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Abstract—People often ‘‘mind wander” during everyday

tasks, temporarily losing track of time, place, or current task

goals. In laboratory-based tasks, mind wandering is often

associated with performance decrements in behavioral

variables and changes in neural recordings. Such empiri-

cal associations provide descriptive accounts of mind

wandering–how it affectsongoing taskperformance–but fail

to provide true explanatory accounts – why it affects task

performance. In this perspectives paper, we consider mind

wandering as a neural state or process that affects the

parameters of quantitative cognitive process models, which

in turn affect observed behavioral performance. Our

approach thus uses cognitive process models to bridge

the explanatory divide between neural and behavioral data.

We provide an overview of two general frameworks for

developing a model-based cognitive neuroscience of mind

wandering. The first approach uses neural data to segment

observed performance into a discrete mixture of latent

task-related and task-unrelated states, and the second

regresses single-trial measures of neural activity onto

structured trial-by-trial variation in the parameters of

cognitive process models. We discuss the relative merits of

the two approaches, and the research questions they can

answer, and highlight that both approaches allow neural data

to provide additional constraint on the parameters of cogni-

tive models, which will lead to a more precise account of the

effect ofmindwanderingon brain andbehavior.We conclude

by summarizing prospects for mind wandering as conceived

within a model-based cognitive neuroscience framework,

highlighting the opportunities for its continued study and

the benefits that arise fromusingwell-developed quantitative
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techniques to study abstract theoretical constructs.
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INTRODUCTION

People often ‘‘mind wander” during everyday tasks,

temporarily losing track of time, place or current task

goals. Some estimates suggest that mind wandering

might occupy anywhere between 30% and 50% of our

everyday life (Killingsworth and Gilbert, 2010). Prominent

theories of mind wandering suggest that monotonous

tasks cause people to drift between various cognitive

states (e.g., Cheyne et al., 2009; Schooler et al., 2011;

Smallwood and Schooler, 2015). Such states can be clas-

sified as on task, reflecting an external focus on the pre-

sent stimulus environment, and off task, characterized

by internally directed cognitions that are largely decou-

pled from the external perceptual environment (e.g.,

Bastian and Sackur, 2013; Mittner et al., 2014). Mind
/licenses/by/4.0/).
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wandering has received increased interest over the past

decade from both behavioral and neural angles

(Weissman et al., 2006; Mason et al., 2007; Christoff

et al., 2009; Killingsworth and Gilbert, 2010; Wilson

et al., 2014; Smallwood and Schooler, 2015). Neverthe-

less, there have been few attempts to combine the behav-

ioral and neuroscience approaches within a unified

model-based neuroscience framework, in order to

achieve a deeper and more coherent account of mind

wandering (for an exception, see Mittner et al., 2014).

In the laboratory, mind wandering is often studied in

the context of simple cognitive tasks, such as sustained

attention tasks, where task performance is measured in

terms of simple behavioral variables, such as choice

accuracy or response time (Smallwood and Schooler,

2006). Throughout the task, participants are occasion-

ally interrupted with ‘thought probes’ that ask the partic-

ipant to make an introspective judgment whether they

were on task or off task in the preceding trial or trials

(e.g., Giambra, 1995; Smallwood et al., 2004; Seli

et al., 2015a). Responses to thought probes have been

used in various ways to classify experimental trials into

on-task and off-task states, and those classified states

are then related back to task performance (e.g.,

Christoff et al., 2009; Stawarczyk et al., 2011b; Mittner

et al., 2014). Using this approach and similar variants,

mind wandering has been related to performance decre-

ments in the ongoing primary task in behavioral vari-

ables – such as higher error rates and response time

variability (e.g., Cheyne et al., 2009; Bastian and

Sackur, 2013) – and changes in neural recordings –

such as increased activity in the default mode (or task

negative) network (e.g., Christoff et al., 2009;

Andrews-Hanna et al., 2010; Stawarczyk et al., 2011b;

Smallwood et al., 2013).

Such empirical associations provide descriptive

accounts of mind wandering – how it affects task

performance – but do not provide true explanatory

accounts – why it affects task performance, since extant

theories of mind wandering do not provide generative

accounts of cognition. Rather, empirical mind-wandering

phenomena are explained at the level of verbal

theorizing (we expand on this point in ‘Contrasting

qualitative and quantitative models of cognition’ section).

Verbal theories can easily lead to imprecise predictions

and consequent difficulties in discriminating between

competing theories of the processes of interest. For

decades the psychological literature has explored why

task performance changes as a function of experimental

manipulations using quantitative cognitive process

models. Cognitive models decompose observed

behavioral variables in experimental tasks, such as

choices and/or response times, into latent components

of processing that are typically of greater interest for

theory development, such as efficiency of processing

and response caution. Thus, quantitative cognitive

models have the potential to bridge the gap between

abstract high-level theories and observed data, which

moves toward mechanistic accounts of mind wandering.

In this article we outline mind wandering as

conceived within a model-based cognitive neuroscience
framework (Forstmann and Wagenmakers, 2015;

Forstmann et al., in press), where cognitive process

models bridge the explanatory divide between neural

and behavioral data. In particular, we consider mind

wandering as a neural state or process that affects the

parameters of cognitive models, which in turn affect

observed behavioral performance. We argue that adopt-

ing a quantitative cognitive modeling framework can pro-

vide a fresh perspective on various measurement issues

and theoretical proposals from the mind wandering liter-

ature. We do not aim to provide a comprehensive review

of the mind wandering literature (for excellent reviews,

see Smallwood and Schooler, 2006, 2015), but rather

provide a perspective on this novel approach. At the

conclusion of the article we provide some broader per-

spectives on the application of the model-based cogni-

tive neuroscience framework to the study of mind

wandering, including applications to neuropsychological

patients and psychopathology.

The frameworks we discuss aim to identify the

occurrence and predictors of mind wandering during

performance in discrete events (experimental trials)

over an extended period (the course of an

experiment). In this sense, we focus on identifying

when people mind wander on a trial-by-trial basis; our

approaches are agnostic about the content of task-

unrelated thoughts. Our goal is to use cognitive

models to move toward mechanistic accounts that

explain what happens to ongoing task performance

when the mind begins to wander. Our general

approach, however, is more broadly applicable than

just to the specific study of mind wandering itself. To

the experimental psychologist studying another topic

for example, task-unrelated thoughts are contaminants

– trials influenced by a process that is not relevant to

the cognitive process of interest. Even if one has no

interest in studying mind wandering per se, the

quantitative frameworks we discuss can be considered

principled methods for removing contaminant trials

from data sets.

Furthermore, we focus on alternatives to the routine

adoption of introspective thought probe methods to

identify mind wandering. Although thought sampling has

furthered our current understanding of mind wandering,

it suffers from a number of potential issues. For

example, thought sampling may be subject to situational

factors, such as social desirability biases or the

observer effect, or limits on metacognitive abilities, such

as the level of insight participants have into their current

state (Smallwood and Schooler, 2006; Schooler et al.,

2011; Seli et al., 2015a). Even if introspective judgments

can reliably report on underlying states, we argue that

they do not provide insight into the mechanisms that influ-

ence mind wandering or its effect on ongoing task perfor-

mance. In the final sections of this review, we outline

methods that conceptualize thought probes as an out-
come measure, not the identifier, of mind wandering. That

is, we argue that thought probes represent another

source of data – just like choices and response times,

or neural measures – that can constrain model predictions

(i.e., be treated as a dependent variable) rather than the
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indicator from which to examine other data (i.e., used as

an independent variable to classify choices or response

times).

