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Abstract 28 

 29 

Long-term ecological datasets are vital for investigating how species respond to changes in their 30 

environment, yet, there is a critical lack of such datasets from aquatic systems. We developed otolith 31 

growth ‘chronologies’ to reconstruct the growth history of a temperate estuarine fish species 32 

(Acanthopagrus butcheri). Chronologies represented two regions in south-east Australia: South 33 

Australia, characterised by a relatively warm, dry climate, and Tasmania, characterised by a relatively 34 

cool, wet climate. Using a mixed modelling approach, we related inter-annual growth variation to air 35 

temperature, rainfall, freshwater inflow (South Australia only), and El Niño-Southern Oscillation 36 

events. Otolith chronologies provided a continuous record of growth over a 13 and 21 year period for 37 

fish from South Australia and Tasmania respectively. Even though fish from Tasmania were sourced 38 

across multiple estuaries they showed higher levels of growth synchronicity across years, and greater 39 

year-to-year growth variation, than fish from South Australia, which were sourced from a single, large 40 

estuary. Growth in Tasmanian fish declined markedly over the time period studied and was negatively 41 

correlated to temperature. In contrast, growth in South Australian fish was positively correlated to both 42 

temperature and rainfall. The stark contrast between the two regions suggests that Tasmanian black 43 

bream populations are more responsive to regional scale environmental variation and may be more 44 

vulnerable to global warming. This study highlights the importance of examining species response to 45 

climate change at the intra-specific level and further validates the emerging use of growth chronologies 46 

for generating long-term ecological data in aquatic systems. 47 

 48 
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Introduction 56 

 57 

Somatic growth is a key driver of population productivity in aquatic systems and understanding what 58 

drives variation in growth rate is central to predicting how aquatic communities will change in the future 59 

(Audzijonyte et al. 2013; Rountrey et al. 2014). Long-term ecological datasets are vital for determining 60 

how species and populations respond to changes in various environmental parameters, however, such 61 

datasets in the aquatic environment are rare and can be expensive and logistically difficult to obtain via 62 

traditional observational approaches (Poloczanska et al. 2007; Richardson and Poloczanska 2008). 63 

Extensive pre-existing archives of calcified tissues, such as fish ear bones (otoliths), mollusc shells, and 64 

mammal teeth, represent an alternative, underutilised resource in which long-term ecologically-relevant 65 

data can be generated retrospectively. A key attribute of these tissues is that they typically grow 66 

incrementally relative to somatic growth. The analysis of annual growth increment patterns or ‘growth 67 

chronologies’ can thus be used to reconstruct continuous, annually-resolved growth histories of 68 

individuals and populations (e.g. Black et al. 2011; Hamilton et al. 2013; Kendall et al. 2010).  69 

 70 

Fish are undoubtedly essential components of healthy, functioning aquatic environments, as well as 71 

being an important component of the human socio-economic system, contributing to global food 72 

security and the economy (Garcia and Rosenberg 2010) and providing a suite of ecosystem services 73 

vital for human welfare (Holmlund and Hammer 1999). To effectively manage and optimise fishery 74 

resources in the future, an understanding of what changes may occur to fish populations is required. 75 

Even small changes in fish growth and body size, for instance, can lead to significant changes in 76 

mortality, biomass and catch (Audzijonyte et al. 2013). There is a paucity of long-term growth data on 77 

fish, particularly in the Southern Hemisphere; nonetheless, a handful of Australian studies have 78 

pioneered the use of otolith growth chronologies to generate long-term growth records from archived 79 

otolith collections (Gillanders et al. 2012; Morrongiello et al. 2011; Morrongiello et al. 2014; 80 

Neuheimer et al. 2011; Rountrey et al. 2014; Thresher et al. 2007).    81 

 82 
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A variety of approaches have been used to develop growth chronologies (Morrongiello et al. 2012),  83 

with traditional dendrochronological time-series modelling, and more recently, mixed-effects 84 

modelling, the two most commonly adopted for fish-based research. A key advantage of mixed 85 

modelling is that it allows extrinsic (e.g. environmental conditions) and intrinsic (e.g. age) drivers of 86 

growth variation to be analysed simultaneously and effectively partitioned so that detailed comparisons 87 

and interactions among the two can be made; this provides a more comprehensive, biologically-relevant 88 

understanding of how fish respond to environmental variability (Morrongiello and Thresher 2015; 89 

Weisberg et al. 2010). Such novel analyses are not possible with the more established 90 

dendrochronological approach that is designed to maximise environmental-growth relationships though 91 

a series of detrending and standardisation steps (Morrongiello et al. 2012). Dendrochronological 92 

methods are also less statistically appropriate for analysing relatively short, decadal growth histories 93 

derived from shorter-lived, and typically commercially targeted, fish species. 94 

