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Abstract
Human-induced changes to habitats can have deleterious effects on many species that

occupy them. However, some species can adapt and even benefit from such modifications.

Artificial reefs have long been used to provide habitat for invertebrate communities and pro-

mote local fish populations. With the increasing demand for energy resources within ocean

systems, there has been an expansion of infrastructure in near-shore benthic environments

which function as de facto artificial reefs. Little is known of their use by marine mammals. In

this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells

and shipwrecks) on the foraging locations of 36 adult female Australian fur seals (Arctoce-
phalus pusillus doriferus) was investigated. For 9 (25%) of the individuals, distance to

anthropogenic sea floor structures was the most important factor in determining the location

of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures

on foraging locations was not related to age and mass, it was positively related to flipper

length/standard length (a factor which can affect manoeuvrability). A total of 26 (72%) indi-

viduals tracked with GPS were recorded spending time in the vicinity of structures (from

<1% to >75% of the foraging trip duration) with pipelines and cable routes being the most

frequented. No relationships were found between the amount of time spent frequenting

anthropogenic structures and individual characteristics. More than a third (35%) of animals

foraging near anthropogenic sea floor structures visited more than one type of structure.

These results further highlight potentially beneficial ecological outcomes of marine industrial

development.
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Introduction
Anthropogenic alterations to natural habitats can often have deleterious effects on species
occurring within them [1]. Changes in land-use and sea-use can lead to a reduction in foraging
habitat, breeding sites and refuge from predators for many species [2–5]. Some species, how-
ever, can adapt to, and even benefit from, habitat modifications. Indeed, anthropogenic struc-
tures erected as a consequence of such changes provide a range of benefits for some species
from predator avoidance, thermoregulation, and breeding sites to acting as foraging areas or
facilities to improve foraging [6–8].

Artificial reefs are anthropogenic structures deposited or constructed on an otherwise fea-
tureless sea floor that promote marine life. The structures provide a substrate for epifaunal life,
the increased vertical habitat heterogeneity promotes the biodiversity of invertebrates and their
structural complexity affords shelter for small fish and cephalopods [9]. As the biomass of epi-
faunal species and those that feed on them increases, larger predatory fish are attracted to these
sites [10]. Consequently, artificial reefs have been used extensively around the world to increase
the local density of fish for recreational and commercial fishermen [11, 12]. In addition, marine
industrial structures (e.g. oil rigs, pipelines) have been shown to develop into important habi-
tats for sessile invertebrates and fish communities, leading to calls for them to be converted in
artificial reefs once they become obsolete [13–15]. However, the use of such artificial reefs by
marine mammals has, until recently, received little attention and their potential importance as
foraging zones has been investigated in few species [16–18].

Pinnipeds (seals, sea lions and walruses) around the world have experienced divergent rates
of population recovery since the end of the commercial sealing era [19]. Whereas pelagic feed-
ing species have experienced rapid growth in numbers, populations of benthic foraging species
have increased very slowly, are stable or in decline [20]. It has been suggested that the low pop-
ulation recovery rates of benthic species could be due to them working at or near their physio-
logical limit [21] hunting cryptic prey in continental shelf environments which for decades
have been the focus of commercial fisheries employing bottom trawlers that disrupt the habitat
and remove the larger size-classes of species that the seals depend on [22, 23].

The Australian fur seal (Arctocephalus pusillus doriferus) is one such benthic foraging spe-
cies, feeding exclusively over the continental shelf on a wide variety of demersal fish and cepha-
lopod species [24, 25]. While its population (ca120000 individuals) is slowly recovering from
near-extinction after the commercial sealing era of the 18th and 19th centuries [26], it is still
currently at<60% of its estimated pre-exploitation level [27]. All but one of its 13 breeding
colonies occur on islands within Bass Strait [27], the shallow continental shelf region between
the Australian mainland and Tasmania which has a relatively uniform bathymetry (average
depth 60 m), few features and is considered to be a region of low primary productivity [28].
Therefore, the anthropogenic structures (e.g. oil/gas rigs, pipelines) that occur on its relatively
featureless sea floor could provide valuable prey habitat and promote foraging success for the
species. Indeed, recent data from animal-borne video cameras revealed individuals hunting
near pipelines and oil rigs (Fig 1). Association with such de-facto artificial reefs could have
important implications for the species’ recovery, its response to environmental variability and
the potential impacts of further industrial developments within its foraging range. It is not
known, however, to what extent Australian fur seals use such areas as foraging sites.