COMPUTATIONAL MODELS OF COGNITIVE
PROCESSES

Cognitive process models are quantitative

implementations of theories about the processes

involved in a range of cognitions – memories, attention,

decisions, and so on. They permit precise quantitative

tests of the potential cognitive mechanisms and

processes that generate behavioral data. In particular,

they allow the researcher to hypothesize and stringently

test empirically the effect of experimental manipulations

on cognitive processes, and to quantify the evidence for

competing formal accounts of the processes under

investigation. Here we provide a very brief overview of

the advantages of cognitive modeling. For a

comprehensive introduction we refer the reader to

Lewandowsky and Farrell (2011) or Forstmann and

Wagenmakers (2015).

Cognitive models decompose the distribution of

observed variables, such as choice proportions and/or

response times, into latent components of processing.

These components, often referred to as model

parameters, are of greater interest to theorizing than

raw behavioral measures. For instance, the study of

recognition memory often measures various response

proportions across a number of experimental conditions.

A model such as signal detection theory takes the raw

response proportions – hit rates and false alarm rates,

which can be ambiguous to interpret in isolation – and

transforms them through the quantitative machinery of

the model into constructs of greater theoretical interest,

such as memory strength and response bias (Green

and Swets, 1966).

In addition to a more coherent theoretical outlook,

cognitive models can provide behavioral insights that

cannot be obtained from analysis of raw behavioral

data. The well-known speed-accuracy tradeoff, for

example, describes how one can make faster decisions

at the expense of accuracy, and vice versa (Reed,

1973; Pachella, 1974; Wickelgren, 1977). The tradeoff is

defined by the relationship between the choices people

make and the time taken to make them. Conventional

analysis of choice or response time data – where each

dependent variable is treated independently – cannot dis-

criminate between accounts based on a speed-accuracy

tradeoff or changes in the efficiency of information pro-

cessing. The class of cognitive models known as sequen-

tial sampling models has been used to study the speed-

accuracy tradeoff in great detail (e.g., Ratcliff and

Rouder, 1998; Forstmann et al., 2008; Rae et al., 2014),

as well as many other decision-related phenomena, and

is the class of models we discuss in this review as they

deal with similar issues as signal detection theory but gen-

eralized beyond choices to also account for response

times. We note that, although we illustrate ideas as

applied to sequential sampling models, the methods we

highlight in this manuscript generalize to other classes

of computational cognitive models.
Sequential sampling models of decision-making

We focus on mind wandering during simple yet attention-

demanding tasks through the lens of sequential sampling

models; well-developed cognitive process models that

have provided great insight to the mechanisms

underlying speeded decision-making in the psychology

and neuroscience literatures (e.g., Busemeyer and

Townsend, 1993; Usher and McClelland, 2001; Smith

and Ratcliff, 2004; Brown and Heathcote, 2008; Ratcliff

and McKoon, 2008). Sequential sampling models assume

that simple decisions – such as whether a string of letters

represents a word, or whether a motion stimulus moves in

one direction or another – are made through a process of

gradually accumulating sensory information to a thresh-

old. Throughout the paper we discuss the diffusion model

as an exemplar of the family of sequential sampling mod-

els (for reviews, see Ratcliff and McKoon, 2008; Voss

et al., 2013; Forstmann et al., in press). We note that all

methods outlined in this paper can equally well be used

with other sequential sampling models, and debates

about particular models and their assumptions are periph-

eral to our main thesis.

Fig. 1 provides a schematic overview of the decision

process in the diffusion model. The model assumes that

noisy information is gradually sampled from the

stimulus. The information is accumulated in a decision

variable that tracks support for one response option

over another. The process continues until it reaches one

of two decision boundaries, triggering a response. In

Fig. 1, the decision is whether the stimulus is moving to

the left or right of a display, so the boundaries

correspond to a response of ‘left’ or ‘right’. The

predicted response corresponds to the boundary that

was crossed, and the predicted response time is the

time it took for the decision variable to reach the

boundary plus an offset time that accounts for peripheral

processes such as encoding the stimulus display and

executing a physical response (such as a button press).

The parameters of the diffusion model, and sequential

sampling models in general, relate to constructs that are

relevant to our understanding of mind wandering. For

example, the average rate of information accumulation –

the drift rate – indexes the efficiency of information

processing; the distance between the boundaries

indexes the level of response caution; the starting point

relative to the response boundaries indexes response

biases, because the decision variable can start closer to

one boundary than another; and the time taken for the

aspects of response time not accounted for by the

decision itself, known as non-decision time. Modern

implementations of sequential sampling models also

consider variability in model parameters from one trial to

the next (Ratcliff and Tuerlinckx, 2002). For example,

trial-to-trial variability in drift rates reflects the assumption

that the efficiency of processing is variable over time

(Ratcliff, 1978).

The utility of cognitive models such as the diffusion

model relies critically on the validity of its latent

constructs – the model parameters. One approach to

ascertain the validity of the model parameters is through

tests of selective influence; a priori hypotheses about
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Fig. 1. Schematic illustration of the drift diffusion model of decision-making. We thank Don Van Ravenzwaaij for supplying the code to draw this

figure.
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the effect of experimental manipulations on particular

latent constructs (for a detailed introduction, see

Heathcote et al., 2015a). For example, Ratcliff and

Rouder (1998) showed that manipulating task difficulty

led to changes in the drift rate parameter (processing effi-

ciency) but not boundary separation (response caution),

and instructions to emphasize fast or cautious decision-

making led to changes in boundary separation but not drift

rate, even when both factors were manipulated simultane-

ously. Furthermore, provision of greater reward for one

response over another leads to a shift in the start-point

of information accumulation toward the higher reward

boundary, and the non-decision time parameter increases

when the motor component of the response is more chal-

lenging to produce (Voss et al., 2004). These results indi-

cate that the diffusion model parameters have well

validated interpretations.

The parameters of sequential sampling models can be

inferred from behavioral data. From each experimental

condition, the probability of a correct response and the

observed distribution of response times for correct and

error responses are used to infer the values of the

model parameters that were most likely to have

generated the observed data. In this way, the model

decomposes observed variables, choices and response

times, into parameter values that allow researchers to

draw deeper conclusions, such as whether a change in

response time across conditions is better described as a

change in the efficiency of processing (drift rate) or

cautiousness of responding (boundary separation). For

tutorials on parameter estimation in sequential sampling

models, we refer the reader to Donkin et al. (2009),
Vandekerckhove and Tuerlinckx (2008), and Voss and

Voss (2007).