 95 

Estuaries are productive and dynamic environments between marine and freshwater systems. They are 96 

highly heterogenous, both temporally and spatially, and can be influenced by a complex interplay of 97 

environmental drivers (Gillanders et al. 2011). Due to this complexity, many interacting environmental 98 

factors can influence the growth of estuarine species over a range of hierarchical levels (e.g. individual, 99 

population and species). Freshwater inflows, influenced by water abstraction and regulation, 100 

evapotranspiration, groundwater attributes and precipitation, are, however, considered a primary 101 

determinant of estuarine dynamics, and can influence salinity, water-column stratification, water 102 

quality, nutrients and primary productivity (Gillanders et al. 2011; Gillanders and Kingsford 2002; 103 

Statham 2012). These factors, in turn, can impact the phenology and physiology (i.e. growth) of 104 

estuarine species, as well as distribution and abundance (e.g. Jenkins et al. 2010; Morrongiello et al. 105 

2014; Sakabe et al. 2011). The influence of temperature on estuarine environments has received less 106 

attention; however, it can directly affect the physiology of individuals (Morrongiello et al. 2014), as 107 

well as estuarine attributes such as water quality, nutrient cycling and salinity (Gillanders et al. 2011; 108 

Scavia et al. 2002).   109 

 110 
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Climate change is predicted to have a major impact on estuarine environments around the world, with 111 

current and forecasted changes to temperature and precipitation (Gillanders et al. 2011; Scavia et al. 112 

2002; Statham 2012). Estuaries in temperate southern Australia are particularly vulnerable, with the 113 

region undergoing significant climatic change. Air temperature is warming faster than the global 114 

average and sea surface temperature is also increasing, particularly along the eastern coastline, which 115 

is a notable climate change ‘hotspot’ (Hobday and Pecl 2014; Lough and Hobday 2011). Although 116 

rainfall trends (used as proxies of freshwater inflow) are subject to high levels of inter-annual 117 

variability, declines are evident with effects exacerbated by increasing evaporation (Lough and Hobday 118 

2011). Within this context we reconstructed the growth history of a commercially and recreationally 119 

important estuarine fish species, black bream (Acanthopagrus butcheri, Munro 1949), using otolith 120 

growth chronologies. The chronologies represented two climatically divergent regions in temperate 121 

southern Australia with the first characterised by a warmer, drier climate (South Australia), and the 122 

second characterised by a cooler, wetter climate (Tasmania). We used mixed-effect modelling to 123 

examine extrinsically-driven, inter-annual growth variation among the two regions and then determined 124 

if environmental predictors, representative of temperature and hydrological change in estuarine 125 

systems, drive growth variation in black bream.  126 

 127 

Material and Methods 128 

 129 

Study species 130 

Black bream is an estuarine-dependent sparid found throughout temperate southern Australia and 131 

constitutes valuable fisheries throughout its distributional range. Black bream live for at least 29 years 132 

(Morison et al. 1998) with age at maturity varying from 2 to 4 years (Sarre and Potter 1999). The species 133 

spawns multiple times over a prolonged period during the austral spring and summer; however, timing 134 

of spawning can vary among regions and years (Ferguson and Ye 2008; Haddy and Pankhurst 1998; 135 

Sakabe et al. 2011; Sarre and Potter 1999). Black bream is an euryhaline species and can tolerate fresh 136 

to hypersaline waters up to 60 ppt (Partridge and Jenkins 2002). It completes its entire life cycle within 137 

an estuarine system (Potter and Hyndes 1999), spawning in the upper reaches of estuaries. Larval 138 
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recruitment and settlement occurs within the parent estuary, therefore, mixing between populations is 139 

typically restricted to the movement of adults during flood events. Climate change impacts are largely 140 

unknown for the species, but a recent risk assessment on commercial fishery species in south-east 141 

Australia classified black bream as relatively high risk to climate change due to life history 142 

characteristics, habitat preference and potential sensitivity to changes in key climate change drivers 143 

(Pecl et al. 2014).   144 

 145 

Sample sites 146 

Sectioned otoliths were obtained from archived collections representing two regions in temperate south-147 

east Australia: the Murray River estuarine system in South Australia and the east coast of Tasmania 148 

(represented by nine estuaries across a 230 km stretch of coastline) (Table 1, Fig 1). The Murray River 149 

estuary region has a relatively dry, warm climate with a mean annual rainfall of 463 mm and a mean 150 

daily temperature of 16°C. The Murray River estuary is the terminus of Australia’s largest river, the 151 

Murray–Darling, and is a large, complex, and highly modified system. It is separated by barrages from 152 

the freshwater Lower Lakes (Bucater et al. 2013; Gillanders et al. 2011) and water abstraction from 153 

upstream systems has reduced natural flow into the estuary by 80% (Ferguson et al. 2013). As a 154 

consequence, to maintain connectivity with the sea the estuary opening has been dredged during severe 155 

drought (from 2002 to 2010) and under low flow conditions since January 2015. In contrast, eastern 156 

Tasmania has a relatively wet, cool climate with a mean annual rainfall ranging from 601 to 659 mm 157 

across the region and a mean daily air temperature of 13 to 14°C. Estuaries along the east coast are 158 

relatively unmodified and characteristically small and shallow with low tidal ranges and flushing rates 159 

and include closed, seasonally closed and open systems (Table 1).  160 

 161 

Annual growth estimation 162 

Otoliths were sectioned through the core (primordium), and examined under a compound microscope 163 

