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    INTRODUCTION 

 One major challenge in fi eld sampling is that most 
natural populations are not distributed uniformly or 
randomly in space (Perry et al.  2002 ). Plants and 
animals cluster for (at least) two reasons. First, 

species are restricted to patches of suitable habitat, 
for example, in strata of favorable elevation, soil 
substrate, plant cover, or depth. Second, within patches 
of suitable habitat, individual organisms of the same 
species tend to aggregate, for reasons including preda-
tory defense (Brönmark et al.  1984 , Green and Nunez 
 1986 , Dew  1990 ), enhanced reproductive success 
(Stevens et al.  1994 , Babcock and Keesing  1999 ), or 
plant offspring settling near parents (Ehrlen and 
Eriksson  2000 , Levine and Murrell  2003 , Suzuki et al. 
 2005 , Seidler and Plotkin  2006 ). Clustering renders 
fi eld surveys of populations using quadrats or tran-
sects less precise, often yielding many zero counts 

                                                                                                          Precision of systematic and random sampling in clustered 
 populations: habitat patches and aggregating organisms 

               RICHARD     MCGARVEY,    1,3         PAUL     BURCH,    1,2      AND    JANET M.     MATTHEWS    1      

    1   SARDI Aquatic Sciences    ,  P.O. Box 120   ,  Henley Beach   ,  South Australia     5022     Australia    

   Abstract .      Natural populations of plants and animals spatially cluster because (1) suit-
able habitat is patchy, and (2) within suitable habitat, individuals aggregate further into 
clusters of higher density. We compare the precision of random and systematic fi eld sam-
pling survey designs under these two processes of species clustering. Second, we evaluate 
the performance of 13 estimators for the variance of the sample mean from a systematic 
survey. Replicated simulated surveys, as counts from 100 transects, allocated either randomly 
or systematically within the study region, were used to estimate population density in six 
spatial point populations including habitat patches and Matérn circular clustered aggrega-
tions of organisms, together and in combination. The standard one- start aligned systematic 
survey design, a uniform 10 × 10 grid of transects, was much more precise. Variances of 
the 10 000 replicated systematic survey mean densities were one- third to one- fi fth of those 
from randomly allocated transects, implying transect sample sizes giving equivalent preci-
sion by random survey would need to be three to fi ve times larger. Organisms being 
 restricted to patches of habitat was alone suffi cient to yield this precision advantage for 
the systematic design. But this improved precision for systematic sampling in clustered 
populations is underestimated by standard variance estimators used to compute confi dence 
intervals. True variance for the survey sample mean was computed from the variance of 
10 000 simulated survey mean estimates. Testing 10 published and three newly proposed 
variance estimators, the two variance estimators ( v ) that corrected for inter-transect cor-
relation ( v  8  and   v  W  ) were the most accurate and also the most precise in clustered popula-
tions. These greatly outperformed the two “post- stratifi cation” variance estimators ( v  2  and 
 v  3 ) that are now more commonly applied in systematic surveys. Similar variance estimator 
performance rankings were found with a second differently generated set of spatial point 
populations,  v  8  and   v  W   again being the best performers in the longer- range autocorrelated 
populations. However, no systematic variance estimators tested were free from bias. On 
balance, systematic designs bring more narrow confi dence intervals in clustered populations, 
while random designs permit unbiased estimates of (often wider) confi dence interval. The 
search continues for better estimators of sampling variance for the systematic survey mean.   

   Key words:    clustered populations ;    environmental monitoring ;    habitat patchiness ;    random sampling ;    spa-
tial autocorrelation ;    survey precision ;    systematic sampling ;    transect ;    two-dimensional survey design ;    variance 
estimators      

Ecological Applications, 26(1), 2016, pp. 233–248
© 2016 by the Ecological Society of America

 Manuscript received   15 October 2014  ;   revised   26 March 2015  ; 
  accepted   8 April 2015. Corresponding Editor: M. J. Ducey. 

2Present address: Institute for Marine and Antarctic Studies 
(IMAS), University of Tasmania, c/o Australian Antarctic 
Division, 203 Channel Highway, Kingston, Tasmania 7050 
Australia.

