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ABSTRACT

We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically
decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to
provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and
amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm
absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE)
survey. We use AGD with Monte Carlo methods to derive the H I line completeness as a function of peak optical
depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against
varying observational noise intensity. The autonomy and computational efficiency of the method over traditional
manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the
ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and
pathfinder telescopes.

Key words: ISM: atoms – ISM: clouds – ISM: lines and bands – line: identification – methods: data analysis –
techniques: spectroscopic

1. INTRODUCTION: 21 CM GAUSSIAN FITS

Neutral hydrogen (H I) is the raw fuel for star formation in
galaxies, and an important ingredient in understanding galaxy
formation and evolution through cosmic time. In the interstellar
medium (ISM) of the Milky Way, H I is predicted to exist in
two thermally stable states: the cold neutral medium (CNM)
with temperature between 40 and 200 K, and the warm neutral
medium (WNM) with temperature between 4100 and 8800 K
(Field et al. 1969; McKee & Ostriker 1977; Wolfire
et al. 2003).

The 21 cm hyperfine transition of H I is a convenient tracer
of neutral gas because (1) it is easily excited by random
thermal motions due to its small transition energy
(D E k 0.068 K), and (2) it is abundant in galaxies over a
wide range of interstellar environments and scales, from dense
molecular clouds to diffuse galactic halos. The 21 cm line can
also be used the measure the H I excitation (or spin)
temperature distribution, which can be used to constrain
theoretical models of the neutral ISM. One technique for
measuring the spin temperature of H I is to fit 21 cm emission
and absorption data with a collection of independent iso-
thermal Gaussian components. With this technique, H I spin
temperatures have been measured in the range of ∼10–3000 K
(e.g., Dickey et al. 1978, 2003; Crovisier et al. 1980; Mebold
et al. 1982; Kalberla et al. 1985; Heiles 2001; Heiles &
Troland 2003; Begum et al. 2010; Roy et al. 2013). Although
Galactic H I surveys have constrained the cold end of the ISM
spin temperature distribution with hundreds of detected CNM-
temperature components, few components have been detected
with temperatures consistent with the WNM. There are,
however, indications of 7000 K H I in damped aL systems
at high redshift (Kanekar et al. 2014). The missing WNM-
temperature components leave the spin temperature distribution

of the WNM, a phase that contains ~50% of the mass in the
neutral ISM (Draine 2010), unconstrained. Surveys also find
a significant fraction of thermally unstable components (with
temperatures between ∼200 and 4100 K), up to 47% of
detections in Heiles & Troland (2003). Although the missing
WNM components could be explained in terms of sub-
thermal excitation of the 21 cm line in low density
environments (e.g., Liszt 2001), recent results from Murray
et al. (2014) point instead toward a lack of absorption
observations with enough sensitivity to detect WNM-
temperature gas, which has an absorption strength ~ ´100
less than CNM-temperature gas. Additionally, numerical
simulations have shown that magnetic fields and non-
equilibrium physics like bulk flows and turbulence can affect
the expected relative fractions of WNM, CNM, and
intermediate temperature (unstable) gas (Audit & Henne-
belle 2005; Heitsch et al. 2005; mac Low et al. 2005; Clark
et al. 2012; Hennebelle & Iffrig 2014), although observational
data cannot yet distinguish between these scenarios. Aside
from the missing constraints at high spin temperatures, the
main reason it has been difficult to make progress in
understanding the neutral ISM is that most observational
surveys have sample sizes of only 10–100 sightlines, leaving
large statistical errors in the measurements of the H I spin
temperature distribution.
The Square Kilometer Array6 (SKA) and its pathfinder

telescopes, the Australian SKA Pathfinder7 (ASKAP), the
recently expanded Karl G. Jansky Very Large Array8, and
MeerKAT9, will push radio astrophysics into a new era of “big
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spectral data” by providing scientists with millions of high
spectral resolution, high-sensitivity radio emission and absorp-
tion spectra probing lines of sight through the Milky Way and
neighboring galaxies. This infusion of data promises to
revolutionize our understanding of the neutral ISM. However,
these new data will bring new challenges in data interpretation.
Modeling a 21 cm emission or absorption spectrum as a
superposition of N independent Gaussian components requires
solving a nonlinear optimization problem with N3 parameters.
Because Gaussian functions do not form an orthogonal basis
(solutions are not unique), the parameter space is non-convex
(contains local optima instead of a single, global optimum),
and therefore the final solutions sensitively depend on the
initial guesses of the components’ positions, widths, and
amplitudes, and especially on the total number of components.
To minimize the chances of getting stuck in local optima
during model fitting, researchers choose the initial parameter
guesses to lie as close to the global optimum as possible. In
previous and current surveys, these initial guesses are provided
manually, effectively using the pattern-recognition skills of
humans to identify the individual components within the
blended spectra. This manual selection process is time
consuming and subjective, rendering it ineffective for the large
data volumes in the SKA era.