One of the great benefits of estimating the parameters

of cognitive process models is that the quality of the

model fit to data can be used to determine which model

from a set of candidates embodying different theoretical

accounts provides the best account of a phenomenon

(e.g., mind wandering). This procedure, referred to as

model evaluation, comparison or selection, consists of a

range of techniques that quantify the empirical support

for models with different parameterization or different

architectures (for a detailed review, see Shiffrin et al.,

2008). For example, one may wish to compare which of

two diffusion models provides the best account of an

experimental effect, a model that attributes the effect to

the drift rate parameter (processing efficiency) or bound-

ary separation (response caution). Model selection tech-

niques can also be used to select between models with

different architectures; for example, whether a particular

data set is best explained by the diffusion model or

another sequential sampling model such as the linear bal-

listic accumulator (Brown and Heathcote, 2008; e.g.,

Heathcote et al., 2015b, in press). In the context of mind

wandering, by evaluating which model parameterization

or architecture provides the most parsimonious account

of behavioral data we gain insight to the nature of the pro-

cesses underlying mind wandering, a point we return to

throughout the manuscript. When used appropriately,

quantitative model evaluation decisively selects between

competing theories of psychological processes. It is not

possible to garner the same level of empirical support

from qualitative or ‘verbal’ models, which are the most
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common form of models in the psychological literature

(Lewandowsky and Farrell, 2011).

Finally, in addition to the theoretical advantages of

using sequential sampling models to understand data, at

a practical level existing models are at a stage of

maturity where they can be used to understand data in

experimental paradigms that are commonly used to

study mind wandering. For example, there are well-

developed sequential sampling models of the go/no-go

task (e.g., Gomez et al., 2007), commonly studied in the

mind-wandering literature as the sustained attention to

respond task (SART; Robertson et al., 1997; Smallwood

et al., 2004; Smallwood and Schooler, 2006; Smilek

et al., 2010). There are also variants of sequential sam-

pling models that account for less commonly used tasks

in the mind wandering literature, such as the stop-signal

task (Logan et al., 2014).

Contrasting qualitative and quantitative models of
cognition

In all scientific endeavors, data can only be interpreted and

understood through the lens of a theory. Cognitive process

models, such as the diffusion model, can be thought of as

quantitative instantiations of a theory: a set of input

parameters is transformed through a series of functions

– the formalization of the model – to generate

quantitative behavioral predictions. The predictions can

be rigorously tested against data – via parameter

estimation and model selection – to determine whether a

model provides a good account of patterns in data and

interpretable theoretical conclusions.

In contrast, existing theories of mind wandering can be

thought of as qualitative theories. Qualitative theories are

described in verbal terms and are thus less strictly defined

than quantitative theories, leading to less precise

behavioral predictions. Take as an example the

performance decrements in laboratory-based tasks such

as the SART that have been interpreted through the lens

of different theories of mind wandering. One key

hypothesis states that executive resources are used to

perform goal-directed tasks, and this finite pool of

resources is depleted when the mind disengages from

the task – since task-unrelated thoughts consume

resources – thus leaving fewer resources for the ongoing

task, resulting in suboptimal performance (Smallwood

and Schooler, 2006). This resource model is consistent

with data showing that increased mind wandering is asso-

ciated with poorer performance on resource-demanding

tasks (Mrazek et al., 2012) and activation of executive net-

works (Christoff et al., 2009). An alternative explanation

proposes that people switch between states of perceptual

coupling – when attentional processes are directed to sen-

sory input – and a task-disengaged state of perceptual

decoupling – when attention is diverted from sensory input

to inner thoughts (for detailed reviews, see Schooler et al.,

2011; Smallwood and Schooler, 2015).

The resource and perceptual decoupling models

provide intuitively appealing accounts of mind

wandering, and both are able to explain general

patterns in data. However, both theories posit different

explanations for its occurrence, which raises the
question of which model is best supported by data;

when two (or more) verbal models predict qualitatively

similar patterns in data it is not clear how to select

between theories. A pertinent example is a related

debate about whether mind wandering depletes

executive resources or is the result of an executive

failure (see McVay and Kane, 2010, 2012a,b;

Smallwood, 2010). The very existence of this controversy

highlights the difficulty of discriminating between theories

formulated at an abstract, verbal level. Quantitative mod-

els differ in this respect: the functions that make up the

model architecture quantitatively constrain model predic-

tions, which provide greater ability to select between the-

ories. To illustrate this point we borrow Lewandowsky and

Farrell’s (2011) example from the ‘hard’ sciences.

For centuries, it was believed that the sun and the

planets orbited the earth according to Ptolemy’s

geocentric model of the solar system. Copernicus

challenged the dominant geocentric model, proposing

that the planets follow a circular orbit around the sun.

The predictions of the Copernican heliocentric model

provided an approximately equally good account of

planetary motion as the Ptolemaic geocentric model.

Without a metric to define a good account of the data –

a quantitative modeling comparison – it would not have

been possible to reach this conclusion. Since both

models provided an equivalent fit to data, the more

parsimonious Copernican model was eventually

preferred over the Ptolemaic model. Later, Kepler

proposed that planetary motion follows an elliptical

rather than circular orbit. The Copernican and Keplerian

models thus differed in a quantitative manner – circular

versus elliptical orbits – but not at a qualitative level –

both theories propose that planets orbit the sun. The

Keplerian heliocentric model provided a more

quantitatively precise account of the data than the

Copernican model and was thus preferred. This

example highlights a transition from theories that differ

in a qualitative manner – a geocentric to a heliocentric

model – to theories that differ in a quantitative manner –

circular to elliptical orbits. Discriminating between the

two heliocentric models was only possible through

quantitative comparison of model predictions.

Returning to theories of mind wandering, if the

resource and perceptual decoupling theories make

similar verbal predictions – for example, that one

experimental condition will make more errors than

another – and this pattern is observed in data, it is

difficult to discriminate between theories of the potential

mechanisms or processes underlying mind wandering.

Instantiating theories in a quantitative modeling

framework more tightly constrains the prediction space;

for example, two quantitative models of mind wandering

might predict differences in the rate of increase in SART

errors across conditions. Differences in predictions

between models are thus more likely, because the

predictions are more precise, leading to more decisive

conclusions about theories. To borrow from physics

once more, Einstein’s description of the mass–energy

equivalence (E=mc2) would not be nearly as useful, or

well-known, if it simply stated that mass can be
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converted to energy; it is the formalization and precision

of the stated equivalence that makes the theory so

valuable.

The foregoing discussion is not intended to disregard

theoretical advances in mind wandering. To the contrary,

we argue that existing theories should be further

developed to move them into the realm of quantitative

models, to increase their explanatory power and provide

greater insight to mind wandering. Moving from a

qualitative to quantitative theory involves multiple steps.

We illustrate the nature of some of the conceptual

questions one must consider in this process using the

resource model as an example. Relevant questions

might involve, for example, how one formalizes (i.e.,

mathematically defines) ‘resources’; whether people

have a single pool of resources or multiple pools;

whether the pool of resources is a fixed quantity or

variable across time, contexts, and people; and how

resources are functionally mapped and allocated to task

performance. A major advantage of this approach is that

each decision about the implementation of a particular

theoretical assumption in the model can be quantitatively

tested using corresponding models. Determination of

which model provides the best account of the data

discriminates among the underlying theoretical positions.

We argue that theories of psychological constructs

should be developed in such a quantitative, and not

qualitative, framework, mirroring progress in other

disciplines.

An illustrative example of this approach comes from

the study of prospective memory, which involves

remembering to perform an action or task at some time

in the future, often while completing a primary task.