The aims of this study, therefore, were to determine in female Australian fur seals: 1)
whether foraging patterns are influenced by anthropogenic sea floor structures; 2) the propor-
tion of time spent in association with such structures; and 3) whether proxies of animal age,
foraging experience, and manoeuvrability influence foraging in association with anthropogenic
structures.

Man-Made Foraging Habitat for Fur Seals

PLOS ONE | DOI:10.1371/journal.pone.0130581 July 1, 2015 2 / 13



Material and Methods

Ethics statement
All work was carried out with approval of the Deakin University Animal Ethics Committee
(A16-2008) and under Department of Sustainability and Environment (Victoria, Australia)
Wildlife Research Permit (10005848). Kanowna Island is part of the Wilsons Promontory
Marine National Park and was accessed under permit from Parks Victoria.

Animal handling and instrumentation
The study was conducted at the Australian fur seal colony on Kanowna Island (39°10’S, 146°
18’E) which has an annual pup production of ca3000 [27]. Data were collected as part of other
concurrent studies on the foraging ecology of female Australian fur seals [29, 30]. During
April-July of 2006–11, nursing females selected at random were captured using a modified
hoop net (Fuhrman Diversified) and manually restrained until induction of isoflurane gas
anaesthesia delivered via a portable vaporizer [31]. Once anaesthetized, individuals were
removed from the hoop net and secured to a board before being weighed on a suspension scale

Fig 1. Image taken by animal-borne video camera on a female Australian fur seal foraging along a gas pipeline showing the sessile invertebrates
and another fur seal.

doi:10.1371/journal.pone.0130581.g001
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(± 0.5 kg) and measured (± 0.5 cm) for axillary girth, flipper length (FL), standard length (SL)
and axis length (nose to fore-flipper insertion point along dorsal mid-line). Individuals were
then equipped with an electronic dive behaviour recorder (MK10, Wildlife Computers, Red-
mond, USA), a Fastloc GPS data logger (F1G 138A, Sirtrack, Havelock North, NZ) and a VHF
transmitter (Sirtrack) glued in series to the pelage along the dorsal mid-line, just posterior to
the scapula, using quick setting epoxy (Accumix 268, Huntsman Advanced Materials Pty).
Together the devices represented<1% body mass and<1% cross sectional surface area and,
hence, are unlikely to have negatively impacted the individual’s foraging behaviour [32]. Indi-
viduals were recaptured at the colony after a foraging trip to sea and the devices were removed
by cutting the fur beneath them.

Data processing and analyses
Dive behaviour records were analysed using the diveMove package [33] in R statistical environ-
ment (Version 2.12.2, [34]. Following zero-offset correction, and setting of a minimum dive-
depth threshold of 5 m [30], dives were identified and characterised in terms of duration and
maximum depth achieved. In addition to this, dives were classified into either benthic or
pelagic using a custom written routine whereby individual dives were scored based on the pro-
portion of time spent at the bottom of the dive multiplied by the maximum depth achieved
during the dive. A kernel density estimate of the resulting score reveals a bimodal distribution,
values to the left of the nadir between the two modes were taken to represent pelagic dives and
values to the right of the nadir, benthic dives [35]. While the data from the GPS loggers were
accurate, some highly erroneous locations still existed and, to remove these, data were filtered
using a basic speed filter [36]. After filtering, GPS locations were linearly interpolated along
each foraging track to be spaced evenly at 10 min intervals and merged with dive behaviour
data [36] to provide a spatial location for each foraging (benthic) dive. Female Australian fur
seals have previously been shown to be almost exclusively benthic foragers, conducting dives
continuously while transiting (i.e. little surface travel) between focal foraging areas [29, 37].
Consequently, to investigate the potential influence of anthropogenic structures specifically on
foraging behaviour, areas of intensive foraging activity were determined using first-passage div-
ing analysis (FPD) following the methods of Hoskins et al. [35]. Briefly, FPD is a modification
of first-passage time analysis [38] where the analysis substitutes time spent within an area for
time spent underwater, for both the identification of the operational scale and final analysis
steps (see [35] for further detail).