Automatic line finding and Gaussian decomposition algo-
rithms can solve the problems above. Below we briefly review
some available algorithms for automatic line detection that can
help analyze the large data volumes in the SKA era. The
Bayesian line finder by Allison et al. (2012) searches parameter
space using the nested sampling algorithm (Skilling 2004), and
uses Bayesian inference to decide on the optimal number of
spectral components. Because the algorithm searches the
entirety of parameter space for each value of N, the total
number of components, it is computationally expensive.
Procedural algorithms like those of Haud (2000) or Nidever
et al. (2008) iteratively add, subtract, or merge components
based on the effects these decisions have on the resulting
residuals of least-squares fits, and have been used to interpret
large data sets from, e.g., the Leiden–Argentina–Bonn (LAB)
All-Sky H I survey (Kalberla et al. 2005). However, the initial
parameters for each fit are adopted from previous solutions in
adjacent sky positions, thereby limiting the use these
algorithms to densely sampled emission surveys. Topology-
based algorithms like Clumpfind (Williams et al. 1994) and
Duchamp (Whiting 2012) take advantage of the 3D nature of
position–position–velocity data, but are too limited for efficient
Gaussian decomposition because they can only detect compo-
nents that are strong enough to produce local maxima in their
spectra, and do not allow for overlapping components.
Similarly, GaussClumps (Stutzki & Guesten 1990) only locates
strong components that produce local optima in 3D space.

In this paper, we present a new algorithm, called
Autonomous Gaussian Decomposition (AGD), which provides
a capability that is complementary to the algorithms described
above by focusing on computational speed in Gaussian
decomposition. AGD uses computer vision and machine
learning to quickly provide optimized guesses for the initial
parameters of a multi-component Gaussian model. AGD allows
for the interpretation of large volumes of spectral data and for
the ability to objectively compare observations to numerical
simulations in a statistically robust way. While the develop-
ment of AGD was motivated by radio astrophysics, specifically

the 21 cm SPectral line Observations of Neutral Gas with the
EVLA10 (21-SPONGE) survey (Murray et al. 2014, 2015), the
algorithm can be used to search for one-dimensional Gaussian
(or any other single-peaked spectral profile)-shaped compo-
nents in any data set.
In Section 2, we explain the algorithm; in Section 3, we

show AGD’s performance in decomposing real 21 cm absorp-
tion spectra; and in Section 4, we present a discussion of results
and conclusions.

2. AUTONOMOUS GAUSSIAN DECOMPOSITION

AGD approaches the problem of Gaussian decomposition
through least-squares minimization by focusing on the task of
choosing the parameters’ initial guesses, where human input is
traditionally most needed. By quickly producing high quality
initial guesses, most of the work in interpreting the spectrum
has been done, and the resulting least-squares fit converges
quickly to the global optimum. The strategy of separating the
“guess” and “fit” steps of nonlinear least squares optimization
into two automatic algorithms was also used by Barriault et al.
(2010), who produced initial guesses using a genetic algorithm.
In the following, x and f(x) represent an example spectrum.

For example, x might have units of frequency and f(x) units of
flux density. Where relevant, all one-dimensional variables are
to be interpreted as column vectors. The variables a, σ, and μ
represent the amplitude, “ s1 ” width (hereafter referred to as
just the “width”), and position of a Gaussian function G
according to

s = s- -G x a μ a e( ; , , ) . (1)x μ( ) 22 2

2.1. Derivative Spectroscopy

AGD uses derivative spectroscopy to decide how many
Gaussian components a spectrum contains, and also to decide
where they are located. Derivative spectroscopy is the
technique of analyzing a spectrum’s derivatives to gain
understanding about the data. It is used in computer vision
applications because derivatives can respond to shapes in
images like gradients, curvature, and edges. It has a long
history of use in biochemistry (see, e.g., Fell 1983), and has
been recently used to analyze the spectral features of H I self-
absorption in two Galactic molecular clouds (Krčo et al. 2008).
The algorithm places one guess at the location of every local

minimum of negative curvature in the data, where the curvature
of f(x) is defined as the second derivative, d f x dx( )2 2. This
criterion finds “bumps” in the data, and has the sensitivity to
detect weak and blended components. Mathematically, this
condition corresponds to locations in the data which satisfy the
four conditions:

>f (2a)0

<f xd d 0 (2b)2 2

=f xd d 0 (2c)3 3

>f xd d 0. (2d)4 4

10 The Expanded Very Large Array, currently known as the Karl G. Jansky
Very Large Array.
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In ideal, noise-free data, we could set  = 00 in Equation (2a);
however, observational noise produces random curvature
fluctuations and a signal threshold should be applied to avoid
placing guesses in signal-free regions. Equation (2b) enforces
that the curvature is negative, while Equations (2c)–(2d)
ensure the location is a local minimum of the curvature. The N
values of x satisfying Equations (2a)–(2d) serve as the guesses
for the component positions μn where Î ¼n N{1 }. In practice,
the allowed values of μn are restricted to the discrete set of
channel centers in the data. Figure 1 shows an example of
applying Equations (2a)–(2d) to find the component locations
in an ideal noise-free spectrum.

Next, AGD guesses the components’ widths by exploiting
the relation between a component’s width and the maximum of
its second derivative. For an isolated component, the peak of
the 2nd derivative is located at =x μ, and has a value of

s
s

= -
=x

G x a μ
ad

d
( ; , , ) . (3)

x μ

2

2 2

AGD applies this single-component solution to provide
estimates for the widths of all n components sn by
approximating »a f x( ) to obtain

s =
æ

è
çççç

ö

ø
÷÷÷÷

-

=f x
f x

x
( )

d ( )

d
. (4)n x μ

2
2

2

1

n

Finally, AGD guesses the components’ amplitudes, an.
Naive estimates for the amplitudes of the N components are
simply the values of the original data evaluated at the
component positions. However, if the components are highly
blended, then the naive guesses can significantly over estimate
the true amplitudes. AGD compensates for this overestimate by
attempting to “de-blend” the amplitude guesses using the

information in the already-produced position and width guesses
(see Appendix A for details on the deblending process).