Extant theories suggested that prospective memory

tasks consume and re-direct resources from the primary

task, which lead to decrements in ongoing task

performance (e.g., Smith, 2003). In a sequential sampling

model framework, a simple hypothesis would map

remembering to do a prospective memory action, which

reduces resources, to a reduction in drift rate on the ongo-

ing task. A recent model-based analysis (Heathcote et al.,

2015b) indicated this is not the case: people instead

raised their level of response caution, consistent with

the verbal theory that participants delayed their ongoing-

task responses so that they do not preempt prospective

memory responses (Loft and Remington, 2013). This

was a counter-intuitive yet highly informative outcome

that changes the course of theorizing about prospective

memory. It is possible that a quantitative analysis of

resource theories of mind wandering might lead to similar

outcomes. Testing such hypotheses first requires those

theories to be developed in a quantitative framework.

We do not pursue such extensive theoretical

developments of quantitative models of mind wandering

here. Rather, we use sequential sampling models as a

vehicle to demonstrate how methods from model-based

cognitive neuroscience can be used to advance the

study of mind wandering and constrain future

quantitative models of mind wandering. Likely the

sequential sampling framework as it stands is too simple

to provide a complete account of mind wandering.
Nevertheless, we believe that it provides a useful

starting point for the development of comprehensive yet

quantitatively precise models of mind wandering.

We now present an outlook on general model-based

frameworks that can be used to understand mind

wandering as a mediator that drives the parameters of

cognitive models, in particular sequential sampling

models. The approaches differ in their psychological

assumptions and the research questions they can

address. Common across the frameworks, however, is

the assumption that on-task and off-task states have

different data-generating parameters, and these

parameter differences mediate the observed behavioral

effects. The proposals outlined below are presented as

a sample of possible model-based frameworks to

operationalize mind wandering and are by no means

intended to provide an exhaustive overview of possible

modeling approaches or conclusive theoretical insights

regarding the information processing origins of mind

wandering.
LATENT MIXTURE MODEL FRAMEWORKS FOR
CLASSIFYING MIND WANDERING INTO TASK-
RELATED AND TASK-UNRELATED COGNITIVE

STATES

We use the term mixture model to refer to a class of

methods that assumes the presence of discrete

generating sources in the observed data. For example,

one might assume that there are periods of high task

engagement and periods of mind wandering, which we

refer to as on-task and off-task states, respectively; this

is similar to the perceptual decoupling theory of mind

wandering (Smallwood and Schooler, 2015). In the mix-

ture framework, the two states are assumed to be mutu-

ally exclusive and driven by different parameter values

in a cognitive model. For example, the on-task state might

be characterized by a larger drift rate than the off-task

state, with all other parameter values remaining constant

across the two states. Such a model would reflect the psy-

chological assumption that mind wandering has a selec-

tive influence on the efficiency of task information

processing. The aim of mixture modeling is to use the

observed data to infer, separately for each decision trial,

which of the latent or hidden (i.e., unobservable) states

gave rise to the observed datum – the on-task process

or the off-task process.

A coarse yet common approximation to identify

mixtures in data is to assume that certain values – such

as a response time faster or slower than a cutoff value

– represent different processes. For example, while

studying the effects of sleep deprivation, Ratcliff and

Van Dongen (2011) used the convention of classifying

responses slower than 500 ms in a psychomotor vigilance

task as attentional lapses, which may indicate an

increased propensity for mind wandering. This approach

requires two explicit steps: researchers first select an

appropriate cutoff value to categorize responses (e.g.,

500 ms), sometimes after having observed the data, and

then inference is performed on differences in the propor-

tion of responses in the two categories. The problem with
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this approach is that the inference in the second step

assumes the cutoff value from the first step was deter-

mined a priori, and furthermore that it was the only way

in which the data could have been divided (for further dis-

cussion of this issue, see Hawkins et al., in press-a). Even

in situations when the value was derived from previous lit-

erature (as in Ratcliff and Van Dongen, 2011) it does not

preclude the possibility that other sub-divisions of the data

were possible.

Our review focuses on two methods for mixture

modeling that overcome the aforementioned problems

by identifying discrete, latent classes of responses:

Bayesian latent mixture models and machine learning

approaches that are informed by an independent stream

of data.

Using behavioral data to inform latent mixture
models

Although multiple approaches exist for estimating mixture

models from data, we focus on Bayesian methods since

they confer many benefits for cognitive modeling,

including a one-step analysis for identifying mixture

models, simultaneous estimation of participant- and

group-level parameters via hierarchical modeling, and

quantifying uncertainty in parameter estimates via

posterior distributions over parameters. For an overview

of the advantages of Bayesian parameter estimation

methods and a practical guide to their implementation

we refer the reader to Lee and Wagenmakers (2013).

Bayesian mixture models are conceptually

straightforward and have been applied to a range of

data analysis and cognitive modeling applications (e.g.,

Steyvers et al., 2009; Lee and Wagenmakers, 2013;

Scheibehenne et al., 2013; Bartlema et al., 2014). We first

assume that one or more discrete states or processes

generated the observed data. As a toy example, we might

assume that each observed datum from a set of continu-

ous measurements (e.g., height) is drawn from one of two

normal distributions (e.g., men and women). On average,

the population mean of the male population is larger than

the female population, but there is a considerable stan-

dard deviation such that some males are shorter than

some females. Now consider the situation where we only

have access to the measurements of height but not the

sex of the person that provided each measurement. The

computational problem is to use the observed distribution

of height, and our assumption that both males and

females contributed height measurements, to infer the

properties of the two populations (i.e., the means and

standard deviations of the male and female distributions,

and the proportion of males to females) and to assign a

probability to each datum that the person was male or

female. The probability of classification to one class or

the other is proportional to the prior probability of the

two populations and the ratio of the density of the height

measurement under the parameters of the respective

population distributions.

It is conceptually simple to scale the Bayesian mixture

model of the previous example to applications of

psychological interest; for example, assuming that an

observed data set is comprised of a mixture of on-task
and off-task cognitive processes. Vandekerckhove et al.

(2008) considered a similar case, by assuming that some

trials in a perceptual decision-making experiment were

contaminants – data points that were not generated by

the (diffusion model) process of interest – and hence were

not germane to the primary research question (for a related

approach see Vandekerckhove and Tuerlinckx, 2007).

Although Vandekerckhove et al. (2008) did not intend to

study mind wandering, their approach indirectly modeled

processes relevant to mind wandering: an experimental

psychologist typically aims to identify contaminant trials

to remove them from the analysis. The mind-wandering

researcher aims to identify those same ‘contaminants’

and study the processes that generated them.

Vandekerckhove et al. (2008) defined a Bayesian

latent mixture model that classified trials into one of three

categories: decision trials generated from the diffusion

model, guesses, and delayed startups. Here, we focus

on Vandekerckhove et al.’s (2008) hypothesis that some

trials have a delayed startup. Under this hypothesis there

are two discrete types of diffusion process: the first deter-

mines performance when the participant is focused on the

task at hand, and the second determines performance

when the participant’s focus is elsewhere – a contami-

nant, in Vandekerckhove et al.’s (2008) terminology.

The on-task and off-task diffusion processes were

assumed to have the same data-generating parameters

except for a ‘delayed startup’ in the off-task process,

implemented as a larger value of the non-decision time

parameter than the on-task process.