  3E-mail:  Richard.McGarvey@sa.gov.au       



RICHARD MCGARVEY ET AL. Ecological Applications
Vol. 26, No. 1

234

and a few very high counts. These skewed sample 
distributions greatly reduce the precision of survey 
estimates of mean population density (Pennington and 
Vølstad  1994 , Pennington et al.  2002 ), or of quanti-
ties that depend on density. Clustered (spatially 
 autocorrelated) populations pose a formidable cost 
challenge to environmental monitoring studies, requir-
ing larger sample sizes to achieve equivalent levels 
of survey estimate precision. In this study we consider 
the two most common survey designs for environ-
mental monitoring and ecological fi eld study to assess 
their precision in populations that spatially cluster 
by these two processes. 

 The comparison of systematic and random survey 
methods was fi rst active from the late 1930s to the 
1950s. Statistical studies (Madow and Madow  1944 , 
Cochran  1946 , Yates  1948 , Matérn  1960 , Bellhouse 
 1977 ) concurred that systematic sampling schemes are 
more precise in autocorrelated populations. Some of 
this work (Madow and Madow  1944 , Cochran  1946 ) 
was done assuming linear populations were to be 
sampled, such as an alphabetic list of households to 
be surveyed by telephone. A parallel succession of 
studies undertaken in the population biological literature 
(Bourdeau  1953 ), notably for application to sampling 
a two- dimensional space, surveying forests for timber 
yield estimation (Hasel  1938 , Finney  1948 ,  1949 ), con-
cluded that the precision advantage of systematic designs 
was minor and that random sampling is preferred 
(Greig- Smith  1983 ). More recent statistical investigation 
(D ’ Orazio  2003 , Wolter  2007 ) assumed systematic sam-
pling to be more precise in autocorrelated populations 
and focused on the still unsolved problem of how to 
reliably estimate the variance of the estimate of the 
mean from a systematic survey for linear (Wolter  1984 , 
 2007 ) and two- dimensional (i.e., spatial) populations 
(D ’ Orazio  2003 ). Published studies in the applied eco-
logical literature have now shifted to general agreement 
that systematic designs are more precise in spatially 
autocorrelated populations (e.g., Dunn and Harrison 
 1993 , Ambrosio et al.  2004 , Aune- Lundberg and Strand 
 2014 ). 

 In practice, fi eld ecologists continue to apply both 
random and systematic sampling designs (Legendre 
et al.  2002 ). Random sampling satisfi es the assumption 
of independence among samples, assuring accurate 
estimates of confi dence interval by the standard error 

formula,   
√

s
2∕n    , where the statistic  s  is the estimator 

of standard deviation and  n  is the number of observa-
tions. Systematic designs are often chosen for ease of 
design and implementation. Both random and system-
atic designs are unbiased (for systematic, see Madow 
and Madow [ 1944 ]), a major advantage achieved with 
no prior knowledge of the population to be sampled. 
Freedom from bias is not guaranteed with more sophis-
ticated model- based or adaptive sampling approaches, 
though these can achieve higher precision when spatial 
model assumptions are met. 

 As a fi rst objective, we evaluate and compare the 
precision of random and systematic survey designs for 
measuring population density in populations that cluster 
by habitat patchiness, aggregating behavior, or both. 
These two spatial processes, affecting probabilities or 
patterns of organism locations in space, are typical 
of many or most natural populations. High levels of 
clustering are a particularly common source of impre-
cision in marine surveys (Pennington  1996 ). Using 
simulated survey transects allocated randomly or sys-
tematically within a square two- dimensional study 
region, we quantifi ed the imprecision of both survey 
designs by the variance of the repeated survey esti-
mates, as the spread of replicated simulation survey 
mean densities. A measure of the cost advantage that 
may accrue from choosing the more precise design is 
inferred for each spatial population. 

 As a second objective, we evaluate variance estima-
tors for the sample mean used to compute confi dence 
intervals in systematic surveys. We tested 13 variance 
estimators, including 10 previously published (D ’ Orazio 
 2003 , Wolter  2007 ). A comparison of 13 different vari-
ance estimators has not been undertaken, to our 
knowledge. Wolter ’ s ( 1984 ,  2007 ) study, extended by 
D ’ Orazio ( 2003 ), has been the most comprehensive to 
date. We also tested three “covered grid” variance 
estimators proposed here (Appendix), which extend 
Yates’ ( 1960 ) and Wolter ’ s ( 2007 ) balanced difference 
method. In covered grid estimators, each balanced 
difference term uses all transects in each row or col-
umn of the systematic grid to uniformly cover the 
full width, the full length, or both, of the survey study 
region.  