(Leica DMLB) using transmitted light at 50x magnification. Each section was photographed with a 164 

digital camera (Leica DF320) and analysed using ImagePro Plus software (version 6.0).  Annual growth 165 

increment counts were used to estimate fish age (Age-at-capture) (see Morison et al. 1998 for more 166 
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details), taking into account the width of the marginal increment, date-of-capture and time of increment 167 

formation. Widths between each increment were subsequently measured along a transect running from 168 

the core to edge of the otolith along the dorsal side of the sulcus acusticus, which provides a robust, 169 

temporally-resolved proxy of somatic growth (Growth) (see Fig S1). Each growth increment was 170 

assigned a calendar growth year (Year) and an age (Age) based on back calculation from year-of-capture 171 

and age-at-capture respectively. This latter step was automated in R (version 3.0.2) (R Development 172 

Core Team 2008) using the method developed by Weisberg et al. (2010). The growth year was defined 173 

as the 1st October to 30th September (e.g. 2006 = October 2006 to September 2007), based on a previous 174 

study on black bream that suggests that growth increments form in October (Elsdon and Gillanders 175 

2006). The marginal increment and the first two years of growth were not measured, with the latter due 176 

to poor visualisation in the inner region of the otolith. Consequently, growth data represented the 3rd 177 

year of the fish’s life onwards to the last full year of growth. Regionally, each growth year was 178 

represented by a minimum of five increment measurements (i.e. five individuals) with most years 179 

having more than 50 measurements (see Fig 2). 180 

 181 

Growth predictors  182 

A range of predictor variables were selected to investigate sources and drivers of inter-annual growth 183 

variation (Table 2).  Fixed intrinsic (biological) variables included Age and Age-at-capture, with the 184 

latter included to test for potential bias in the dataset associated with ‘age selectivity’ and to ensure that 185 

estimates of temporal growth variation were not influenced by certain phenotypes (i.e. longer-lived 186 

individuals) (Morrongiello et al. 2012; Morrongiello et al. 2014).      187 

 188 

A range of fixed extrinsic (environmental) variables were included with regional and global scale 189 

influence (see Table 2 and Supporting Information for additional methods). Based on data availability, 190 

air temperature (Temperature) was used as a proxy for water temperature across both regions and 191 

rainfall (Rainfall) was used as a proxy of freshwater inflows in Tasmania (see Supporting Information 192 

and Fig S2). Freshwater flow (Flow) data were also included in the South Australian analysis as flow 193 

and rainfall were poorly correlated. The Southern Oscillation Index (SOI) was included as a measure of 194 
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El Niño-Southern Oscillation (ENSO) events, with negative values (El Niño episodes) generally 195 

corresponding to warmer sea surface temperatures and drier conditions in the region, and vice versa for 196 

positive values (La Niña episodes) (Holbrook et al. 2009). Growth response to environmental predictor 197 

variables was examined across three biologically-relevant time periods: annual growth year (October 198 

to September), spawning season (August to December) (Ferguson and Ye 2008; Sakabe et al. 2011), 199 

and season when maximum otolith growth occurs, hereafter termed ‘summer’ (December to February) 200 

(Elsdon and Gillanders 2006). However, if variables were highly correlated among time periods (within 201 

a predictor) (Pearson’s correlation = 0.9 to 1), they were removed from analysis. Rainfall, flow (South 202 

Australia), air temperature and SOI predictors were not highly correlated to each other (Pearson’s 203 

correlation = < 0.7) and all showed inter-annual variation, with temperature (growth year and spawning 204 

season) showing temporal linear trends (Fig S3).  205 

 206 

Three random effect predictors were included in the analysis, FishID, Year and Year Class, which were 207 

seen as a random sample from all possible fish, years, and year classes respectively. Fitting a random 208 

intercept for FishID generated a correlation among increment measurements (Growth) within an 209 

individual, allowing each individual to have above or below average growth relative to the model’s 210 

intercept (average growth) (Morrongiello and Thresher 2015). This accounts for the inherent repeated 211 

increment measures within the growth data and the likelihood that increment measures are more likely 212 

correlated within than among individuals (Morrongiello et al. 2011). Similarly, including a random 213 

intercept for Year and Year Class generated a correlation among increments formed in the same year 214 

and a correlation among increments from fish born in the same year respectively. The former predictor 215 

is particularly relevant to sclerochronological analyses as it provides an estimate of above or below 216 

average growth for a given calendar year after the effects of intrinsic ‘nuisance’ variables (e.g. Age and 217 

Age-at-capture) are accounted for (Morrongiello and Thresher 2015). A random Age slope for each 218 

individual (AgeǀFishID) was also included as it allows each individual to have unique Growth ~ Age 219 

relationships and is akin to the ‘dendrochronological method’ of detrending age-related trends for each 220 

individual prior to analysis (Morrongiello and Thresher 2015; Morrongiello et al. 2014). For Tasmania, 221 

FishID was nested within Estuary to account for potential growth variation among estuaries. 222 
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 223 

Mixed modelling 224 

Inter-annual variation in Growth was analysed separately for each region using a two stage process 225 