A presence-only model, MaxEnt [39], was then used to model the potential intensive forag-
ing areas of each individual and to assess the relative importance of sea floor topography and
anthropogenic structures to these areas. MaxEnt was chosen as it provides comparatively
robust models when occurrence datasets are small (e.g. as low as 5 occurrence points) as is the
case in this study (see [40]). Seven explanatory variables (depth, seafloor complexity, and
Euclidean distances to colony, coast, pipeline/cables, wells and shipwrecks) were included in
the models. Depth was determined from the 250 m grid cell resolution Australian Bathymetry
and Topography Grid [41] and used to derive a complexity measure of local variability in ben-
thic terrain [42], as variation in structural complexity has been observed to influence benthic
fish and invertebrate communities [43]. The complexity measure refers to the second derivative
or rate of change in the slope and is a measure of local variability in benthic terrain. Complexity
was calculated based on a cell neighbourhood of 3 x 3. The location of wells, oil and gas pipe-
lines, cable routes and shipwreck locations were obtained from Geosciences Australia, Heritage
Victoria and the Department of Community, Planning and Development (Australia).
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Euclidean distances to colony, coast, pipeline/cables, wells and shipwrecks were calculated
using Spatial Analyst in ArcGIS 10 (ESRI, Redlands, USA) at a 250 m grid cell resolution in the
study area encompassing Bass Strait. Collinearity (high correlation) between the seven explana-
tory variables in the model was investigated by estimating the variance inflation factor (VIF),
using the car package in R, with an upper threshold value of three indicating collinearity. No
collinearity was recorded and individual MaxEnt models were built by combining the seven
explanatory variables with dive localities for each seal. Similar to Phillips and Elith [44], we par-
titioned the intensive foraging locality dataset into 70/30% for training and evaluation, respec-
tively. It is important to note that if multiple intensive foraging localities were recorded in a
single 250 m grid cell, these were combined to represent a single foraging event to avoid
pseudo-replication in in the model. Default settings were used to build MaxEnt models; con-
vergence threshold (0.00001), maximum iterations (1000), auto features, regularization multi-
plier (r = 1) and background points (10000). The 30% of dive localities set aside from model
development were used to evaluate each model based on Area Under the Curve (AUC) using
the MaxEnt GUI.

The proportion of the foraging trips associated with anthropogenic sea floor structures was
investigated by determining from the complete GPS tracks the amount of time individuals
were within a 250 m radius of an anthropogenic sea floor structure. A 250 m buffer was chosen
to incorporate the potential locational errors in the anthropogenic structures. Furthermore,
this buffer was also deemed relevant from a biological view point. While the influence of off-
shore artificial reefs on fish assemblages is considered localised (< 30 m), an important prey
group for Australian fur seals (Family Monacanthidae, [24]) has been found to be associated
with artificial reefs at a distance of up to 100 m [45]. Consequently, a buffer of 250 m was cho-
sen to be conservative.

Generalized linear models (MuMin package in R, [46]) were then used to investigate rela-
tionships between individual morphological characteristics and the relative importance (as
determined by MaxEnt models, arcsin transformed) of anthropogenic sea floor structures on
intensive foraging locations and the (arcsin transformed) proportion of time spent foraging
near them. Unless otherwise stated, date are presented as Mean ± SE and results considered sig-
nificant at P< 0.05.