  METHODS 

 Comparing the precision of random and systematic 
survey designs requires (1) simulated or enumerated 
spatial point populations of organism locations dis-
tributed within a study region, and (2) a method to 
simulate survey sampling of these spatial populations 
by the two survey designs to be tested. 

 Here, to test survey design performance in popula-
tions clustering by patchiness and aggregating organ-
isms, we (1) generated six, and then a further 12, 
spatial point populations (Diggle  1983 ), each organism ’ s 
location represented by an  x - y  coordinate point in a 
1- km 2  study region, and (2) simulated transect sam-
pling, measuring population density in each clustered 
(or unclustered) population. Using simulated rather 
than enumerated spatial populations permitted testing 
of a controlled range of clustering processes typical 
of natural populations, namely due to habitat patchi-
ness and aggregating behavior, together and separately. 
Using populations with these combinations, we assessed 
the effect of these two forms of spatial clustering in 
natural populations for (1) comparing the relative 
precision of systematic vs. random sampling, and (2) 



January 2016 ESTIMATING SYSTEMATIC SURVEY PRECISION 235

comparing 13 estimators for the variance of the mean 
from a systematic sample. Each simulated transect 
yields a single organism count, a sample measure of 
density. The accuracy and precision of each survey 
design was assessed by comparing replicated transect 
survey estimates of mean density with the true popula-
tion density of each simulated population, which is 
known without error. 

  Simulated spatial populations 

 Six spatial point populations with differing degrees 
of patchiness and aggregating behavior alone or in 
combination were generated (Fig.  1 ). Population densi-
ties of the six simulated populations are given in Table  1  
(row 1). Population a is spatially random, i.e., unclus-
tered, with organism locations assigned independently 
and randomly. In populations b and c, organisms are 
again assigned randomly, but restricted to two drawn 
band- shaped patches of habitat covering ~22% of the 
study region. Populations d–f (Fig.  1 d–f) are Matérn 
aggregated, in which organisms are distributed randomly 
within circles of 50 m radius, with the circle center 
points positioned randomly. The aggregations of popu-
lation d are distributed across the entire study region 
(Fig.  1 d), while populations e and f are Matérn aggre-
gated within the two habitat patches (Fig.  1 e, f). Matérn 
cluster circles can, by chance, randomly overlap 
(Fig.  1 d–f), doubling the density in that aggregation. 
The two patches of habitat contain organisms of either 
approximately equal population density (Fig.  1 b, e), or 
of densities that differed between the two patches by 
an approximate factor of 10 (Fig.  1 c, f). These six 
simulated populations represent a wide range of clus-
tering, from no clustering as complete spatial random-
ness (CSR, Fig.  1 a; Diggle  1983 ) to both aggregated 
and patchy (Figs.  1 e,f). The spatstat R package (Baddeley 
and Turner  2005 ) was used for both simulation steps 
of generating clustered populations and sampling them 
with transects (R code given in Supplement 1).    

  Simulated survey sampling: random and systematic 

 For each simulated survey, organism counts were 
obtained from a sample of 100 transects. Each transect 
was 1 × 50 m; 20 000 transects completely cover the 
study region without overlapping. These 20 000 distinct 
transect positions provide the sample frame. For ran-
dom surveys, 100 transects were selected independently 
and randomly, without replacement (Fig.  2 , top right), 
from among the 20 000 possible transect locations. 
For systematic sampling, the 1- km 2  study region was 
partitioned into a 10 × 10 array of grid blocks, each 
a square of size 100 × 100 m (Fig.  2 , left). Two rows 
of 100 1 × 50 m transects cover each grid block. For 
each systematic sample of 100 transects, a fi rst transect 
was chosen at random in the fi rst (upper left) grid 
block. Following the standard procedure of one- start 

(Madow and Madow  1944 ) aligned systematic sampling 
in a two- dimensional study region (Quenouille  1949 , 
Cochran  1977 ), the randomly chosen start position 
within the fi rst grid block was used for the position 
of all remaining transects, one transect in each of the 
other 99 grid blocks (Fig.  2 , bottom right). Each survey 
yields a measured mean density as the mean from 100 
transects. For each population and survey design, 10 000 
replicated Monte Carlo survey samples were drawn.   