2.2. Regularized Differentiation

In order to identify components in f(x) using
Equations (2a)–(2d), the derivatives of f(x) must be accurate
and smoothly varying. Any noise in the derivatives of the
spectra will produce spurious component guesses. Computing
derivatives using finite-difference techniques greatly amplifies
noise in the data (see, e.g., Figure 2), thereby rendering finite-
difference techniques unusable for our needs of computing
derivatives up to the fourth order. We regularize11 the
differentiation process using Tikhonov regularization (Tikho-
nov 1963), where the derivative is fit to the data under the
constraint that it remains smooth by following the technique
presented in Vogel (2002) and Chartrand (2011).
We define the regularized derivative of the data as
=u R uarg min( [ ])

u
min , where

ò òa b= + + -( )R u D u A u f[ ] , (5)x x
2 2 2

the derivative operator =D u u xd dx and the anti-derivative

operator ò=A u u xdx x

x

min
. The first term on the right-hand side

(RHS) of Equation (5) is the regularization term, and is an

Figure 1. Derivative spectroscopy example. The green and black solid lines
show the individual components and total signal, respectively, for a noise-free
spectrum consisting of three Gaussian components. Overplotted are the 2nd
(red solid) and 4th (red dash) numerical derivatives. The locations (i.e., μ) in
the data satisfying the conditions from Equations (2a) to (2d) are identified
with blue circles, with blue line segments showing the guessed s1 widths
from Equation (4). The positions and widths indicated by the blue circle and
line segments represent the guesses that AGD would produce for this example
spectrum.

Figure 2. Regularized numerical derivatives. Above: the gray data show an
example spectrum with two Gaussian components, one with a = 1, s = 10 and
=μ 25 and one with a = 1, s = 25, and =μ 75, in Gaussian-distributed noise

with =rms 0.05. The dashed black line represents the noise-free data. Below:
the black solid line shows the ideal derivative of the underlying data. The result
of a finite-difference-based numerical derivative applied to the noisy data is
shown in gray. The amplified noise makes it impossible to locate local optima
reliably. The remaining (purple, red, and cyan) curves show the regularized
derivatives (Section 2.2) using different values of the regularization parameter

alog . Larger or smaller values of α trade smoothness for data fidelity,
respectively.

11 Regularization techniques are also used in, e.g., the maximum entropy
method of synthesis image deconvolution (Taylor et al. 1999), and in
gravitational lens image inversion (Wallington et al. 1994).
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approximation to Total-Variation (TV) regularization (Rudin
et al. 1992). When β is zero, this term becomes the L1 norm of
u xd d , pushing u to be piecewise constant. When β is >0, the
regularization term behaves more like the L2 norm of u xd d ,
constraining u instead to be smoothly varying. To produce
smoothly varying solutions for our derivatives, we (a) set
b = 0.1, and (b) rescale the bin widths to unity and peak-
normalize the data; these scale factors are remembered and
reapplied when optimization has completed.

The second term of the RHS of Equation (5) is the data
fidelity term, enforcing that the integral of u closely follows the
data f. The parameter α controls the relative balance between
smoothness and data fidelity in the solution, i.e., between
variance and bias. When a = 0, umin is equal to the finite
difference derivative. Because of the large range that α can
span, we hereafter refer to the regularization parameter as

a aºlog log10 .
Figure 2 shows how the parameter alog affects the

regularized derivative of synthetic data consisting of two
Gaussian components within Gaussian distributed noise. The
above panel shows the noisy synthetic data (gray), and the
below panel compares the finite-difference derivative (gray) to
the regularized derivative for different values of alog (purple,
red, and blue). Larger values of alog ignore variations in the
data on increasingly larger spectral scales. The true derivative
(black line) is reproduced well using a =log 1.3.

The above algorithm is a noise suppression technique for
numerical derivatives. Another common method for smoothing
data is Gaussian convolution, or Gaussian filtering. In
Appendix B, we show how our optimization-based methodol-
ogy compares to convolution and find that optimization returns
higher accuracy derivatives, especially in data containing a
range of spectral scales.

2.3. Choosing log α with Machine Learning

In supervised machine learning, the computer is given a
collection of input/output pairs, known as a training set, and
then “learns” a general rule for mapping inputs to outputs.
After this “training” process is completed, the algorithm can be
used to predict the output values for new inputs (see, e.g.,
Bishop 2006; Ivezic ̀ et al. 2014).

The regularization procedure of Section 2.2 allows us to take
smooth derivatives at the expense of introducing the free
parameter alog , which controls the degree of regularization.
We use supervised machine learning to train AGD and pick the
optimal value of alog which maximizes the accuracy of
component guesses on a training set of spectra with known
decompositions. One can obtain the training set by manually
decomposing a subset of the data, or by generating new
synthetic spectra using components that are drawn from the
same distribution as the science data. In the latter case, there is
a risk that the training data are different from the science data,
but also the benefit that the decompositions are guaranteed to
be “correct” while the manual decompositions are not.