Results
A total of 36 individuals were recaptured after 1–8 foraging trips to sea (3–55 d). However, the
majority (70%) of individuals were recaptured after a single trip and battery life limitations of
the GPS logger resulted in only 5 individuals having full data sets for more than one complete
trip. Hence, to remove the potential for bias from individuals with records of multiple foraging
trips, only the first foraging trip (6.0 ± 0.6 d; 855 ± 111 dives) of each individual was used in
further analyses. Their tracks (S1 File) and the locations of their intensive foraging areas were
determined in relation to environmental and anthropogenic features (S2 File and Fig 2). All
MaxEnt models returned AUC values> 0.90 suggesting strong performing models (Table 1).
The MaxEnt models highlighted the individualisation of intensive foraging regions by the seals
(Fig 3).

Interrogation of the relative importance of the explanatory variables from the MaxEnt mod-
els indicated that, on average, the greatest contribution to the models were distance to colony
and coast while bathymetry and complexity accounted for the least amount of variation overall.
However, for 20 (55%) individuals, distance to anthropogenic sea floor structures accounted
for>30% of variance in the location of intensive foraging activity and for 9 (25%) individuals
it contributed the greatest proportion of the variance (Table 1). There was no significant
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difference between years in the contribution of distance to anthropogenic sea floor structures
to the MaxEnt models (Kruskal-WallisH5,34 = 3.27, P> 0.5). Further interrogation of the rela-
tive importance of distance to anthropogenic structure variables suggested that the type of
structure (i.e. pipeline/cable route, oil/gas wells, shipwreck,) differed in mean influence (18%,
13% and 8%, respectively; Kruskal-Wallis H2,102 = 10.46, P< 0.01).

A total of 26 (72%) individuals were observed spending time in the vicinity of anthropo-
genic sea floor structures. Of the animals spending time in the vicinity of anthropogenic struc-
tures, 96% visited pipelines and cable routes, 42% visited oil/gas wells and 23% visited
shipwrecks. However, the proportion of foraging trips animals spent near anthropogenic struc-
tures varied greatly, from<1% for 20 individuals that visited structures briefly en route to
other areas, to>20% for 4 seals (up to 76% in one individual) that concentrated foraging effort
in the vicinity of pipelines/cables and wells. Greater than a third (35%) of individuals visited
more than one type of anthropogenic sea floor structure.

Models explaining the relationships between individual morphological characteristics and
the relative importance of anthropogenic structures in foraging locations indicated that the
most parsimonious models included the FL/SL ratio, Mass and the Axis/SL ratio (Table 2).
Due to the lack of a single best model, model averaging was conducted and the FL/SL ratio was

Fig 2. At-sea movements of adult female Australian fur seals from the Kanowna Island colony and the location of anthropogenic sea floor
structures in Bass Strait, south-eastern Australia.Red circles indicate grid cells where intensive foraging activity occurred.

doi:10.1371/journal.pone.0130581.g002

Man-Made Foraging Habitat for Fur Seals

PLOS ONE | DOI:10.1371/journal.pone.0130581 July 1, 2015 6 / 13



Table 1. Summary of individual characteristics of female Australian fur seals and the relative contribution of the explanatory variables used in
MaxEnt models describing their foraging locations.

Seal Mass Length Girth Flipper* Axis Age Relative contribution (%) in MaxEnt models# Foraging AUC

(kg) (cm) (cm) (cm) (cm) (y) bathymetry complexity colony coast pipes/
cables

wells shipwrecks cells##

(n)

