provided a total of 9306 measure-
ments from 394 rods, yielding a total of 8898 rate determinations.
This extensive data set allowed the determination of depositional
and erosional trends for over two years following Spartina removal.

3.1. Marsh surface erosion/accretion trends

Time series of mean monthly erosion/accretion rates from the
Spartina marsh surface of the experimental Fig. 3 and control sites
are shown in Fig. 4A, including trend lines. Monthly measurement
results showed erosion rates across the entire marsh surface of the
experimental site to be 13.3 mm a�1, while the control site showed
a mean monthly erosion rate of 2.0 mm a�1. Trend line analysis
(Fig. 4B) showed that the values at both treatments were normally
Fig. 3. Experimental site following Spartina removal as a result of treatment with herbicide (Photo: M. Sheehan).
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distributed around the meanwith a number of extreme values. The
control site was centred over a slope of 0.0, while the majority of
observations at the experimental site fell between a slope of 0.0 and
2.4 indicating a more erosional regime. Treatments were compared
using an analysis of variance, which compared the two sites while
also considering the effect of distance from shore. This found a
difference in slope between the two treatments of 1.120
(standard error ¼ 0.242), demonstrating that erosion rates at the
experimental site were statistically significantly higher
[P ¼ F1,225(21.37) < 0.001] than those at the control, and showing
that marsh surface erosion occurred at a statistically significantly
greater rate at the experimental site relative to the control.

Cumulative erosion or net change results over the duration of
the experiment were used to produce contour maps of marsh
surface morphology, providing a spatial representation of the
magnitude and direction of overall change (Fig. 5A). Erosion of
40e50 mm occurred over the intertidal marsh surface at the
experimental site, giving an erosion rate of 30e37 mm a�1. Erosion
was more pronounced in the outer 40 m of the marsh, with erosion
of up to 100 mm at the seaward edge. In contrast, this analysis
showed the control site to experience overall marsh surface
Fig. 5. A. Contour maps showing the overall magnitude and direction of marsh surface chang
the control and experimental sites over the duration of the removal experiment. Negative
surface.
accretion across the landward and central marsh of 10e20 mm
(7e15mm a�1), with net erosion of 10e20mm also occurring along
the seaward 20 m of the control site.

Dot plots of overall net change in marsh surface morphology
(Fig. 5B) support the contour map assessment (Fig. 5A), despite
both treatments being slightly positively skewed by some outliers.
The experimental site showed a higher net change value on average
than the control (Fig. 5B), indicating a more pronounced erosional
regime at the experimental site. An independent samples t-test
confirmed this, showing that on average the experimental site was
0.03 lower than the control (P-value < 0.001). A scatter plot of
vertical change against distance (Fig. 6) showed that both sites
become increasingly erosional towards the seaward edge.

This observation was investigated further by fitting a GLM
which tested the statistical significance of the difference in net
erosion between sites as well as the within-site spatial variable of
distance from shore simultaneously. The GLM model showed that
the effect of distance from shore on the erosion was significant (P-
value¼ <0.001) for both treatments on average, and estimated that
with every 10 m increase in distance from the shore, rod length at
T2 increases by a factor of 1.06 or 6 percent, where increasing rod
e over the duration of the removal experiment. B. Dot plot of net change in elevation of
values indicate elevation gain while positive values indicate a lowering of the marsh



Fig. 6. Scatter plot of vertical change (T1eT2) with distance from shore, using the
natural log of rod length data to remove the effect of uneven variance.
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length indicates marsh surface lost, assuming T1, site and transect
all remained fixed. The site by offset interaction was added to the
model and concluded that there was no statistically significant
difference (P-value ¼ 0.3) in the effect of distance from shore be-
tween sites, further evident by the parallelism of the trend lines
fitted to the scatter plot data (Fig. 6).
3.2. Edge study

A summary of erosion rod results for the seaward edge study is
given in Table 1, showing a mean erosion rate of 22.7 mm a�1 for
the experimental site and 13.5 mm a�1 for the control site. Trend
lines (Fig. 7A) indicate increasing erosion in the experimental site
relative to the control site, with a difference in trend slope of
1.140 (Fig. 7B), which was found not to be significantly different
(P ¼ 0.3844).
3.3. Creek study

Erosion rod results from the creek study (see Supplementary
data) found that the only landform of the creek system where
erosion rates differed between treatments was at the top of banks.
Typical topographic cross sections from each treatment are shown
in Fig. 8, showing that the upper bank of the creeks in the experi-
mental site eroded to open the creek cross-sectional profile and
reduce the gradient of creek channel banks (Fig. 8). While this has
occurred at both sites it was more pronounced at the experimental
site, with the bankfull cross-sectional area increased by 14.6% at the
experimental site relative to 8.2% at the control site (Fig. 8). Creek
depths and lower channel widths remained relatively constant over
Table 1
Summary of erosion rod data for the seaward edge study. All measurements are
given as mm a�1, with positive numbers indicating erosion and negative numbers
indicating accretion.