(Morrongiello and Thresher 2015; Morrongiello et al. 2014). All mixed modelling analyses were 226 

performed using the lme4 (Bates et al. 2013) and MuMIn (Barton 2013) packages in R (version 3.0.2) 227 

(R Development Core Team 2008). Growth, Age and Age-at-capture were natural log-transformed to 228 

meet model assumptions and all fixed effect variables were mean-centred to facilitate model 229 

convergence and interpretation of random slopes (Morrongiello et al. 2014).   230 

 231 

The first stage of analysis involved building a base set of linear mixed models that included a range of 232 

random effect and fixed intrinsic effect structures. The first base model (1) considered just a random 233 

intercept for FishID and the second base model (2) considered FishID and a random Age slope for 234 

FishID, with additional Tasmanian models including FishID nested within Estuary (models 3 and 4) 235 

(Table 3). These models were fitted using restricted maximum likelihood estimation (REML) (Zuur et 236 

al. 2009) and ranked using Akaike’s Information Criterion corrected for small sample sizes (AICC) 237 

rescaled as the difference between the model with the lowest AICC (or optimal model) and each other 238 

model (ΔAICC) (Burnham and Anderson 2004). Random intercepts for Year and Year Class, and a 239 

combination of both, were added individually to the optimal model and then fitted and ranked as above 240 

(Table 3). At this stage all models included the maximum intrinsic fixed effect structure (Age and Age-241 

at-capture) (Zuur et al. 2009). To determine if Age-at-capture improved model fit the optimal random 242 

effects model was re-analysed with and without the Age-at-capture term (Table 3). These models were 243 

initially fitted using maximum likelihood estimation (ML) with the best ranked model refitted with 244 

REML to produce unbiased parameter estimates (Zuur et al. 2009). 245 

 246 

To investigate how environmental variables influence Growth, the second stage of the analysis involved 247 

extending the optimal base model for each region to include different environmental covariates, which 248 

were fitted individually (Table 2). Additional models were also explored that included the two highest 249 

ranked environmental covariates in combination. It was deemed that there was substantial support for 250 



10 
 

a model if the difference in ΔAICC between the highest and second highest ranked model was < 2 251 

(Burnham and Anderson 2004). The ratio of evidence for the highest ranked ‘environmental model’ 252 

against the base model was also calculated by dividing the AICC weight (wAICC) of the environmental 253 

model by the wAICC of the optimal base model. Year, as a fixed effect, was also added to the optimal 254 

model to test for linear and curvilinear temporal growth trends (Morrongiello and Thresher 2015). As 255 

above, these models were initially fitted using ML, with the best ranked model refitted with REML. 256 

Age-dependent, environmental effects on growth were also initially explored for the highest ranked 257 

covariates, but were found to be negligent and, therefore, not presented. 258 

 259 

Furthermore, to investigate the level of correlation or temporal synchrony among growth increments 260 

from individuals living in the same Year and born in the same Year Class, an intraclass correlation 261 

coefficient (ICC) was calculated using the variance estimates from models 4a and 4b (Tasmania) and 262 

models 2a and 2b (South Australia) (Table 3) (Morrongiello and Thresher 2015). To examine temporal 263 

patterns in growth, Year random effect plots were generated by extracting best linear unbiased 264 

predictors (BLUPs) from models 4a and 2a. Predicted effects of the most influential fixed effect 265 

predictors on growth were also estimated using the effects (Fox 2003) package in R.  266 

 267 

Results 268 

 269 

Sources of growth variation 270 

Otolith growth chronologies generated a record of black bream growth over a 13 (1997 to 2009) and 21 271 

(1988 to 2008) year period for South Australia and Tasmania respectively. Calculation of AICc for the 272 

initial base models showed that the incorporation of a random Age slope for FishID was 273 

overwhelmingly supported in both Tasmanian and South Australian datasets, indicating that Growth ~ 274 

Age relationships varied among individuals (Tables S1, S2). The addition of Estuary in the Tasmanian 275 

base models improved model fit, indicating that growth trends varied among estuaries (Table S1).  276 

For both regions, the random effects model was significantly improved through the addition of Year, 277 

but not Year Class (Tables S1, S2). Comparison of variance components for random effects among the 278 
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two regions show that Age|FishID explained a relatively high proportion of growth variance in South 279 

Australia and Year explained a relatively high proportion of variance in Tasmania, although Tasmania 280 

also had a higher level of unexplained variance (Residual) (Table 4). For Tasmania, Year explained a 281 

higher proportion of the variance than Estuary. Furthermore, among-individual correlation of growth 282 

increments for a given Year and Year Class was significantly higher in Tasmania than South Australia, 283 

with Year having significantly higher levels of growth synchrony than Year Class overall (ICC for 284 

Tasmania: 0.138 [Year], 0.016 [Year Class]; ICC for South Australia: 0.030 [Year], 0.003 [Year 285 

Class]).  286 

 287 

Age, as anticipated, had a significant negative influence on growth for both regions (Table 5). Age-at-288 

capture also had a negative, though much weaker, influence on growth in both regions, which suggests 289 

that fast growers were more likely to be captured at a relatively young age (Table S3, Table 5).  290 