Given Ng component guesses s º a=a μ g{ , , }i
g

i
g

i
g

i
N

1
g , pro-

duced by running AGD with fixed alog on data containing Nt

true components s º=a μ t{ , , }i
t

i
t

i
t

i
N

1
t , the “accuracy”  of the

guesses is defined using the balanced F-score. The balanced F-
score is a measure of classification accuracy that depends on
both precision (fraction of guesses that are correct) and recall
(fraction of true components that were found), thus penalizing

component guesses which are incorrect, missing, or spurious.
The accuracy is given by

  a=
+

ºa( )g t
N

N N
,

2
(log ), (6)c

g t

where Nc represents the number of “correct” guesses. We
consider a single guessed component (ag, sg, μg) to be a
“correct” match to a true component (at, st, μt) if its amplitude,
position, and width are all within the limits specified by the
following equations:

s
s
s

< <

-
<

< <

c
a

a
c

μ μ
c

c c . (7)

g

t

g t

t

g

t

1 2

3

4 5

The analysis in Section 3 uses ¼ =c c( ) (0, 10, 1, 0.3, 2.5)1 5 .
The final solution is least sensitive to the initial amplitudes, so
we choose the values c1 and c2 to bracket a large relative range;
it is more sensitive to the guessed widths, so we chose a
narrower relative range in c4 and c5; finally, we find that the
positions are the most important parameters for fitting the data
in the end, motivating the relatively strict value of c3. We
impose the additional restriction that matches between guessed
and true components must be one-to-one, and therefore match
consideration proceeds in order of decreasing amplitude.
The optimal value of alog is that which maximizes the

accuracy (Equation (6)) between AGD’s guessed components
and the true answers in the training data. This nonlinear
optimization process is performed using a modified version of
gradient descent and is described in detail in Appendix C.

3. PERFORMANCE: 21 CM ABSORPTION

We test AGD by comparing its results to human-derived
answers for the first 21 spectra from the 21-SPONGE survey
(Murray et al. 2015) using GaussPy (Appendix D), the Python
implementation of AGD. GaussPy extends the AGD algorithm
(i.e., Section 2) to search for components at multiple different
scales by offering who modes, referred to as “one-phase”
(using one regularization parameter, alog ) and “two-phase”
(using two regularization parameters, alog 1 and alog 2)
decomposition. 21-SPONGE spectra cover a velocity range
from −100 to +100 km s−1), tracing Galactic H I gas. 21-
SPONGE’s 21 cm absorption spectra are among the most
sensitive ever observed with typical optical-depth rms
sensitivities of st - 10 3 per -0.4 km s 1channel (Murray
et al. 2015). This combination of sensitivity and spectral
resolution will stay among the best obtainable through the SKA
era. The survey data come natively in units of fractional
absorption (I I0), and we transform the data into optical depth
units (t = - I Iln ( )0 ) for the AGD analysis because only in τ-
space will a single component produce a single peak in
curvature (i.e., absorption signals with t  1 will produce dual
peaks in the curvature of I I0).
We begin by constructing the training data set, which is

based on independent 21 cm absorption observations from the
Millennium Arecibo 21 cm Absorption-Line Survey (Heiles &
Troland 2003). We produce 20 synthetic spectra by randomly

4
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selecting Gaussian components from the Heiles & Troland
(2003) catalog. The number of components per spectrum is
chosen to be a uniform random integer between the mean value
(three) and the maximum value (eight) from the observations.
Only components with peak optical depth t < 3.0 are included
in the training data because beyond this, the absorption signal
saturates and the component properties are poorly constrained.
We next add Gaussian-distributed noise with = -rms 10 2 per

-0.4 km s 1 channel to the spectra (in observed I I0 space) to
mimic real observational noise from the Millenium survey
(Heiles & Troland 2003), and re-sample the data at

-0.1 km s channel1 to avoid aliasing the narrowest components
(with FWHMs of ~ -1 km s 1) in the training set. We set the
global threshold, (parameter 0 in Equation (2a)), to be ´5 the
rms for individual spectra.

We next train AGD for both one- and two-phase decom-
positions and compare their performances. For one-phase AGD
we use the initial value a =log 3.001 and AGD converged to

a =log 1.291 . The resulting accuracy was 0.78 on the training
data, and 0.71 on an independent test-set of 100 newly
generated (out-of-sample) synthetic spectra. Testing the
performance on similar but independent out-of-sample “test”
data prevents against “over-fitting” the training data. For two-
phase AGD, we use initial values of a =log 1.31 and

a =log 3.02 and AGD converged to a =log 1.121 ,
a =log 2.732 , returning 0.81 on the training data and 0.79

on the independent test data from above. Figure 3 shows the
convergence tracks of a a(log , log )1 2 when the two-phase
training process is initialized with different initial values for

alog 1 and alog 2. The alog values between one- and two-
phase decompositions generally follow the trend

a a a< <log log log1
two phase one phase

2
two phase, and this prop-

erty can be used to help choose initial values during training.
We next apply the trained algorithm to the 21-SPONGE

data. We find that two-phase AGD performs better than one-
phase in decomposing the 21-SPONGE data, which contain
absorption signatures from two distinct populations of ISM
clouds: cold clouds with narrow absorption features and warm
clouds with broad absorption features. We compare the
performance of AGD to human decompositions using the
average difference in the number of modeled componentsDN :

D = -N N N , (8)AGD Human

and the average fractional change in the residual rms, frms:

=
-

f
rms rms

rms
. (9)rms

AGD Human

Human

We find that D = -N 0.14 and = +f 29%rms for one-phase
AGD andD = +N 0.1 and = -f 2.2%rms for two phase AGD.
Both one-phase and two-phase AGD guessed comparable
numbers of components, but two-phase AGD resulted in lower
residual errors compared to human-decomposed spectra,
consistent with two-phase AGD’s higher accuracy (i.e., 0.79
versus 0.71, for two and one-phase AGD, respectively). A
comparison between the resulting number of components and
rms residuals between two-phase AGD and human results for
the individual spectra is shown in Figure 4.
In Figure 5, we show a scatter plot of the best-fit FWHMs

and peak amplitudes for all AGD and human-derived Gaussian
components for the 21-SPONGE data. There are 120 and 118
components detected by AGD and human, respectively. We
performed a 2-sample Kolmogorov–Smirnov test on the
amplitudes (p = 0.997), FWHMs (p = 0.64), and derived
equivalent widths ( ò t= v vEW ( )d ; p = 0.9995) of the
resulting components from AGD versus human results and
find that in each case, the AGD and human distributions are
consistent with being drawn from identical distributions. Thus,
AGD results are statistically indistinguishable to human-
derived decompositions in terms of the numbers on compo-
nents, the residual rms values, and the component shapes.
Figure 6 shows the AGD guesses, AGD-best fits, and human-
derived best fits for all 21 spectra in our data set.

3.1. Completeness and Spurious Detections

Observational noise can scatter the measured signals of weak
spectral lines below a survey’s detection threshold, effectively
modifying the measured component distribution by a “com-
pleteness” function. The effect of completeness needs to be
taken into account in order to make high-precision comparisons
between the measured distributions of H I absorption/emission
profiles and the predictions of physical models. AGD’s speed
and autonomy allows for easy reconstruction of a survey’s
completeness function, and this information can be used to
correct the number counts of observed line components so that
one can infer the true component distribution to lower column
densities.
We demonstrate this procedure by measuring AGD’s line

completeness of 21-SPONGE H I absorption profiles as a

Figure 3. Training AGD using gradient descent. Starting locations, tracks, and
convergence locations of the parameters ( a alog , log1 2) during AGD’s two-
phase training process (Appendix C) are represented by black circles, black
lines, and white “X”s, respectively. The dashed white line marks the

a a=log log1 2 boundary. Tracks that begin too far away from the global
best solution ( a =log 1.121 , a =log 2.732 ) can converge into local optima
with lower resulting accuracy. Multiple training runs with different starting
positions are therefore recommended to find the global optimum. Additionally,
physical considerations like the expected width of components can help guide
the choice of starting value. The background image shows a densely sampled
representation of the underlying parameter space, and was generated using the
HTCondor cluster at the University of Wisconsin’s Center for High-
Throughput computing.
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function of amplitude and velocity width using a Monte Carlo
simulation. We inject a single Gaussian component with fixed
parameters into synthetic spectra containing realistic observa-
tional noise ( = -rms 10 3 per -0.4 km s 1 channel) and then run
AGD to measure the completeness, which we define as the
fraction of successfully detected components out of 50 trials.
AGD’s completeness function for the 21-SPONGE data is
shown in Figure 7. AGD obtains 100% completeness for
components with > -FWHM 1 km s 1 and t > ´ -7 100

3.
Noise fluctuations can also scatter data above a survey’s

detection threshold and produce false-positive detections, also
known as “spurious detections.” AGD will produce spurious
Gaussian component guesses if the threshold in Equation (2a)

is set too low. The expected number of spurious detections in a
spectrum with Gaussian-distributed noise is given by

é

ë
ê
ê -

æ

è
ççç

ö

ø
÷÷÷÷

ù

û
ú
úN S N

V

V

S N
( )

d

1

2

1

2
erf

2
, (10)spurious

where V is the total velocity range, dV is the velocity
resolution, and erf is the Gauss error function,

ò= -x
π

e terf ( )
2

d . (11)
x

t

0

2

In Figure 8, we perform a Monte Carlo simulation by
running AGD on noise-only spectra that mimic the 21-
SPONGE data while varying the signal-to-noise ratio (S/N)
threshold. Spurious detections increase rapidly below

=S N 3.0.

3.2. Robustness to Varying Observational Noise

Regularized derivatives (Section 2.2) are insensitive to noise
on scales less than that set by the regularization parameter

alog (e.g., Equation (B1)). Because the observational
sensitivity of 21-SPONGE data is uniform and very high, we
next demonstrate that AGD is robust to varying noise
properties by characterizing the guessed initial position and
initial FWHM of a Gaussian component with fixed true shape
in data with increasing noise intensity. Figure 9 shows that
~100% of component guesses remain within s1 , where
s = FWHM 2 2 ln 2true , of the true component positions for
noise intensities ranging from 1– ´16 RMS. Over the same
range in noise, the guesses’ FWHMs varied by±20%.
Therefore, varying the noise properties has little effect on
AGD’s performance, making AGD a robust tool to analyze
heterogeneous data sets with varying sensitivities.

4. DISCUSSION AND CONCLUSIONS

4.1. Summary

We have presented an algorithm, named Autonomous
Gaussian Decomposition (AGD), which produces optimized

Figure 4. AGD vs. human results for the number of Gaussian components (left) and rms residuals in optical depth (right) for guess + final fit Gaussian
decompositions to 21 spectra from the 21-SPONGE survey. The color scale represents the number of human-selected components (corresponding to the x-axis of the
left panel).