  Accuracy and precision of the survey mean under random 
and systematic survey designs 

 We measure the accuracy (lack of bias) of each 
survey design by the closeness of the mean of 10 000 
replicated simulated survey density estimates to the 
true overall population density. 

 To compare the precision (inverse of variance) of 
the two survey designs, the true sampling variance of 
each survey design in each population was computed 
as the sample variance of mean density estimates from 
each set of 10 000 simulated surveys. The cost advan-
tage obtained by choosing the more precise survey 
design was inferred as the effective sample size of 
randomly allocated transects that would be required 
to equal the precision of the systematic survey design, 
knowing the variance of a randomly sampled mean 
varies inversely with sample size (as  n  in  s  2 / n ).  

  Variance estimators for the survey mean 

 For systematic surveys, a variety of methods have 
been proposed to compute a confi dence interval for 
the survey mean. In this study, we tested the perfor-
mance only of design- based methods that use a single 
formula for the estimate of sampling variance. We 
estimate the accuracy and precision of each tested 
variance estimator for systematic surveys using simula-
tion by comparing the (single) true variance (defi ned 
in the preceding subsection) with the mean of 10 000 
estimator variances, one for each survey of 100 simu-
lated transects. 

 The variance estimator ( v ) of the mean for identical 
independent random sampling is   s2∕n   . Under sampling 
without replacement, the fi nite population correction 
  (1− f)    (Cochran  1977 ) is included, giving what Wolter 
denotes as the textbook estimator v1 =(1− f)s2∕n (Wolter 
 2007 :300).      This correction is often small since  f , the 
proportion of the population sampled, is small for 
most surveys. Following Cochran ( 1977 ) and Wolter 
( 2007 ), the fi nite population correction was included 
in all 13 variance estimators tested. 

 Ten of the evaluated variance estimators for the 
systematic survey mean were from published sources. 
Wolter ( 2007 ) defi ned and assessed  v  1 – v  8 . D ’ Orazio 
( 2003 ) proposed  v  STR2  and  v  W , modifying Wolter ’ s  v  2  
and  v  8  to construct two- dimensional versions. In addi-
tion, we propose three new covered grid variance 
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 FIG. 1 .              Six simulated populations used for testing the performance of random and systematic survey designs. These 
populations express two forms of clustering: patchy habitat and aggregating behavior, here simulated by a Matérn process. 
Population a is generated as a complete spatial random ( CSR ) process. Populations b and c are  CSR  within two band- shaped 
patches, where in population c the lower patch has a density ~1/10th smaller. Population d expresses only Matérn clustering 
with no patches, while organisms in e and f Matérn cluster within two habitat patches, in population f with patch densities again 
differing by factor of 10. 

(a) Complete spa�al randomness (CSR) (d) Matérn clustered 

(b) CSR, in two patches 
          of equal density 

(e)  
     patches of equal density 

(c)  
     of differing density 

(f)  
  patches of differing density 

CSR, in two patches Matérn clustered, in two

Matérn clustered, in two
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estimators (Appendix), extending the balanced differ-
ence method of Yates ( 1960 ) and Wolter ( 2007 ). In 
addition to the three covered grid estimators described 
in the Appendix, formulas are included for  v  1  (the 
textbook estimator) and  v  8  (given in  Discussion ). The 
remaining eight variance estimator formulas are detailed 
by their authors (D ’ Orazio  2003 , Wolter  2007 ). The 
13 variance estimators for systematic samples were 
coded as subroutines in R (R Core Team  2013 ; 
Supplement 2) and applied to each simulated systematic 
survey sample of 100 transects. Applying Wolter ’ s  v  2 – v  8  
requires a specifi c ordering of transects, which was 
done here in a vertical orientation, starting from the 
top left transect, down each column of grid blocks, 
columns succeeding from left to right.   