1 86.5 159.0 106.0 42.0 62.0 13 0.6 0.0 48.6 6.3 16.4 23.9 4.2 122 0.98

2 91.5 165.0 110.5 43.5 72.5 12 4.5 0.3 6.6 37.1 16.2 25.8 9.5 14 0.99

3 77.0 156.5 95.0 45.0 60.5 8 0.5 3.6 5.1 54.0 8.1 18.8 9.9 51 0.99

4 82.0 161.5 105.0 47.5 65.0 8 0.7 0.1 18.8 13.2 31.4 22.4 13.5 57 0.98

5 75.0 152.5 104.0 39.5 61.5 10 0.0 0.3 6.2 67.0 14.2 6.8 5.6 11 0.99

6 59.0 142.5 97.5 41.0 61.5 4 8.6 26.8 26.1 29.8 0.0 8.6 0.1 11 0.93

7 90.0 160.0 106.5 43.5 66.5 - 2.7 0.0 67.7 9.3 2.4 13.6 4.3 31 0.98

8 86.5 155.0 101.0 42.5 61.0 - 1.4 0.2 4.5 72.1 9.2 4.2 8.4 57 0.98

9 91.0 160.5 112.5 41.0 64.5 - 20.6 0.0 5.7 61.2 11.6 0.9 0.0 8 0.92

10 89.0 160.0 110.5 43.5 69.0 12 7.6 0.0 61.6 3.3 14.6 6.1 6.9 9 0.99

11 84.0 157.0 106.0 48.5 64.5 - 0.0 0.3 0.0 5.8 58.1 6.1 29.7 29 0.95

12 71.0 149.0 93.5 39.0 58.0 5 0.0 22.0 49.2 19.9 4.2 1.9 2.8 21 0.99

13 59.0 142.0 96.0 41.0 62.5 4 3.2 17.3 2.4 40.7 16.9 13.7 5.8 37 0.99

14 67.0 146.5 97.5 41.0 63.5 5 1.5 1.9 9.3 39.2 19.6 6.8 21.7 27 0.99

15 69.0 142.0 102.5 39.0 62.0 4 11.3 13.1 42.6 5.3 5.0 20.1 2.5 17 0.99

16 81.0 151.5 103.0 42.5 64.0 6 0.2 0.0 6.0 20.3 25.6 47.6 0.4 193 0.99

17 72.0 154.5 100.5 44.5 69.5 8 1.3 25.3 18.5 18.1 23.3 4.8 8.9 32 0.99

18 91.5 159.0 118.5 45.5 68.0 7 0.6 0.0 62.9 22.4 10.7 0.4 3.0 34 0.99

19 80.0 150.0 106.0 41.5 72.5 12 2.5 0.1 30.0 40.3 15.2 6.5 5.4 37 0.99

20 63.5 146.5 98.5 40.5 64.5 6 0.0 0.0 2.6 56.9 30.1 0.4 10.0 54 0.97

21 77.0 149.5 109.5 42.5 68.0 - 2.6 9.6 37.9 37.2 9.6 0.3 2.8 25 0.99

22 81.5 156.5 112.0 43.5 66.5 10 1.0 0.0 16.5 27.9 53.9 0.7 0.0 15 0.99

23 55.0 139.5 93.5 40.5 59.0 - 0.0 1.7 20.0 45.8 7.4 17.7 7.4 27 0.99

24^ 86.5 160.0 116.0 43.0 68.5 11 - - - - - - - - -

25 51.0 135.0 89.5 40.0 58.5 4 0.0 0.0 0.3 0.3 39.6 59.5 0.4 17 0.99

26 56.0 139.0 95.5 41.5 65.5 8 2.0 1.0 79.0 9.9 6.6 0.0 1.5 29 0.99

27^ 62.5 147.5 95.5 43.5 60.0 4 - - - - - - - - -

28 101.0 154.5 119.5 44.0 73.0 - 2.0 0.2 28.1 4.8 8.3 36.7 20.0 15 0.95

29 71.0 144.5 98.0 41.5 64.0 7 1.3 0.3 0.7 43.0 18.3 16.1 20.3 80 0.90

30 63.5 145.0 92.0 42.0 61.0 - 7.5 2.2 44.5 28.3 14.4 1.0 2.1 45 0.94

31 84.5 158.0 103.0 45.0 64.5 - 0.1 1.4 27.6 22.4 48.2 0.4 0.0 42 0.98

32 75.5 141.5 110.0 41.5 58.0 - 0.6 13.1 6.9 35.3 6.1 23.5 14.6 31 0.90

33 88.5 166.0 100.0 48.0 66.0 - 0.0 2.7 62.2 1.0 3.9 18.7 11.6 48 0.97

34 88.0 161.5 103.0 47.5 69.5 - 15.1 0.5 34.1 16.2 18.5 6.7 8.9 66 0.92

35 69.5 142.0 95.5 39.0 58.5 - 4.3 3.0 52.4 25.2 7.1 6.9 1.0 31 0.92

36 87.5 159.0 104.5 42.5 66.5 - 0.0 0.0 3.9 20.8 22.4 19.7 33.1 35 0.94

Mean 76.8 151.9 103.0 42.7 64.4 7.6 3.1 4.3 26.1 27.7 17.6 13.2 8.1 39.9 0.97

SE 2.1 1.4 1.3 0.4 0.7 0.6 0.8 1.3 4.0 3.4 2.5 2.4 1.4 6.1 0.01

Individuals in bold had distance to anthropogenic structure as the greatest contributing factor in models.

*fore-flipper length.
#bathymetry and sea floor complexity at location of dives and their distance to all other features

^insufficient dive locations to build MaxEnt model.
##grid cells containing areas of intensive foraging activity.

doi:10.1371/journal.pone.0130581.t001
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found to have a weak positive influence on the relative importance of anthropogenic structures