 291 

Temporal patterns in growth variation 292 

Year random effect plots revealed significant long-term inter-annual variation in fish growth. This was 293 

particularly evident for Tasmania, with strong growth years in 1993/1994 and 1997/1998, followed by 294 

an overall marked decline in growth from 2000 to 2008 (Fig 3). Years with especially poor growth were 295 

1988, 2003, 2005 and 2008. South Australia also showed inter-annual variability through time, but at a 296 

lower magnitude than Tasmania (Fig 3). There were relatively good growth years in 2004/2005, and 297 

relatively poor growth years in 2001 and 2006/2007. The addition of Year as a fixed effect to the optimal 298 

base model markedly improved model fit for Tasmania, but not South Australia (Table S4). The Growth 299 

~ Year relationship was negative and curvilinear for Tasmanian fish, with a predicted decline in growth 300 

over the chronology time series of 1% year-1 (Table 5, Fig 4A). 301 

 302 

Attributing growth variation to environmental variation  303 

The addition of fixed effect environmental predictors to the optimal base models for Tasmania and 304 

South Australia revealed significant correlative relationships to growth. For Tasmania, including 305 

Temperature (spawning season) improved model fit relative to the base model, albeit weakly, and was 306 
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1.3 times more likely to explain growth variation (Table S5). Temperature (spawning season) was 307 

negatively correlated to growth, with a predicted effect on growth rate of -7.0% °C-1 (within the 308 

environmental range experienced by the fish) (Fig 4B, Tables 5, 6). For South Australia, including both 309 

Rainfall (summer) and Temperature (spawning season) improved model fit relative to the optimal base 310 

model (Tables S6, S7), with the ratio of evidence indicating that it was 2.6 times more likely to explain 311 

growth. Temperature (spawning season) and Rainfall (summer) were both positively correlated to 312 

growth, with a predicted effect on growth rate of 3.7% °C-1 and 6.0% mm-1 respectively (Fig 4C,D; 313 

Tables 5, 6).        314 

 315 

Discussion 316 

 317 

Otolith growth chronologies provided a continuous, reconstructed record of black bream growth over a 318 

13 and 21 year period in South Australia and Tasmania respectively. Temporal growth variation across 319 

years and sources and drivers of such variation were markedly different between the two regions. 320 

Notably, the level of temporal growth synchrony among Tasmanian fish, which were sampled across 321 

nine estuaries, was four times higher than South Australian fish, which were sampled from a single 322 

estuary. Furthermore, in Tasmania, a much higher proportion of growth variation was attributed to year-323 

to-year fluctuations rather than differences among estuaries. This is surprising given that estuarine black 324 

bream populations are largely independent from one another, with only low levels of gene flow 325 

occurring among proximate estuaries (Burridge et al. 2004; Burridge and Versace 2007).  These 326 

findings suggest that regional climatic variation exerts a greater influence on black bream growth than 327 

population-level, estuary-scale factors such as density-dependent effects, population genotype, and 328 

geomorphological and land use attributes of the estuary and catchment, with the latter known to vary 329 

among Tasmanian estuaries (Edgar et al. 1999, Table 1). 330 

 331 

For South Australian fish, a much higher proportion of growth variation was attributed to individual 332 

variation in growth-age relationships rather than year. Although the South Australian growth 333 

chronology was shorter, differences in the patterns and magnitude of growth variation were still 334 
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apparent in years overlapping with Tasmania (1998 – 2009). Additionally, the number of fish sampled 335 

from the Murray River estuary was greater than the number of fish sampled from any one estuary in 336 

Tasmania. Yet, the Murray River estuary is a relatively large and physically complex system (see Table 337 

1), which may explain differences in growth synchronicity among the two regions. Furthermore, an 338 

otolith chemistry study on black bream demonstrated the presence of partial migration (i.e. populations 339 

consist of both resident and migratory individuals) within the Murray River estuary, with each 340 

migratory contingent having different growth histories (Gillanders et al. in press). Although, the 341 

presence of partial migration has not been investigated in Tasmanian populations, this suggests that 342 

South Australian populations may be exposed to a broader range of environmental conditions 343 

throughout their life cycle. Differences in fishing pressure may also be driving growth differences 344 

among the two regions. In Tasmania, black bream are fished recreationally, with a high proportion of 345 

catch-and-release (Lyle et al. 2009), while in the Murray River estuary, they are fished both 346 

commercially and recreationally with evidence of fishing-induced age truncation (Ferguson et al. 2013). 347 

Our results suggest that age-at-capture influenced temporal growth variation, particularly in South 348 

Australia, with younger fish having relatively faster growth. Therefore, it is plausible that the depletion 349 

of longer-lived, potentially slower-growing, individuals from the South Australian population has 350 

affected long-term growth patterns.   351 

 352 

Nonetheless, the level of growth synchrony even among Tasmanian black bream was still relatively low 353 