  RESULTS 

  Bias of random and systematic survey designs 

 The mean densities of 10 000 simulated surveys, for 
both simple random sampling (Table  1 , row 2) and 
systematic sampling (Table  1 , row 3), were close to 
the true population density (values in these two rows 
are close to 1), implying both survey designs are unbi-
ased. Because these designs are both representative, 
neither using a priori information about population 
density in allocating samples within the study region, 
this result of non- bias is expected and well known. 
It was fi rst proven for systematic sampling by Madow 
and Madow ( 1944 ).  

  True precision of random and systematic survey designs 

 While both random and systematic designs are unbi-
ased, they differ in sampling variability precision. For 
all fi ve clustered populations (b–f, Fig.  1 b–f), with  n  
= 100 transects, the systematic survey design was much 
more precise. The true variances for the systematic 
survey estimate of mean density (from 10 000 survey 
estimates) were one- third (36%) to one- fi fth (18%) of 
the true variances achieved by the random design 
(Table  1 , row 5, columns b–f). 

 For population d, with the population clustering 
only by Matérn aggregating of organisms (Fig.  1 d), 
true systematic survey variances were one- third (0.33, 
Table  1 , row 5, column d) those of randomly allocated 
transects. Theory of effective sample size (Pennington 
and Vølstad  1994 ), based on the inverse linear decline 
of sampling variance with sample size under independ-
ent random sampling, implies that a survey using the 
random design would require three times as many 
transects (301 vs. 100, Table  1 , row 6) to equal sys-
tematic precision, given the observation that the random 
sampling variance is three times wider. 

 When organisms were distributed with complete spa-
tial randomness (no aggregating behavior), but were 
restricted in habitat range to two patches of either 

roughly equal density (Fig.  1 b), or density that differed 
by 10- fold (Fig.  1 c), the systematic survey design again 
yielded true sampling variances that were much smaller, 
29% and 23%, respectively, of those obtained using 
the random design (Table  1 , row 5, columns b, c), 
implying that for these two populations that expressed 
clustering only via habitat patchiness, with 100 sys-
tematic transects, 3.4 and 4.3 times as many random 
transects (344 and 430 vs. 100, Table  1 , row 6, columns 
b, c) would be needed to equal the precision obtained 
using the 10 × 10 square- grid systematic design. 

 When individuals were both Matérn aggregated and 
restricted to suitable habitat, systematic sampling vari-
ances for populations distributed in two patches of 
roughly equal density (Fig.  1 e) or 10- fold differing 
densities (Fig.  1 f) were 18% and 36% those of the 
10 000 random surveys (Table  1 , row 5, columns e, f), 
respectively, implying that over fi ve or nearly three times 
(565 and 275 vs. 100, Table  1 , row 6, columns e,f) as 
many random transects would be needed to equal sys-
tematic survey precision. 

 In summary, for these simulated clustered popula-
tions, a systematic 10 × 10 square grid of transects 
produced estimates of absolute population density that 
were three to fi ve times more precise, thus requiring 
approximately one- third to one- fi fth as many transect 
sample counts to achieve equivalent precision in the 
estimate of the sample mean. This precision advantage 
for systematic survey held about equally for the two 
tested sources of clustering in natural populations, 
habitat patchiness and aggregating behavior. 

 By contrast, in the purely spatially random (CSR) 
population (Fig.  1 a), the systematic survey design was 
slightly less precise, the true variance of 10 000 sys-
tematic survey estimates being 14% larger (1.14, Table  1 , 
row 5, column a) than that obtained by random 
sampling.  

  Testing variance estimators for systematic surveys 

 For the random survey design, in all six popula-
tions, the textbook (sample) variance estimator ( v  1 ) 
gave accurate agreement with the true variance (results 
not shown). This was expected because random survey 
designs satisfy the assumptions of identical independent 
sampling. 

 However under systematic sampling, the  v  1 - estimated 
variances differed from the true variances in all six 
tested populations (Table  1 , row 9), implying bias. In 
the CSR population,  v  1  slightly underestimated (0.87) 
the true spread of systematic mean density estimates. 
In the fi ve clustered populations,  v  1  overestimated the 
true sampling variance, by 2.79 up to 5.63 times 
(Table  1 , row 9, columns b–f), implying  v  1  underes-
timated the true precision of systematic survey estimates 
of mean density in clustered populations. 