on seal foraging location. None of the measured individual morphological characteristics were
found to influence the proportion of time spent in the vicinity of structures. Similarly, there
were no relationships observed between the proportion of time spent in the vicinity of struc-
tures and the overall foraging effort (dive rate, trip duration or maximum distance travelled) of
individuals

Discussion
The Australian fur seal population is still recovering from past exploitation [27] and the
Kanowna Island colony has been growing slowly at approximately 2% per annum since the late
1990s ([27], Arnould unpublished data). In addition, the duration of foraging trips in the pres-
ent study was within the range (3–7 d), and the diving behaviour consistent with that, previ-
ously reported for individuals from this colony [29, 35, 37]. Furthermore, the availability of
anthropogenic structures within the foraging range of individuals from the study colony did
not change during the sampling period. Hence, results of the present study are considered to
reflect normal foraging behaviour in relation to environmental and anthropogenic influences
for individuals from this colony.

Distance to anthropogenic structures accounted for a substantial proportion (>30%) of the
variance in intensive foraging area locations for over half the individuals in the present study.
While these results do not indicate direct specific use of such structures as forage sites, they
suggest a spatial link between the presence of structures and potential foraging habitat. As arti-
ficial reefs increase habitat connectivity for invertebrate and fish species [13, 14], their influ-
ence on foraging habitat for predators such as Australian fur seals may extend beyond their
immediate location. Indeed, the individual instrumented with a video data logger (Fig 1), in
addition to searching for prey along the pipeline itself, was observed to forage repeatedly on
benthic fish (gurnards, Family Triglidae) at an estimated distance of up to 50 m from the pipe-
line on the leeward side to the prevailing currents (as evidenced from sand accumulation).
Increased vertical relief from anthropogenic structures may influence micro-habitat structure
for benthic prey species over a wide area by changing local currents and nutrient transport [12,
47]. Consequently, as Bass Strait has a mostly uniform bathymetry with few benthic features
[41], the ecological impact of anthropogenic structures, and their benefit to Australian fur
seals, may be more widespread than just at the structures themselves.

Fig 3. MaxEnt predictions of suitable foraging habitat for three of adult female Australian fur seals
from the Kanowna Isl and colony. a) individualization towards shipwreck areas (individual 36); b)
individualization towards pipeline/cable areas (individual 11); c) individualization towards oil well areas
(individual 25).

doi:10.1371/journal.pone.0130581.g003

Table 2. Comparison of linear models for individual morphological characteristics explaining the rela-
tive contribution in MaxEnt models of foraging locations associated with anthropogenic sea floor
structures.