(0.13) compared to other fish species, including red snapper (Lutjanus campechanus; 0.54), gray 354 

snapper (Lutjanus griseus; 0.76) (Black et al. 2011), rock flathead (Platycephalus laevigatus; 0.64), 355 

longhead flathead (Leviprora inops; 0.62) (Coulson et al. 2014), and parore (Girella tricuspidata; 0.51) 356 

(Gillanders et al. 2012), all of which are marine. Movement of individuals across dynamic, 357 

heterogeneous estuarine environments, even within small enclosed systems, may explain the relatively 358 

low levels of temporal synchronicity among individuals. Yet, low levels of growth synchronicity have 359 

also been observed in western blue groper (Achoerodus gouldii, 0.11), a site-attached marine reef fish 360 

(Rountrey et al. 2014), suggesting that other factors, aside from environmental heterogeneity, may drive 361 

high individual growth variation. It is interesting to note, also, that all of the aforementioned studies are 362 
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based on a ‘dendrochronological’, rather than a mixed modelling, approach, which is designed to 363 

maximise environmental-growth relationships and reduce ecological ‘noise’ and typically entails 364 

sampling the longest-lived individuals from a population. Thus, synchronicity coefficients derived from 365 

mixed modelling approaches may be more ecologically relevant.      366 

 367 

Growth variation in Tasmanian black bream showed a negative, albeit weak, correlation with air 368 

temperature, which is also reflected in the marked decline in growth over the chronology time series 369 

(1988 to 2008), with growth variation in South Australian showing a positive correlation. These 370 

correlative relationships are unexpected given that Tasmania represents the cooler, southern range edge 371 

for black bream. In contrast, growth of banded morwong (Cheilodactylus spectabilis), a marine reef 372 

fish, was positively correlated to temperature in the middle and southern end of the species range (south-373 

east Australia) and negatively correlated to growth in the extreme northern edge of the species range 374 

(northern New Zealand) (Neuheimer et al. 2011). Similar correlative relationships with temperature 375 

have also been observed in tiger flathead (Platycephalus richardsoni), a demersal marine fish also 376 

native to south-east Australia (Morrongiello and Thresher 2015). These predictable patterns coincide 377 

with the theorised and known physiological effects of temperature increase on ectotherms, whereby 378 

growth increases with increasing temperature to a point where metabolic demand can no longer be 379 

sustained and growth declines (Neuheimer et al. 2011; Pörtner and Farrell 2008). One explanation for 380 

our contrasting result in black bream is intra-specific variation in thermal tolerance, where the pejus 381 

temperature (the point at which further temperature increases result in decreased growth) has been 382 

already reached for Tasmanian fish, but not South Australian fish. Intra-specific variation in thermal 383 

tolerance has been observed in estuarine fish species, including Australian barramundi (Lates 384 

calcarifer) and North American killifish (Fundulus heteroclitus), whereby lower latitude sub-385 

populations had higher critical thermal maxima than their higher latitude counterparts (Fangue et al. 386 

2006; Newton et al. 2010). Localised thermal adaptation is plausible for black bream particularly given 387 

their restricted movement patterns, tendency to form distinct genetic sub-populations, and dependence 388 

on estuarine systems, however, physiological tests should be conducted to further corroborate this 389 

hypothesis. An alternative explanation is that temperature increase may lead to a more prolonged 390 
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spawning season, resulting in greater investment in reproduction than somatic growth. As temperature 391 

averaged across the spawning season was more strongly associated with growth than the other two time 392 

periods, it also suggests that growth is more responsive to temperature during this time. Acanthopagrus 393 

hybrid complexes in southern New South Wales, composed of black bream and yellowfin bream 394 

(Acanthopagrus australis), also appear to have a more prolonged spawning season (August to January) 395 

relative to higher-latitude hybrid and pure black bream populations (Ochwada‐Doyle et al. 2012). 396 

Although the reason for this is unknown, it may relate to geographical differences in temperature, which 397 

plays an important role in the onset and cessation of spawning in the species (Haddy JA, unpublished 398 

data). Physiological impacts aside, temperature may also influence estuarine attributes, such as water 399 

quality and salinity stratification, as well as population-level (e.g. density dependent effects) and 400 

ecosystem-level processes (e.g. trophic interactions) (Pörtner and Peck 2010), which, in turn, may 401 

indirectly impact fish growth. Regardless of the underlying mechanisms, however, a decline in somatic 402 

growth as a consequence of temperature increase may have significant implications for a species’ ability 403 

to persist in the face of global warming and may result in localised shifts in distribution, abundance and 404 

productivity (Sorte et al. 2011). As air temperature and sea surface temperature are both currently 405 

increasing at a relatively rapid rate in eastern Tasmania (Lough and Hobday 2011), black bream may 406 

be more vulnerable to climate change in the region.  407 

 408 

Summer rainfall was also positively correlated to growth in South Australian fish, although freshwater 409 

inflow, surprisingly, was poorly related to growth. The disconnect between rainfall and flow in the 410 

Murray River estuary is the likely product of water abstraction and regulation, as well as prolonged 411 

drought, with the growth chronology encompassing the worst dry period (the Millennium Drought, 412 