Figure 5. AGD (squares) vs. human (circles) Gaussian decomposition results
for 21-SPONGE spectra. The central panel shows peak optical depth (t0) and
velocity FWHM for each recovered Gaussian component. The contours
represent 68 and 95% containment regions. The side panels show marginalized
histograms of peak optical depth (top) and velocity FWHM (right) for AGD
(dashed) and human (solid) results. There are 118 human-detected
components, and 120 AGD-detected components in the 21 spectra.
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Figure 6. AGD vs. human Gaussian decompositions for 21-SPONGE absorption spectra. The left panels show AGD’s initial guesses (purple), the center panels show
the resulting best-fit Gaussian components (thin green dashed) and total model (thick green) found by initializing a least-squares fit with these initial guesses, and the
right panel shows the human-derived best-fit components (thin red dashed; Murray et al. 2015) and resulting models (thick red). The residual errors between the best-
fit total models and the data are shown above the center (AGD) and right panels (human). The number of components in each fit, the source names, and the residual
rms values are indicated in the panels.
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Figure 6. (Continued.)
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Figure 6. (Continued.)
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initial guesses for the parameters of a multi-component
Gaussian fit to spectral data. AGD uses derivative spectroscopy
and bases its guesses on the properties of the first four
numerical derivatives of the data. The numerical derivatives are
calculated using regularized optimization, and the smoothness
of the derivatives is controlled by the regularization parameter

alog . Supervised machine learning is then used to train the
algorithm to choose the optimal value of alog which
maximizes the accuracy of component identification on a
given training set of data with known decompositions.

We test AGD by comparing its results to human-derived
Gaussian decompositions for 21 spectra from the 21-SPONGE
survey (Murray et al. 2015). For this test, we train the
algorithm on results from the independent Millennium survey
(Heiles & Troland 2003). We find that AGD performs
comparably to humans when decomposing spectra in terms
of number of components guessed, the residuals in the resulting
fit, and the shape parameters of the resulting components.
AGD’s performance is affected little by varying observational
noise intensity until the point where components fall below the
S/N threshold (i.e., completeness). Combined with a Monte
Carlo simulation, we use AGD to measure the H I line
completeness of 21-SPONGE data as a function of H I peak
optical depth and velocity width. Thus, AGD is well suited for
helping to interpret the big spectral data incoming from the
SKA and SKA-pathfinder radio telescopes.

AGD is distinct from Bayesian spectral line finding
algorithms (e.g., Allison et al. 2012) in terms of the criteria
used in deciding the number of components. Where the
Bayesian approach chooses the number based on the Bayesian
evidence, AGD uses machine learning and is motivated by the
answers in the training set. This machine learning approach
requires one to produce a training set, but allows for more

flexibility in telling the algorithm how spectra should be
decomposed.

4.2. Other Applications and Future Work

In Section 3, we used AGD to decompose spectra into
Gaussian components which correspond to physical clouds in
the ISM. However, AGD can provide a useful parametrization
of spectral data even when there is no physical motivation to
represent the data as independent Gaussian functions. For
example, AGD could potentially be used to compress the data
volume of wide-bandwidth spectra for easy data transportation,
or on-the-fly viewing. For example, If a ´16 103 channel
spectrum contains signals which can be represented by ∼10
Gaussian components, then by recasting the data12 into

Figure 7. Completeness as a function of component amplitude and FWHM.
The labeled contours represent the probability of detecting a component of a
given shape, and is equal to the ratio of successful detections in a Monte Carlo
simulation where single components were injected one at a time into spectra
containing realistic noise of = -rms 10 3 per -0.4 km s 1 channel. The black
circles represent the 21-SPONGE detections from AGD. Detected components
with amplitudes t > ´ -7 100

3 have 100% completeness.

Figure 8. Number of spurious component guesses as a function of S/N
threshold when running the trained AGD algorithm on noise-only synthetic
spectra. The dashed curve shows the ideal expectation from Equation (10) with
the effective velocity resolution dV = 7.2, computed using Equation (B1).

Figure 9.Monte Carlo test of AGD robustness to increasing noise. The left and
right panels show the distribution of guessed positions and FWHMs,
respectively, for injected components which all have a fixed shape of a = 0.1,
= -μ 0 km s 1, and = -FWHM 3 km s 1. Different line thicknesses and colors

represent different rms noise values, ranging from ´ -1 10 3 to ´ -16 10 3. The
horizontal bracket displays the s1 width of the injected component.

12 The ASKAP spectrometer provides a total of 16,384 channels.
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Gaussian component lists one could achieve a data compres-
sion factor of ∼500.

With our approach to computing smooth derivatives, AGD is
constrained to finding populations of components with similar
widths (GaussPy currently allows for two populations, i.e.,
“phases”). A significant improvement would be made if AGD
could reliably find components of any width without re-
training. There are at least two numerical algorithms that may
be able to provide this functionality for AGD. The first is
Wavelet–Vaguelette Decomposition (Donoho 1995), which
builds a smooth representation of data out of a finite collection
of smooth template functions. The second is Total Generalized
Variation (Bredies et al. 2010), which is a regularized
optimization algorithm that can preserve all scales in the data
while suppressing noise. Further research is needed to under-
stand the performance (accuracy) and computational cost of
these algorithms when applied to AGD.