Model Df ΔAICc AIC weight R2

FL/SL + Intercept 3 0.00 0.409 0.13

FL/SL + Mass + Intercept 4 1.75 0.171 0.15

Intercept 2 2.11 0.142 -

FL/SL + Axis/SL + Intercept 4 2.26 0.132 0.13

FL/SL + Mass + Axis/SL + Intercept 5 4.29 0.048 0.15

doi:10.1371/journal.pone.0130581.t002
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Interestingly, pipelines and cable (electricity and telephone) routes were the most visited
and most influential structures associated with foraging locations despite such features having
limited vertical scope and habitat complexity (and, thus, diversity in prey habitat) in compari-
son to wells and shipwrecks. However, pipelines/cable routes may represent greater overall
area and provide habitat connectivity for prey species [13] potentially making them more prof-
itable sites to exploit. Furthermore, the pipeline shown in Fig 1 had only been installed 5 years
earlier, indicating the potentially rapid development of such structures as important foraging
sites. Similar rapid use of such structures has been reported for grey and common seals in
European waters [18].

There was substantial variation in the amount of time individuals spent at anthropogenic
structures (<1% to>75%). Individuals that briefly visited anthropogenic structures, some at
multiple locations, did so throughout the course of their foraging trip. This potentially reflects
the many small, localised (e.g. capped oil/gas wells, shipwrecks) or narrow (pipelines/cables)
anthropogenic structures distributed within Bass Strait (Fig 2), that these structures provide
limited benefits and/or that some individuals were simply passing these structures while access-
ing foraging locations not associated with them. In contrast, all 4 individuals that spent>20%
of their time at sea near anthropogenic structures travelled 65–175 km in comparatively direct
routes to do so suggesting prior experience at these sites. These findings suggest such sea floor
structures may act as important de facto artificial reefs for some individuals in an otherwise
seemingly barren benthic seascape [29]. Indeed, video data from animal-borne cameras have
revealed several individuals (>4) at the same time foraging in the vicinity of such structures. A
similar frequency of visitation to wind turbines and pipelines has recently been observed in
grey (Halichoerus grypus) and common (Phoca vitulina) seals [18].

The present study only followed individuals for a single foraging trip such that it is not pos-
sible to determine whether the level of visitation or importance of anthropogenic structures to
individual Australian fur seals is consistent through time, as has been observed in grey and
common seals [18]. However, recent studies investigating intra- and inter-individual variation
in diet (assessed through stable isotope analysis of whiskers) have revealed a high level of con-
sistency in individual foraging strategies of female Australian fur seals (Kernaleguen et al.
unpublished data). Hence, the results of the present study may reflect the level of long-term
association with anthropogenic sea floor structures by Australian fur seals. Further tracking of
at-sea movements by individuals over multiple foraging trips is needed to confirm this.

Age and size (mass, length), a correlate of age [48], were found not to influence the relative
importance of anthropogenic sea floor structures in the MaxEnt models which suggests that
use of such anthropogenic features are not a consequence of experience. However, the FL/SL
ratio, a factor which can affect manoeuvrability [49] was found to be weakly influential. This
index has also been found to influence diet [50] and its importance may reflect morphological
advantages in chasing particular prey, perhaps those associated with artificial and natural reef
structures or the regions around them.

The increasing demand for energy resources around the world has led to the development
of many offshore structures for oil and gas extraction as well as wind and tidal power genera-
tion. Whereas much concern has been raised about the potential negative environmental
impacts of such developments [51–53], the results of the present study and those of Russell
et al. [18] highlight potentially beneficial outcomes. Many of these developments are situated
in regions where populations of benthic foraging pinnipeds are still recovering slowly from
past exploitation or are declining (e.g. common, grey, Mediterranean monkMonachus schauin-
slandi, southern sea lion Otaria flavescens [19]. In addition to such structures becoming habitat
for fish communities [14, 54], they could represent important additional foraging sites for pin-
niped species whose habitats have been degraded by decades of commercial fishing activity
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[22]. Consequently, if managed appropriately, marine industrial development may enhance
the prospects of these coastally restricted populations. However, further research is needed to
specifically determine the benefits, in terms of foraging success, to individuals that frequent
artificial reefs in order to properly assess such prospects.
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