2001 – 2009) ever recorded in southern Australia (van Dijk et al. 2013). In a drought-stressed, 413 

hypersaline system where inflow is negligible, rainfall could have a positive influence on growth by 414 

reducing salinity and thus osmotic stress to the fish. Although black bream is tolerant of a wide range 415 

of salinities (Partridge and Jenkins 2002), increased osmoregulation can affect basal metabolic rate and 416 

energy requirements (Gillanders et al. 2011). This result further supports the widely held belief that 417 

freshwater inflows are a key driver of biological processes in estuarine systems (Gillanders et al. 2011; 418 
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Morrongiello et al. 2014), but, conversely, the results also indicate that temperature is an important 419 

driver. This aligns with another otolith chronology study that showed that temperature was a dominant 420 

driver of growth in estuary perch (Percalates colonorum), an estuarine-dependent species native to 421 

south-east Australia (Morrongiello et al. 2014). It should be noted that the environmental predictors 422 

explored herein only explained a small proportion of the growth variation observed, and that other 423 

environmental and biological factors may be influencing growth to a greater extent. Yet, given the 424 

complex and dynamic nature of estuarine environments, it is likely that a synergistic interplay of several 425 

factors is driving growth; such as in South Australia, for example, whereby temperature and rainfall 426 

combined explained more growth variation than just rainfall or temperature alone.    427 

 428 

Otolith growth chronologies do not reflect absolute changes in somatic growth of individual fish, but 429 

rather relative changes in inter-annual rates of growth averaged across a population (i.e. growth 430 

anomalies) (Black et al. 2013). The significant otolith growth trends observed in Tasmanian bream 431 

particularly (e.g. - 1% year-1), however, should be observable at a somatic scale relevant to ecological 432 

processes and fisheries management (see also Morrongiello and Thresher 2015 for comparison). 433 

Furthermore, as the first two years of growth were not included in our analysis, growth trends, in reality, 434 

may be even more pronounced as early life history stages are typically more responsive to the 435 

environment. One otolith chronology study has also directly related otolith size to fish size in western 436 

blue groper, with modelled predictions suggesting that a 10% increase in otolith size would result in a 437 

5% increase in somatic growth (Rountrey et al. 2014). Although these changes may appear small, 438 

seemingly minor changes in fish growth can have disproportionately large ramifications. For instance, 439 

a recent modelling study on five marine fish species in south-east Australia predicted that a 4% decline 440 

in length-at-age over 50 years would result in a 1 to 35% decline in biomass (Audzijonyte et al. 2013). 441 

 442 

This study further validates the use of calcified tissues as valuable tools for retrospectively generating 443 

long-term ecologically-relevant datasets in aquatic systems, which would otherwise be logistically 444 

difficult and costly to produce. The comparison of growth patterns among two geographically and 445 

climatically distinct regions is inherently confounded due to differences in a range of other factors, such 446 



17 
 

as estuary characteristics, habitat modification, fishing pressure and sampling regimes; yet, with careful 447 

model selection and robust statistical analyses, valuable insights into the underlying drivers of growth 448 

variation at an intra-specific level can still be gleaned. Overall, the results showed that fish from one 449 

region were more responsive to regional-scale changes in the environment than the other, and that the 450 

environmental variables examined influenced growth in different ways. This highlights the importance 451 

of considering how populations respond to environmental change at the intra-specific level to make 452 

more accurate predictions of how they may change in the future. 453 

 454 
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Table 1. Details of black bream otolith samples used to develop biochronologies. Tasmanian estuaries are listed from north to south. 

Region Estuary Estuary type Estuary 

area (km2) 

Latitude,  longitude # sampling 

years 

# fish age range 

(years) 

# year 

classes 

year range 

South 

Australia 
Murray River Open (dredged) 73 -35.532720, 138.842654 4 82 7-13 9 1998-2010 

 

 

 

Tasmania 

Ansons Bay Open 4.9 -41.044480, 148.278539 2 23 9-21 10 1991-2009 

Grants Lagoon Closed 0.5 -41.252038, 148.295832 1 7 12-22 6 1990-2009 

Diana’s Basin Closed 0.8 -41.371621, 148.285279 1 2 11-20 2 1992-2009 

Scamander River Seasonally closed 1.6 -41.460404, 148.243077 2 68 8-23 12 1989-2009 

Four Mile Creek Seasonally closed 0.01 -41.557944, 148.290112 1 16 8-19 9 1999-2009 

Swan River Open 22 -42.087191, 148.224845 3 43 7-17 11 1991-2005 

Meredith River Seasonally closed 0.1 -42.112600, 148.068193 1 11 8-13 4 1989-2005 

Little Swanport Open 4.8 -42.338567, 147.955257 3 20 9-16 8 1990-2009 

Prosser River Open 0.4 -42.557806, 147.867426 1 11 9-21 6 1990-2009 

all Tas estuaries    4 197 7-23 16 1989-2009 
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Table 2. Details of predictor variables used in the analysis of annual black bream growth.  Type refers to whether 

the predictors were defined as random (R) or fixed (F) effects.  Environmental predictor variables were calculated 

for three time periods: annual growth year (October to September), spawning season (August to December) and 

summer (December to February).   