4.3. Considerations for Real Observational Data

Observational data are often limited in dynamic range by
artifacts. In radio astronomy, artifacts can be caused by non-
ideal bandpass calibration, radio-frequency interference, or
contamination by sources in the telescope’s side lobes. AGD is
relatively robust to artifacts that have characteristic widths
much narrower or much broader than those of the components
in the adopted training set. To avoid artifact signals with
characteristic widths comparable to the components in the
training set, one should increase the signal threshold parameter,
1 from Equation (2a), enough to ignore the known sources of
spectral interference.

One should also take into consideration the channel spacing
in the data compared to the expected size of the Gaussian
components. There will be additional systematic uncertainty,
and potentially numerical instability, in the best-fit parameters
of components with widths that are comparable to or less than
the channel spacing. For example, in the 21-SPONGE data of
Section 3, some of the narrowest components have widths that
are comparable to the original channel spacing of -0.4 km s 1,
so we over-sample the data by ´4 to improve numerical
stability of the fitting process.

A Gaussian profile is assumed for the final least-squares fit
provided by GaussPy (Appendix D). This assumption is
empirically motivated by the observation that most isolated
21 cm line profiles are well-modeled by Gaussian functions,
despite the fact that the velocity dispersion of the gas is
turbulence dominated (e.g., see discussion in Heiles &
Troland 2003). However, even with this built-in assumption,
the initial guesses from AGD are only weakly dependent on the
specific Gaussian shape—much more important is the assump-
tion of a single-peaked profile. Therefore, AGD could be used
to provide reasonable initial guesses for the center, width, and
peak amplitude of any well behaved, singly peaked profile. For
example, the Voigt profile becomes relevant in pressure-
broadened emission and absorption lines.
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APPENDIX A
DEBLENDED AMPLITUDE GUESSES

AGD “de-blends” the naive amplitude guesses using the fact
that when the parameters sn and μn are fixed, the multi-
component Gaussian model becomes a linear function of the
component amplitudes. Therefore, the naive amplitude esti-
mates can be written as a linear combination of true deblended
amplitudes atrue, weighted by the overlap from each neighbor-
ing component. This system of linear equations is expressed in
matrix form (see, e.g., Kurczynski & Gawiser 2010) as
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The elements of matrix Bij represent the overlap of component j
onto the center of component i. When components are
negligibly blended, Bij is equal to the identity matrix and

=a an n
true naive. The “true” de-blended amplitude estimates an

true

are then found using the normal equations of linear least
squares minimization to be

=
-( )a B B B a . (A3)T Ttrue 1 naive

In practice, we compute the solution for atrue through numerical
optimization to avoid inverting a possibly singular matrix B. If
all the de-blended amplitude estimates are greater than zero
(i.e., physically valid), then they are adopted as the amplitude
guesses; if any are ⩽0 (caused by errors in the estimates of μn,
sn, or the number of components), the naive amplitudes are
retained. Therefore,

=
ì
í
ïï

î
ïï

>
a

a a
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if all 0

otherwise.
(A4)n
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naive

APPENDIX B
REGULARIZATION VERSUS GAUSSIAN SCALE SPACE

A useful concept in the field of computer vision is the
collection of all convolutions between a dataset and Gaussian
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kernels of all possible widths (spectral scales); it is known as
the data’s Gaussian “scale space” representation (e.g., Witkin
1983). In Section 2.2, we solve for the regularized derivative of
the data, u, through Tikonov regularization with one regular-
ization term containing the first derivative of u. It can be shown
using Fourier analysis that the resulting solution for u is
equivalent (in the case of pure L2 regularization) to a negative

exponential-weighted average over the scale space of ¢u
(Florack et al. 2004), where ¢u is the naive finite-difference
based derivative. If we instead include all derivatives up to
infinite order in the regularization, then the resulting solution is
identical to a convolution of ¢u with a Gaussian kernel of some
particular width (Nielsen et al. 1996).
Motivated by this mathematical similarity, in Figure A1 we

next compared the smoothed derivatives obtained through
regularized optimization (Section 2.2) to those obtained
through Gaussian convolution (smoothing). We find that
optimization provides a better fit to the derivative of multi-
scale data than convolution. This is expected given that the
former is a weighted combination of all spectral scales in the
data, while the latter isolates information on only a single
spectral scale (i.e., sa). Although the convolution technique is
more limited in this sense, it is also more computationally
efficient than regularized optimization. Therefore, the two
techniques are optimized for different uses, and both are
included in the Python implementation of AGD, GaussPy,
described in Appendix D.
In Figure A2, we characterize the relation between the

optimization-based regularization parameter alog and the
convolution-based smoothing scale sa. For each value of

alog , we found the matching value of sa by minimizing the
residuals between the convolution and optimization-based
derivatives. The empirically derived scaling relation,

s ´a
a e2.10 , (B1)1.72 log

where sa is the spectral scale in channels, is plotted as the solid
red curve in Figure A2.