Because quantitative models generate precise

predictions, the assumption that the off-task process

differed to the on-task process in only one parameter

(non-decision time) still leads to dissociable predictions

as compared to changes in another model parameter

(say, drift rate). The delayed startup theory of mind

wandering predicts that off-task trials lead to slower

responses than on-task trials, on average. This occurs

since an increase in the non-decision time parameter

leads to a slower onset of the decision process, and

therefore a global upward shift in the distribution of

response times and longer decision latencies, on

average. This account is plausible when a participant

may be engaged in task-unrelated thoughts when the

decision stimulus appears on screen. Once the stimulus

appears it takes some amount of time for the participant

to re-orient to the task at hand. Once re-focused, the

participant makes a decision in an otherwise similar

manner to trials where they were focused on the task at

stimulus onset (i.e., with the same starting point, drift

rate, and boundary separation as the on-task diffusion

process). As this example illustrates, since the non-

decision time parameter has no bearing on the diffusion

process itself, the delayed startup theory predicts that

the on-task and off-task processes do not differ in

decision outcome (correct, error) or variability in

response times.

Clearly, however, task-unrelated thoughts have been

linked to not only changes in response times but also to

decreases in decision accuracy (e.g., Cheyne et al.,

2009; Stawarczyk et al., 2011a; McVay and Kane,
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2012a; Bastian and Sackur, 2013; Seli et al., 2013). A

strict interpretation of the delayed startup theory is, there-

fore, easily falsified. However, it is straightforward to aug-

ment the delayed startup process with an additional

change in, say, drift rate. Such a change might be inter-

preted as a degraded diffusion process that took longer

to start (larger non-decision time) and was less efficient

(lower drift rate). This augmented model predicts longer

response times, on average, as before, but the reduction

in drift rate predicts decreased decision accuracy and

increased variability in the distribution of response times.

This change in model parameterization may then account

for the empirically observed pattern of longer response

times and an increased proportion of errors in off-task rel-

ative to on-task behavior. The key point is that a range of

models assuming a mixture of discrete data-generating

processes can be proposed and quantitatively tested

against data to determine their appropriateness, and

modified as necessary.

The delayed startup hypothesis and related proposals

using Bayesian latent mixture modeling aim to classify

trials into one of a number of mutually exclusive

categories. A critical assumption of this framework is

that each decision is considered an independent

random sample from one of the generating distributions

(i.e., on-task diffusion process, off-task or ‘delayed

startup’ diffusion process), which means the approach

assumes no sequential structure. This is at odds with

our intuitions about mind wandering: one would expect

an increased chance of an off-task trial following an off-

task (versus on-task) trial. Indeed, the mind wandering

literature has produced empirical results that are

consistent with this intuition. For example, mind

wandering-related variability in response times can

follow phasic increases and decreases over the course

of perceptual experiments (e.g., Bastian and Sackur,

2013; Bompas et al., 2015), and alterations in neural

activity can precede performance deficits including erro-

neous responses up to 30 s before the behavioral out-

come is observed (e.g., Eichele et al., 2008; O’Connell

et al., 2009; Macdonald et al., 2011). These findings sug-

gest that a more precise model of mind wandering ought

to account for the temporal correlation of switching

between on-task and off-task states, which can be

obtained with hidden Markov models (HMMs).
Using behavioral data to inform HMMs

As in latent mixture modeling, HMMs, also known as

dependent mixture models, use the observed output of

a process (response times, decision accuracy) to infer

the ‘hidden’ state or process that generated the data

(on-task, off-task). However, and crucially, HMMs

generalize latent mixture models by assuming the

discrete generating states are related over time through

a Markov process rather than independently distributed.

This allows HMMs to estimate a critically informative

piece of information for the study of mind wandering –

transition probabilities; for any given trial, the probability

of switching from an on-task state to an off-task state,

or from an off-task state to an on-task state.
Reliable estimation of the transition probabilities in a

HMM requires a signature or regularity in the data that is

related to the discrete states of interest. In the mind

wandering literature, for example, periods of increased

response time variability have been associated with

greater propensity for task-unrelated thoughts (e.g.,

Cheyne et al., 2009; Stawarczyk et al., 2011a; Bastian

and Sackur, 2013; Seli et al., 2015a). Bastian and

Sackur (2013) noted phasic increases and decreases in

the coefficient of variation of response times (RTCV), a

standardized measure of response variability, in the com-

monly studied SART, where self-reported ratings of task-

unrelated thoughts were associated with larger RTCV.

Bastian and Sackur (2013) used patterns in the observed

RTCV to inform a HMM that inferred go responses tended

to occur in ‘runs’ of on-task, and then off-task, states.

Specifically, the authors estimated that the probability of

switching from on-task to off-task from one trial to the next

was lower than the probability of the reverse state change,

switching from off-task to on-task (.11 versus .18). This

result raises two important issues. First, the off-task or

mind-wandering state was more volatile than the task-

focused state (i.e., larger transition probability). Second,

the transition probabilities were not complementary (sum

to one) which implies that trials are not independently dis-

tributed according to a particular base rate of on-task ver-

sus off-task states; neighboring time points are more likely

to be related than distant time points. The transition prob-

abilities also allow one to derive the expected duration of

runs of on-task and off-task states: the mean duration of

an on-task episode was 1/.11 = 9.09 units of experimen-

tal time, which translates to 18.2 s under Bastian and

Sackur’s (2013) division of experimental time (i.e., exper-

imental sessions were split into many units each of 2 s

duration), while off-task episodes were shorter, on aver-

age – 11.1 s (1/.18 � 2).

In this context, HMMs provided great insight to the

transition from task-engaged states to mind wandering

and back again, including the intriguing proposition that

the off-task state is more volatile than the on-task state.

However, Bastian and Sackur’s (2013) approach was

restricted to a purely descriptive model of response time

distributions (the ex-Gaussian model). Such descriptive

models provide precise fits to data but their parameters

lack an interpretation in terms of cognitive processes

(Matzke and Wagenmakers, 2009), and thus provide lim-

ited insight into the cognitions driving task performance in

the two discrete states. Although more research is

required to rigorously link HMMs in mind wandering to

cognitive process models, we can derive some predic-

tions from Bastian and Sackur’s (2013) results. In partic-

ular, the HMM used the variability of observed response

times as a signal that discriminated between the two dis-

crete states. Specifically, the distribution of off-task

responses was more positively skewed than on-task

responses, and hence contained more variable response

times (i.e., larger RTCV). In sequential sampling models,

the variance in predicted response time distributions can

increase when (1) the drift rate decreases, indicating

reduced efficiency of information processing, (2) there is

larger trial-to-trial variability in drift rate, indicating greater
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across-trial noise in the processing of ostensibly similar

stimuli, or (3) there is greater boundary separation, indi-

cating more cautious responding. Any of these potential

outcomes could provide a neat mapping to theorizing that

mind wandering increases the variability of responding as

well as effects on the overall speed of responding.

Using neural data to inform machine learning
approaches

The latent mixture model and HMM approaches assume

there is a mixture of on-task and off-task states in the

structure of the model, and then reverses the generative

process to estimate the proportion of on-task versus off-

task trials in the data. An alternative to the problem of

inferring a mixture in data is to use data-driven methods

where one stream of data (e.g., neural recordings) is

used to classify another (e.g., behavioral data). There

are varying levels of complexity in how neural measures

can be used to classify trials as belonging to a particular

state. We first provide a brief overview of a simpler and

relatively common (non-machine learning) approach to

using neural data to classify trials as belonging to a

particular state, with a hypothesized example. We then

outline what is, to our knowledge, the only application of

machine learning approaches in the mind wandering

literature (Mittner et al., 2014).