Experimental Control

Number giving data 525 425
Number with no change 36 42
Mean rate 22.7 13.5
Minimum rate �937 �300
Median rate 45.5 183.5
Maximum rate 1028 667
Standard deviation 127.9 66.2
time both within and between treatments, with no evident
erosional trend.

4. Discussion

Results showed that over 2 years after S. anglica removal, a
significant erosion of the marsh surface occurred at the experi-
mental site relative to the control site (Figs. 4e6), using two
different statistical analyses. The mean monthly erosion rate of
13.3 mm a�1 at the experimental site relative to 2.0 mm a�1 at the
control site (Fig. 4), is a rate of six times greater at the experimental
site relative to the control site. This is supported by the observation
of geomorphic changes which included micro-cliffing at a scale of
up to 50 mm of the seaward margin of the marsh and creek banks,
and the sapping of fines from within the root zone in the seaward
marsh. Following Spartina dieback in Georgia (USA), Crawford and
Stone (2015) found higher bulk density, lower field capacity and
coarser soil textures in dieback patches relative to healthy vege-
tation patches, similar to our observations of the loss of fines and
erosion. The erosion results give a measure of net marsh surface
change as shown by rods firmly held into a harder substrate
(Gilman et al., 2007; Nolte et al., 2013), and as the rods are shallow
with the hard surface about 50 cm under themarsh sediments, they
are not measuring compaction or subsidence, they indicate erosion.

Erosion occurred over the entire experimental site, and the
magnitude of erosion increased towards the seaward edge (Fig. 5),
and these results can be compared with natural marsh dieback
elsewhere. Sudden marsh dieback has recently occurred in parts of
the U.S.A., owing to causes including fungal pathogens, soil prop-
erties and relative sea-level rise (Alber et al., 2008; Temmerman
et al., 2012; Elmer et al., 2013; Ganju et al., 2013; Brisson et al.,
2014; Crawford and Stone, 2015). Spartina dieoff areas in Maine
showed higher water velocities, higher erosion and less shoreline
stabilisation relative to healthy marsh vegetation areas (Brisson
et al., 2014). Increased tidal flow across the marsh platform
occurred following loss of marsh vegetation (Temmerman et al.,
2012). After Spartina died at the experimental site in our study
and the marsh surface became bare mudflat, it is likely that higher
water velocities (Temmerman et al., 2012; Brisson et al., 2014)
contributed to the increased erosion rates observed.

A significant difference was found between higher erosion rates
at the experimental site and lower rates at the control site, from
analysis of both mean monthly change and overall net change.
Erosion occurs as a result of a changing balance between external
and internal factors, and locating the study sites on the same type of
marsh, alongside, and with the same aspect and fetch attempted to
equalise factors of winds, waves and marsh type. Death of Spartina
foliage would have decreased friction that reduces tidal water
movement (Thompson, 1991; Bouma et al., 2005b), so increasing
shear stress. As the root mat deteriorated, this would decrease the
shear strength that normally protects the mud from erosion (Van
Eerdt, 1985; Brown, 1998; Brown et al., 1999). The critical erosion
threshold of intertidal sediments of the Humber Estuary was found
to decrease away from the shore (Paterson et al., 2000), attributed
to the different biological processes occurring with increased dis-
tance from the shore and the associated marsh surface forms.
Qualitative observations of marsh surface form at the experiment
site suggested that biological factors play a significant role in the
spatial variability of marsh surface level, and support the findings of
the empirical study.

Following removal of S. anglica, native salt marsh species such as
Juncus spp. and Selliera radicans expanded from the landward edge
by up to 1 m, where they were previously restricted to within
10e40 cm of the shore. It is likely that the expansion of both algae
(Fig. 3) and native salt marsh plants have occurred as a result of the



Fig. 7. A. Comparisons of mean monthly erosion rates of Spartina marsh at the seaward margin of the experimental and control sites, showing trend lines and smooth connecting
lines. Trend-lines indicate that there is a greater erosional trend at the experimental site, however this is not statistically significant. Inset: Micro-cliffing and undercutting of the
seaward edge. The length of the rod shown is 50 mm. B. Dot plots of the slope of trend line (average change in rate per month) for the seaward edge of the Spartina marsh.
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removal of the competitive and dense canopy of Spartina. Vegeta-
tion has been shown to be fundamentally important in increasing
the erosion threshold, stabilising sediments and reducing flow
velocities (Leonard and Luther, 1995; Andersen, 2001; Bouma et al.,
2005a). However, before introduction of Spartina the intertidal
areas of the mid to upper Tamar Estuary lacked native salt marsh
vegetation except for a narrow 1e2 m fringe at high water (Phillips,
1975). Native marsh plants are also less tolerant of inundation
relative to S. anglica, so marsh recolonization is likely to remain
limited.