Predictor Type Description 

FishID 

Estuary 

Year 

Year class 

Age 

Age-at-capture 

Temperature  

 

Rainfall  

SOI 

Flow 

R 

R 

R, F 

R 

F 

F 

F 

 

F 

F 

F 

Unique value to identify each individual fish 

Tasmanian estuaries listed in Table 1 

Annual growth year for black bream (October to September) 

Cohort of individuals born in the same year 

Age in years when each growth increment formed 

Age in years at time of capture  

Mean daily air temperature derived from daily minimum and 

maximum values (°C)   

Mean daily rainfall values (mm) 

Mean Southern Oscillation Index derived from monthly values 

Mean monthly inflows through the Murray River estuary (GL) 
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Table 3. Description of base models used in the first stage of mixed modelling analysis. | = denotes random Age 

slopes for each random FishID intercept, parentheses = nested term, AAC = Age-at-capture.  

Model # Random effects Fixed effects 

Tasmania  

1 FishID Age, AAC 

2 age|FishID Age, AAC 

3 Estuary(FishID) Age, AAC 

4 Age|Estuary(FishID) Age, AAC 

4a Age|Estuary(FishID), Year Age, AAC 

4b Age|Estuary(FishID), Year Class Age, AAC 

4c Age|Estuary(FishID), Year, Year Class Age, AAC 

4a1 Age|Estuary(FishID), Year Age  

4a2 Age|Estuary(FishID), Year Age, AAC 

South Australia  

1 FishID Age, AAC 

2 Age|FishID Age, AAC 

2a Age|FishID, Year Age, AAC 

2b Age|FishID, Year Class Age, AAC 

2c Age|FishID, Year, Year Class Age, AAC 

2a1 Age|FishID, Year Age 

2a2 Age|FishID, Year Age, AAC 
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Table 4. The estimate of variance associated with each random effect (variance components ± SD) for optimal 

base models 4a2 and 2a2 for Tasmania and South Australia respectively. | = denotes random Age slopes for each 

random FishID intercept, corr = correlation statistic.  

Random effects Tasmania South Australia 

Estuary(FishID) 0.012 (0.110) - 

FishID - 0.010 (0.100) 

Age|Estuary(FishID) 0.005 (0.073) 

corr =0.10 

- 

Age|FishID - 0.018 (0.133) 

corr = 0.28 

Year 0.006 (0.081) 0.001 (0.038) 

Estuary 0.001 (0.038) - 

Age|Estuary 0.004 (0.063) 

corr = 0.83 

- 

Residual 0.022 (0.149) 0.017 (0.129) 
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Table 5. Fixed effect parameter estimates (±SE) and test statistics for optimal models describing intrinsic, 

temporal and environmental effects on growth (see Table 3 for base model details). Spawning = spawning season 

(August to December); and summer = period of maximum otolith growth (December to February).   

Fixed effects parameter Tasmania South Australia 

Model Estimate  t-value Model Estimate  t-value 

Intrinsic effects        

Intercept 4a2 -2.636 (0.025) -106.44 2a2 -2.509 (0.017) -149.89 

Age 4a2 -0.404 (0.024) -16.51 2a2 -0.436 (0.020) -22.09 

Age-at-capture 4a2 -0.035 (0.041) -0.84 2a2 -0.140 (0.068) -2.05 

Temporal effects        

Year (Y)                                    4a2+Y -0.015 (0.004) -3.7 - - - 

Environmental effects        

Rainfall (summer) (R) - - - 2a2+R+T 0.056 (0.034) 1.65 

Temperature (spawning) (T) 4a2+T -0.071 (0.044) -1.96 2a2+R+T 0.038 (0.023) 1.64 
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Table 6. Predicted effect of significant environmental predictors on growth rate. * 1 unit is defined as 1 °C or 1 

mm. 

Environmental predictor Predictor 

range 

Predicted effects (% change) 

across range per unit* 

Tasmania    

Temperature (spawning) 12.4 – 13.9 °C -10.5  -7.0 

South Australia    

Temperature (spawning) 14.3 – 16.0 °C 6.6  3.7 

Rainfall (summer) 0.3 – 1.3 mm 6.0  6.0 
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Figure Captions 

 

Fig 1. Map of study region (X = black bream collection sites). Dashed lines on smaller map represent black bream 

distribution 

 

Fig 2. Number of otolith increment measurements representing each growth year. Grey columns = Tasmanian 

samples; black columns = South Australian samples 

 

Fig 3. Predicted inter-annual variation in growth of black bream for Tasmania (grey line; n = 197) and South 

Australia (black line; n = 82) based on Year random effect estimates (± SE) from model 4a (Tasmania) and 2a 

(South Australia). Dashed line represents average growth across the time periods examined 

 

Fig 4. Predicted effects of A) Year and B) Temperature (spawning season) on the growth of Tasmanian fish (grey 

plots; n = 197), and predicted effects of C) Rainfall (summer) and D) Temperature (spawning season) on the 

growth of South Australian fish (black plots; n = 82). Dashed lines represent 95% CI 

 

 

 

 

 

 

 

 

 

 

 

 