In the mind-wandering literature it has been

hypothesized that increased power of pre-stimulus alpha

activity is related to attentional lapses and the

propensity to engage in task-unrelated thoughts

(O’Connell et al., 2009; Macdonald et al., 2011; Bompas

et al., 2015; though see also Braboszcz and Delorme,

2011). Alpha waves are neural oscillations in the 8–

12 Hz frequency range measurable via electroen-

cephalography (EEG) and magnetoencephalography

(MEG). Although alpha activity has only recently become

a focus of study in the mind wandering literature, it has

been studied in depth in the attention literature, where it

is generally found that alpha activity increases during

wakeful rest and is thought to index disengagement from

the external visual environment (e.g., Cooper et al., 2003;

Ergenoglu et al., 2004; Van Dijk et al., 2008; Mathewson

et al., 2009; Romei et al., 2010). Specifically, alpha oscil-

lations are thought to reflect cortical inhibition of task irrel-

evant areas, a top-down control process that prevents

irrelevant brain regions from interfering with task perfor-

mance (Klimesch et al., 2007). One hypothesis is that

state changes involved in mind wandering – transitioning

from on-task to off-task – are associated with changes in

the localization of alpha oscillations, such that cortical

inhibition processes shift from task irrelevant areas to task

relevant areas. This would lead to decrements in perfor-

mance while simultaneously freeing the mind to wander.

To test the hypothesis that alpha activity is related to

task-unrelated thoughts, one could use a classification

approach that first sorts trial-level data on pre-stimulus

alpha power recorded from task-relevant regions. The

sorted data are partitioned into ‘low’ (i.e., more on-task)

and ‘high’ (i.e., more off-task) alpha sets and a cognitive

model is fit to the two sets of behavioral data (for a

similar approach using multivariate pattern analysis in a
related domain, see Ratcliff et al., 2009). Quantitative

model comparison is used to determine the most parsi-

monious account of the data: which parameters should

be estimated separately across the on-task and off-task

trials and which should remain fixed. To the extent that

pre-stimulus alpha activity is related to mind wandering,

parameter differences across the low and high alpha sets

can be attributed to the processes that differ between the

two cognitive states. Although potentially insightful, there

is at least one major drawback of the split-half approach: it

imposes an artificial categorization (‘low’ versus ‘high’

pre-stimulus alpha activity) on a continuous measure

(alpha power). This forced categorization is not necessar-

ily meaningful since borderline trials are forced into one

group or another (i.e., higher alpha power in the ‘low’

group, and vice versa). One can circumvent this problem

by removing a middle segment of data, such as removing

the middle third of trials with intermediate alpha power

and only comparing the lowest third to the highest third;

however such classification schemes use data

inefficiently.

An alternative to median-split segmentation rules are

data-driven, machine learning algorithms that are

trained to classify trials as on-task or off-task on the

basis of an observed variable or variables. For example,

Mittner et al. (2014) had participants perform a stop-

signal task, a common measure of response inhibition,

while recording functional magnetic resonance imaging

(fMRI) activity and pupil diameter (see Fig. 2). A thought

sampling method was used where, at pseudo-random

times throughout the behavioral task, the participant

was asked to indicate whether their focus was on-task

or off-task in the previous trial. The self-report ratings

were used as labels for the neural data to train a classifi-

cation algorithm to learn distinct patterns of neural activity

that were predictive of the self-reported on- (or off-) task

rating. Once trained, the algorithm probabilistically classi-

fied individual trials as on-task or off-task for the unlabeled

(majority of) trials. Mittner et al. (2014) fit various indepen-

dent stochastic accumulator models (variants of the diffu-

sion model) to the data classified as on-task and off-task

to determine which parameters provided the best account

of the difference in performance between the on-task and

off-task states. Quantitative model comparison was used

to determine the most parsimonious account of the data,

which was a model that indicated on-task relative to off-

task trials were more likely to have larger drift rates for

the go and stop processes (implicating more efficient

stimulus processing), and a larger response threshold

(implicating more cautious responding). Bode et al.

(2012) provided a related example with applications to

attentional processing that used multivariate pattern clas-

sification of EEG data.

The machine learning approach to trial classification

has three primary advantages. Firstly, it provides a

means for (probabilistically) classifying the on-task

versus off-task status for all experimental trials. This

overcomes a distinct downside to the common approach

in thought sampling on-task versus off-task behavior that

can only classify the trials that immediately preceded the

presentation of a thought probe. Machine-learning
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classification provides access to a greater range of data

from which to understand the neural and behavioral

outcomes of mind wandering. Secondly, although it does

not explicitly model the temporal structure of the task like

HMMs, temporal relationships are implicit in the (typically

autocorrelated) neural signal used to classify trials. Since

there are neural signatures that reliably predict mind

wandering, and mind wandering occurs in temporally

structured phases, then neural activity can be used to

implicitly classify temporally related periods of on-task

and off-task behavior. Finally, the specification of data-

driven models with many regressors predicts the

occurrence of mind wandering with greater accuracy

than is generally possible with single regressors.
Limitations of mixture model approaches to
classifying mind wandering

Although the mixture modeling approaches outlined here

are appealing, they are not without their drawbacks.

Most importantly, mixture models assume a latent

mixture of on-task and off-task states and do not

consider the possibility that mind wandering exists

along a continuum that drifts between periods of

greater task engagement through to task-unrelated

thoughts. At a theoretical level, this may or may not be

consistent with one’s views on the occurrence of mind

wandering. Mixture models also raise practical issues

with parameter estimation. Cognitive models tend to

have high dimensionality (i.e., require estimation of

multiple parameters from data), such as the drift rate,

start point, boundary separation, and non-decision time

parameters of the diffusion model. In general, as model

dimensionality increases there is a requirement for

larger and more informative data sets to ensure

reliable parameter estimation. The problem is even

greater in mixture models because they aim to infer

discrete data-generating sources, which necessitates

estimation of more model parameters (i.e., separate

model parameters for each discrete state).
There can also be problems with estimating Bayesian

latent mixture models and HMMs from behavioral data

alone. It is probable that the data generating states we

seek to explore in the study of mind wandering – on-task

and off-task performance – do not predict highly

dissociable effects on observable behavior; at least not

to the extent that they predict qualitatively different

response outcomes in data. Unlike the example problem

with the height of men and women, which are well

separated on average, it is challenging to unambiguously

classify decision and response time data to a single

discrete data-generating source when the discrete states

differ only in model parameterization (and not model

structure). For example, Vandekerckhove et al.’s (2008)

delayed startup model classified only .6% of a representa-

tive participant’s trials as contaminants (approximately 43

trials from a total of 8000 trials). The mind wandering liter-

ature, however, suggests that task-unrelated thoughts are

far more common, occupying anywhere between 30% and

50% of our time in everyday life (Killingsworth and Gilbert,

2010). Although Vandekerckhove et al. (2008) were not

proposing a model of mind wandering, adoption of their

model as a candidate account of mind wandering requires

one to accept that (1) mind wandering is far less common

than has been reported, (2) the behavioral signature of

mind wandering is not recovered by Vandekerckhove

et al.’s (2008) model, or, more likely, (3) behavioral data

alone have limited ability to constrain mixture parameters

in cognitive models of mind wandering (i.e., there is limited

diversity in behavioral data to identify mind wandering and

hence inform the parameters of models with multiple pro-

cesses). Supporting the latter proposal does not cast

doubt on the latent mixture modeling approach in general.