APPENDIX C
MOMENTUM-DRIVEN GRADIENT DESCENT

The regularization parameter alog (which is generally a
multi-dimensional vector; see, e.g., Appendix E) is tuned to
maximize the accuracy of component guesses (Equation (6))
using gradient descent with momentum. We define the cost
function J that we wish to minimize in order to find this
solution as

a a= -J (log ) ln (log ). (C1)

In traditional gradient descent, updates to the parameter vector
alog are made by moving in the direction of greatest decrease

in the cost function, i.e., a l aD = - Jlog (log ), and the
learning rate λ controls the step size. Our cost function

aJ (log ) is highly non-convex, so we use gradient descent
(see, e.g., Press et al. 1992) with added momentum to push
through local noise valleys. Therefore, at the nth iteration, our
parameter update is given by

a l a f aD = -  + D -( )Jlog log log , (C2)n n n 1

where the “momentum” ϕ controls the degree to which the
previous update influences the current update.
Because the decision function (i.e., Equation (7)) represent-

ing the success or failure for individual component guesses is
binary in nature, the cost function aJ (log ) is a piecewise-
constant surface on small scales (see Figure 3). Therefore, in
order to probe the large-scale slope of the cost function surface,
we use a relatively large value for the finite difference step size
when computing the gradient. For example, the ith component

Figure A1. Regularized optimization vs. convolution in computing numerical
derivatives. Above panel: the black line shows the true derivative of the data
from Figure 2. The best-fitting, de-noised numerical derivatives, computed
using convolution (green) and regularized optimization (red) are overplotted.
Below panel: squared residuals between each derivative result and the true
derivative. Optimization consistently has lower residuals than convolution.

Figure A2. Empirical relation between convolution smoothing parameter sa
and the regularization parameter alog . The solid red line shows the best-fitting
exponential function (Equation (B1)), and the dashed blue line represents the
sa value corresponding to the width of a single channel of 21-SPONGE data
(before oversampling; see Section 3).
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of the gradient in Equation (C2) is defined according to

 


a
a a

 =
+ - -( ) ( )

J
J J

(log )
log log

2
, (C3)i

i i

where ϵ is the finite-difference step size which we set to
 = 0.25. Figure 3 shows example tracks of

a a a=log (log , log )1 2 when using gradient descent with
momentum during AGD’s two-phase training on the 21-
SPONGE data. We find that small-scale local optima are
ignored effectively during the search for large-scale optima.

APPENDIX D
GAUSSPY: THE PYTHON IMPLEMENTATION OF AGD

GaussPy is the name of our Python13/C implementation of
the AGD algorithm. The computational bottleneck in perform-
ing full Gaussian decompositions is not AGD’s production of
initial guesses, but the computation time required for the final
nonlinear least-squares fit, which takes typically ~1 s. There-
fore, a single machine with Ncpu cores can decompose ~10 k
spectra in~ N3 cpu hours after the algorithm is trained. Because
GaussPy depends only on freely available open-source
packages, it is also easy to deploy on high-throughput
computing solutions like HTCondor14 (see Figure 3) or
Apache Spark15 (Zaharia et al. 2010), allowing for rapid
decomposition of very large (> M1 ) spectral data sets, e.g., the
spectral data products of the SKA. AGD may also be suitable
for deployment on the Scalable Source Finding Framework
(Westerlund & Harris 2014). GaussPy is maintained by the
author and will be publicly available through the Python
Package Index16 upon publication of this manuscript.

The AGD algorithm as explained in Section 2 is optimized
for finding components spanning only a modest range in width.
This is the cost we pay for the ability to compute smooth
derivatives using regularization. In order to search for Gaussian
components on widely different spectral scales, e.g., to search
for components with widths near 1–3and 20– -30 km s 1 in the
same spectra, we can iteratively apply AGD to search for
components with widths at each of these scales. This capability
is included in GaussPy and is referred to as “two-phase”
decomposition (for details, see Appendix E). The recently
developed algorithm Total Generalized Variation (Bredies
et al. 2010) could potentially be used to improve AGD by
providing smooth derivatives without any preferred scale,
although at a significantly increased computational cost.

GaussPy uses AGD to produce the initial guesses for
parameters in a multi-component Gaussian fit, and also carries
out the final least-squares fit on the data. In this final
optimization, GaussPy uses the Levenberg–Marquardt (Leven-
berg 1944) algorithm, which has been used in previous 21 cm
surveys (e.g., Heiles & Troland 2003), implemented using the
Python package LMFIT17 which allows for non-negativity
constraints on the component amplitudes.

In GaussPy, we minimize the functional R u[ ] (Equation (5))
using the quasi-Newton algorithm “BFGS2” from the GNU

Scientific Library18 Multimin package and achieve computa-
tion-time scalings of  ( )n1.95 , where n is the number of

channels in the data, and  a-( )0.4 . The relative scaling
between any alog and the corresponding minimum preserved
scale in the data is given by Equation (B1). By inserting an
estimate of the expected component widths to Equation (B1),
one obtains a rough estimate of the appropriate regularization
parameter alog . However, to find the value which maximizes
the accuracy of the decompositions, one should solve for alog
using the machine learning technique of Section 2.3.

APPENDIX E
TWO-PHASE GAUSSIAN DECOMPOSITION

Two-phase decompositions allow researchers to decompose
spectra which contain components that are drawn from two
distributions with very different widths. GaussPy performs
two-phase decomposition by first applying the usual AGD
algorithm but with a non-zero threshold used in
Equation (2b): <df dx e2 2

2, which locates only the
narrowest components in the data so that they can be
removed. The parameters of just these narrow components are
next found by minimizing the sum of squared residuals K
between the second derivative of the data and the second
derivative of a model consisting of only these narrow
components,   s º=a μ{ , , }n n n n

N
1 , given by


  å å s= - ( )
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f x

x
G x a μ
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x n
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2

2

2

2

The narrow components are fit to the data on the basis of their
second derivatives so that the signals from wider components,
which they may be superposed on, are attenuated by a factor
s s~ narrow

2
broad
2 . The residual spectrum is then fed back into

AGD to search for broader components using a larger value of
alog and setting =e 02 .
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