The morphology of the marsh surfaces at both the control and
the experimental site oscillated between erosion and accretion
throughout the monitoring period (Fig. 4A). The magnitude of the
oscillations at the experimental site was notably larger than the
control site, and the timing was mostly in association with seasons.
Within the experimental site, accretion was the predominant
process during summer (December to March) and erosion domi-
nant around winter (July to October), and such seasonal changes
were less pronounced at the control site (Fig. 4A). Seasonal varia-
tion in tidal mud flat surfaces have been attributed to sediment
accretion during calmer summer conditions, and erosion prevailing
during windy conditions of winter (Kirby et al., 1993; Kirby, 1994).

Both sites become increasingly erosional towards the seaward
edge (Fig. 6) alongwith a tendency for the upper edge of creek cross
sections towiden (Fig. 8), and both changes weremore pronounced
at the experimental site relative to the control site. While trend
lines of erosion at the seaward edge (Fig. 7a) showed increased
erosion over time at the seaward edge of the experimental site, lack
of significant difference suggested that marsh retreat is occurring at
the same rate at both sites and that retreat is caused by a factor
other than the removal of S. anglica. The results of the edge study
may be influenced by the smaller sample size compared to the
marsh study, and the large amount of variability in individual rod
measurements. Erosion styles exhibited in the lower marsh were
indicative of the dissection and decay processes described by Bird
(2008), which were empirically and mathematically attributed to
ebb-dominated tidal regimes where sediments are exported on the
falling tide resulting in the a gradual long-term landward retreat of
the marsh (Pritchard et al., 2002; Bird, 2008). Retreat of the
seaward edge of marshes throughout the Tamar Estuary has been
shown to have occurred in the last few decades, such as a 10 m
retreat at Swan Bay (Fig. 1) 1989e2004 (Sheehan and Ellison, 2014).

5. Conclusions

Few studies have previously investigated the geomorphic
response to a reverse restoration, from a full intertidal profile of
invasively vegetated marsh back to an unvegetated, intertidal
mudflat. This study showed that eradication of S. anglica resulted in
erosion from the Spartina marsh surface at a rate 6 times greater
than from the control vegetated marsh. This erosion was caused by
erosion of sediments, with inorganic sediments comprising 83% of
the sedimentary volume accumulated under Spartina since its
introduction (Sheehan and Ellison, 2014). Further research could



Fig. 8. Creek cross sections of the experimental and control site.
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investigate contribution of different sections across the marsh
surface, and whether the rate of erosion is further likely to increase
once the dead S. anglica root mat fully decomposes and the surface
cohesion and sediment-binding capacity is diminished. As inter-
tidal wetland soils are an important carbon sink (Howe et al., 2009;
Beasy and Ellison, 2013), this may also reduce the role of Spartina in
carbon sequestration.

The sediment eroded following large scale Spartina removalmay
also increase estuarine turbidity in the short term, and larger scale
removal may furthermore pose a threat to water quality or biota of
the Tamar Estuary. Heavy metal and other contaminants trapped in
sediment deposited decades ago may be of concern at some sites.
From 210Pb dating and heavy metal analysis, Seen et al. (2004)
showed that a strong correlation existed between contaminant
levels in intertidal sediments and mining and industrial activities
over the past century, with mining pollution contributing some
10e25 mg kg�1 of Pb to estuarine sediments since the 1890s. Local
industries such as factories, textile manufacturers, tin smelters,
shipping and railway workshops, and other sources such as
municipal disposal refuse sites and agriculture historically
contributed to sediment contamination of the estuary (Pirzl and
Coughanowr, 1997; Seen et al., 2004). There is also potential for
Spartina removal without associated replanting to result in
increased methane emissions (Sheng et al., 2014).

This study increases our knowledge of sediment stability or
erosion processes following large scale marsh defoliation. It pro-
vides guidance for the future management of S. anglica within the
Tamar Estuary, and other similar estuarine systems worldwide, and
identifies areas where further research would be valuable. The
synthesis of the results demonstrates that if large scale removal of
S. anglica were to occur in the Tamar Estuary, then the sediment
trapped is likely to erode in a sheet erosionmanner during ebb tide,
exacerbated by thewidening of tidal creek channels. This is likely to
increase as the root mat deteriorates, and further long term study is
necessary for evaluation of this effect. Observations indicate that
algae may stabilise the surface, and native salt marsh vegetation
colonise in the absence of S. anglica, allowing for a lesser release of
sediment in the short term. However the colonisation of native salt
marsh plants is likely to be limited, as they are intolerant of lower
elevations in the tidal range. The potential consequences of sedi-
ment erosion, particularly if the Spartina-trapped sediments are
contaminated by historical pollutants, are further areas that need
research. For the Tamar Estuary, a precautionary approach would
be to continue to limit the current extent of Spartina infestation,
rather than consider its large-scale removal from shorelines where
it is now well-established.
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