Rather, it suggests that accurately identifying mixture

parameters and transition probabilities between latent

classes requires richer sources of data to inform parame-

ter estimation, such as behavioral data complemented by

simultaneous neural recordings during task performance.

However, even incorporating neural measurements to

the classification problem is not without its challenges.
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For example, one potential problem with the machine

learning approaches is that it can be difficult to identify

the effect size of the unique contribution of specific

neural signals when using non-linear classifiers. The

final approach we discuss overcomes some problems of

the mixture model approaches by incorporating explicit

neural measures into a hypothesis-driven, regression-

based framework of mind wandering.

REGRESSION FRAMEWORKS FOR
DYNAMICALLY TRACKING TRANSITIONS

BETWEEN TASK-RELATED AND
TASK-UNRELATED COGNITIVE STATES

In this section we discuss flexible regression-based

modeling approaches. Regression approaches are part

of a more general class known as generative models

that can allow, for example, simultaneous modeling of

multiple streams of data, such as behavior and neural

responses, and how those streams may interact to

generate the observed data. Although we do not discuss

such detailed possibilities here, this flexibility and ability

to simultaneously model multiple streams of data opens

exciting possibilities for future research.

Using neural data as single-trial regressors on the
parameters of cognitive process models

Here, we restrict our focus to a particular regression

approach that specifies covariates on the parameters

of cognitive models in the form of single-trial

regressors. The values of the regressors are derived

from each trial of an experiment and could involve

stimulus-related properties such as brightness

(Vandekerckhove et al., 2011) or item similarity

(Hawkins et al., in press-b), or neural measures such

as single-trial fMRI and/or EEG activity (e.g.,

Cavanagh et al., 2011; Borst and Anderson, 2015;

Frank et al., 2015; Nunez et al., 2015; Turner et al.,

2015). The single-trial measures of stimulus-related or

neural activity are then regressed onto structured trial-

by-trial variation in the parameters of cognitive process

models. This approach is powerful because it defines

functional roles of stimulus properties or neural activity

as causes, not correlates, of observed behavior, via

their hypothesized influence on parameters of cognitive

models. Regression approaches also overcome the

restrictive assumption of the mixture models that

assume participants are in mutually exclusive on-task

or off-task states. Finally, regression approaches main-

tain the benefits of the machine learning and HMM

approach because they implicitly model temporal corre-

lations in task performance, to the extent that temporal

information is present in regressors such as neural

activity.

We argue that regression approaches that use single-

trial regressors are an excellent example of the

explanatory power that can be obtained when operating

within a model-based cognitive neuroscience framework.

Analyzing neural and behavioral data in a single

framework provides greater insight into both streams of

data than is possible by considering either stream in
isolation. To our knowledge, there have been no

attempts to model the neural and cognitive processes

underlying mind wandering in regression frameworks

with single-trial regressors. We first provide an example

of the framework in a related domain followed by a

hypothesis for the study of mind wandering.

Frank et al. (2015) simultaneously recorded fMRI and

EEG activity while participants completed a

reinforcement-learning task, and then regressed single-

trial neural activity onto parameters of the diffusion model.

They tested the hypothesis that mediofrontal theta band

activity in the EEG signal and the BOLD response in the

fMRI signal of the subthalamic nucleus (STN) and pre-

supplementary motor area modulated the response

boundary, by estimating linear regression coefficients for

the effect of the neural measures on the value of the

model parameter. A positive regression coefficient for

STN activity, for example, indicates that trials with

increased STN activity lead to greater boundary separa-

tion, and vice versa.

Although there has been no attempt to apply single-

trial regression to the study of mind wandering, we see

two main advantages that may follow from such

applications: enhanced understanding of the neural

and behavioral consequences of mind wandering, and

potential for more reliable measures of mind

wandering. To continue the illustrative example from

the previous section, one could test hypotheses about

a particular neural measure (such as pre-stimulus

alpha power) and its relation to task performance as

indexed by a model parameter (e.g., drift rate) in mind

wandering. Specifically, one could calculate a

normalized measure of pre-stimulus alpha power at

electrodes over task-relevant regions for each trial for

use as a single-trial regressor on the drift rate

parameter. In this way, alpha power is hypothesized to

modulate drift rate at the individual trial-level: a

positive regression coefficient for a particular subject

indicates that an increase in that subject’s pre-stimulus

alpha activity causes a corresponding increase in the

drift rate on their subsequent trial, and the reverse

interpretation for a negative regression coefficient. The

size of the regression coefficient relating pre-stimulus

alpha power to drift rate gives a measure of the effect

size of alpha power on the efficiency of information

processing, separately for each subject. A hierarchical

modeling approach, which simultaneously models

subject-and group-level parameters, provides a

principled approach to aggregate the value of the

regression coefficient over subjects, allowing for clear

hypothesis tests (e.g., is the regression coefficient

different to zero). The single-trial regression approach

is both flexible and powerful, because it allows precise

hypothesis tests of the effect of any neural measure of

interest and its relation to any parameter of a cognitive

model. Furthermore, the approach is not restricted to

single-trial dynamics. For example, it has been shown

that decreased deactivation of the default mode

network can precede an erroneous response up to

30 s before the error occurs (e.g., Eichele et al.,

2008). Such hypotheses about long-range neural
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dynamics can be implemented as regressors in an anal-

ogous manner to single-trial regressors.

We see one final promise of single-trial regression for

the study of mind wandering: the ability to conceptualize

thought probes as an outcome measure, not the

identifier, of mind wandering. The regression approach

described here allows one to reverse the direction of

inference compared to other methods of analysis, such

as the machine learning approaches. There, responses

to thought probes are a pre-requisite for the analysis as

they serve as the labels to train a classifier. Here,

however, thought probes are not required in the model

fitting procedure at all. Rather, a model is implemented

with a single-trial neural regressor thought to drive on-

task performance, such as pre-stimulus alpha power.

The value of the neural measure on thought probe trials,

combined with its regression coefficient, can be used to

generate predictions for the observed probe responses

– on-task or off-task. The extent to which the model

predicts responses to thought probes indicates the

extent to which the neural measure reliably indexes

mind wandering. In this way, we move toward

developing models that predict task-related and task-

unrelated behavior and the frequency of task-unrelated

thoughts.
GENERAL DISCUSSION

The past decade has seen much progress in our

understanding of the behavioral and neural

consequences of mind wandering. Mind wandering also

has great lay interest and important ramifications in

everyday functioning. Nevertheless, the abstract nature

of mind wandering and task-unrelated thoughts make

them difficult to reliably measure, and consequently

difficult to develop a complete theory.

In this perspectives piece we have argued that

cognitive process models have the potential to illuminate

the mechanisms and processes that underlie the task-

unrelated thoughts that occur when people lose focus

from a primary task. The approaches we outlined are

applicable not only to commonly used experimental

paradigms in the mind wandering literature, such as the

SART, but they generalize to a range of other

paradigms. These include tasks used to measure

response inhibition, thought to be impaired during mind

wandering, such as the stop-signal and Erikson flanker

tasks, which have been modeled with sequential

sampling models (e.g., White et al., 2012; Logan et al.,

2014). The use of a model-based framework also frees

one from the use of highly simplified tasks that are used

to induce boredom, and, by extension, mind wandering.

For example, one can use the frameworks we discussed

in paradigms that are less commonly used to study mind

wandering, such as standard perceptual decision-making

tasks that typically involve experimental manipulation of

factors such as choice difficulty and the relative emphasis

placed on the speed or accuracy of responding. Finally,

although we have only outlined relatively simple

laboratory-based tasks, there is no in-principle reason

why the models and methods we have described cannot
be used to account for performance and mind wandering

in more complex tasks (e.g., Eidels et al., 2010). We

believe that considering a broader range of experimental

paradigms within a model-based framework will lead to

more general conclusions about the influence of mind

wandering on completion of everyday tasks.

The model-based frameworks we outlined provide

different perspectives from which to consider the study

of mind wandering. Each approach has advantages

and disadvantages and the method one adopts ought

to be guided by the research question of interest. For

example, the mixture model approaches assume

mutually exclusive data generating states – such as an

on-task state and an off-task state. In contrast, the

single-trial regression approach allows one to explore

mind wandering along a continuous dimension that

may gradually transition between on-task and off-task

poles. Regardless of the chosen framework, the

routine incorporation of cognitive models to the study

of mind wandering will lead to a deeper understanding

of the mechanisms underlying task-focused and task-

unrelated thoughts and their relationship with neural

activity and behavioral performance. The mixture

models that incorporate neural data and the single-trial

regression frameworks both allow one to determine

which neural measures – connectivity measures, pupil

dilation, increased blood flow in specific cortical or

subcortical regions, oscillatory activity, and so on – are

the strongest predictors of mind wandering. In this

sense, one could develop a range of models that differ

in whether they assume discrete on-task and off-task

states or a single-trial regression approach, and the

set of neural predictors employed. Once applied, we

can use model selection techniques to determine

which model provides the most parsimonious account

of the behavioral data.

In addition to enhancing our understanding of mind

wandering, the predictive models that follow from the

model-based frameworks outlined here can aid

identification of contaminants in experimental tasks. One

way to approach the contaminant problem could be

through the development of ‘automated’ model fitting

routines. These routines would be supplied with neural

and behavioral data to produce output of trials classified

as more likely to be on task or off task, and in turn the

total percentage of time spent mind wandering in an

experiment. Such analyses can only follow from a

model-based approach because whether a trial is likely

to have been on task or off task is assessed relative to

the model assumed for the data.

Using model-based methods to study mind
wandering in a broader context

In this article we presented perspectives on the use of

methods from model-based cognitive neuroscience to

understand mind wandering in simple tasks in normal

populations. Once these methods have been developed

and validated, there is no reason they cannot be

extended to research questions of interest to real-life

contexts. One application may be in further

understanding ‘‘goal neglect”, where a person can
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understand and describe the requirements of a task but

fails to act on those requirements (Duncan et al., 1996).

Goal neglect is well known to occur at higher rates in

patients with frontal lobe damage (e.g., Luria, 1966), but

has also been observed in normal adult populations –

where it is correlated with working memory capacity

(Kane and Engle, 2003), fluid intelligence and instruc-

tional complexity of the task (Duncan et al., 2008, 2012;

Bhandari and Duncan, 2014) – and in normally develop-

ing children (Roberts and Anderson, 2014). Goal neglect

shares similarities to mind wandering – for example, it

could be conceived as ‘‘zoning out”, or a particularly pro-

found attentional lapse – and it is feasible that the model-

based methods presented here could be used to further

understand goal neglect. For example, it is known that

people with lower working memory capacity tend to mind

wander more often during attention demanding tasks (e.

g., Kane et al., 2007; McVay and Kane, 2009; Kane and

McVay, 2012). Resource models of mind wandering pro-

pose that the frequency of task-unrelated thoughts

increases when there are fewer resources available for

the primary task. It is, therefore, possible that people with

lower working memory capacity have fewer executive

resources to apply to goal-directed tasks. Such hypothe-

ses could be tested within an existing cognitive modeling

framework – similar to Heathcote et al.’s (2015b) study of

resource theories in prospective memory – or in newly

developed quantitative models that formalize the role of

‘resources’ in task performance. Initial work suggests that

lower working memory capacity and higher rates of mind

wandering are related to greater variability in drift rate

throughout the experiment, which matches observed

extreme response times and higher error rates in mind

wandering (McVay and Kane, 2012a). Given such devel-

opments, one could use cognitive modeling to understand

differences in mind wandering, and possibly goal neglect,

in normal and patient populations.

Mind wandering is also intimately linked with

psychopathology. The most prominent example is

attention deficit hyperactivity disorder (ADHD), where

clinical diagnoses are related to greater rates of

spontaneous mind wandering (Shaw and Giambra,

1993; Seli et al., 2015b). However, a similar relationship

is observed in non-clinical samples between greater

ADHD symptomatology and spontaneous but not deliber-

ate mind wandering (Seli et al., 2015b), which also trans-

fers to real-life contexts (Franklin et al., in press). Mind

wandering has also been implicated in a range of other

psychopathologies including depression and depressive

symptomatology (Watts and Sharrock, 1985; Deng

et al., 2014), dysphoria (Smallwood et al., 2007) and neg-

ative mood (Smallwood et al., 2009), anxiety in social con-

texts (Mrazek et al., 2011), and schizophrenia (Shin et al.,

2015). In a separate line of research, these clinical disor-

ders, and others, have been examined through the lens of

sequential sampling models, which have led to detailed

understanding of empirical phenomena in clinical

domains (e.g., Heathcote et al., in press; for an overview,

see White et al., 2010). We believe that the independent

study of psychopathology and mind wandering, and psy-

chopathology and cognitive modeling, can be integrated
within the model-based neuroscience frameworks we

have proposed in this article.

Finally, model-based approaches that use neural

measures to predict mind wandering have potential for

practical applications, depending on the ease of

acquiring the neural measure. As a simplified example,

we might find that a relatively easily acquired measure –

such as pupil diameter – is predictive of reductions in

the efficiency of information processing (i.e., lower drift

rate) during mind wandering (cf. Mittner et al., 2014). This

finding could be incorporated in workplaces where lapses

of attention can have large consequences, such as air

traffic control (cf. Casner and Schooler, 2015). While the

user is completing their ongoing task, pupil diameter could

be monitored online. When the system observes patterns

of pupil dilation known to be predictive of mind wandering

(such as decreased pupillary response to stimuli) it could

alert the operator to waning attention, potentially before

the off-task state has reduced the efficiency of information

processing and its subsequent effect on behavior.

We have provided only a brief overview of a few

stylized examples of the theoretical and applied benefits

that may follow from adopting a model-based cognitive

neuroscience of mind wandering. We believe that

routine investigation of mind wandering that combines

neural and behavioral data with cognitive process

models will continue to grow as a topic of study in its

own right, and lead to a more complete understanding

of task-related and task-unrelated thoughts on brain and

behavior.
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