 The true variances of the systematic sample for 
populations a–f, each computed as the variance of 
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the replicated sample means from 10 000 simulated 
systematic surveys, are given in row 4 of Table  1 . 
The accuracy of each variance estimator was quanti-
fi ed by the ratio of the mean of 10 000 variance 
estimates divided by the true variance. Mean values 
near 1 in Sections 3 and 4 of Table  1  imply accurate 
(unbiased) estimates of systematic sampling variance, 
and are graphically shown as red dots (means of 
10 000 estimated variances) near the blue line (true 
variance) in Fig.  3 . Values greater than 1 imply over-
estimated (overly wide) confi dence intervals.  

 In the purely random CSR population (Fig.  1 a), 
all 13 variance estimators underestimated the true vari-
ance of systematic sampling (Fig.  3 a). Estimators other 
than  v  8  and  v  W  underestimated by 10–13% (Table  1 , 
column a, rows 9–21). The least biased were two of 
the covered grid estimators (0.90 for  v  TCG  [twice- covered 

grid estimator] and  v  CCG  [column- covered grid estima-
tor]);  v  8  and  v  W  underestimated the true variance by 
about one- third. 

 One variance estimator,  v  7 , performed particularly 
poorly, giving unacceptably wide ranges of variance 
estimates, with values reaching close to zero for all 
populations (Fig.  3 ) other than b (Fig.  3 b), where it 
was highly biased. Means of  v  7  well above medians 
(Fig.  3 ) imply large upper tails. This exceptionally unsta-
ble performance of  v  7  is suffi cient to rule it out for 
general use, as Wolter ( 2007 ) had earlier concluded for 
linear populations. We do not consider  v  7  henceforth. 

 For the population of Fig.  1 b, nonaggregating 
(CSR) populations restricted to two habitat patches 
of equal density,  v  8  (1.14) and  v   RCG   (1.19; row- covered 
grid estimator) were the least biased (Table  1 , column 
b),  v  8  being the more accurate (Fig.  3 b);  v  W  was 

 FIG. 2 .              Diagram of the two transect sampling designs, random and systematic. For both designs, a simulated sample of 100 
transects was allocated within the study region to measure absolute population density. Here, the population is Matérn clustered in 
patches of unequal density (Fig.  1 f). The 1000 × 1000 m study region (left) was divided into 100 grid blocks, each 100 × 100 m, to 
construct the systematic design. Boxes to the right illustrate possible differences in transect placement for a 300 × 300 m central 
portion of the study region. Under (aligned) systematic sampling, transects (red lines) are uniformly spread over the study area (one 
transect allocated to the same position in each grid block). Under simple random sampling, each transect is allocated within the 
study region independently of others, resulting by chance in some grid blocks being sampled multiple times while others are left 
unsampled. 

1000 × 1000 m study region

Random transects

Systematic transects
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underestimation biased (0.62, Table  1 , row 18, column 
b; Fig.  3 b). Populations b and c showed similar results 
overall (Fig.  3 b and c), with  v  8  the best performer, 
being both accurate and precise, and with most oth-
ers overestimating or greatly overestimating the true 
variance of the systematic sample mean;  v  W  consider-
ably underestimated the true variance in these two 
populations. After  v  8 , covered grid estimators were 
the next least overestimation biased (Fig.  3 b and c). 

 In population d, with Matérn clustering but no patchi-
ness of habitat (Fig.  1 d),  v  8  (1.09) and  v  W  (1.19) showed 

relatively low bias (Table  1 , column d, rows 16 and 
18; Fig.  3 d). The others ( v  1 – v  6 ,  v  STR2 , and three covered 
grid estimators, Table  1 , column d; Fig.  3 d) showed 
much higher and similar bias, overestimating the true 
variance on average by ~2.4–3.1 times. In addition to 
being nearly unbiased,  v  8  and  v  W  also had much tighter 
spreads of variance estimates (boxes and whiskers, 
Fig.  3 d), and so were also more precise. 

 Both patchiness and aggregation within patches were 
simulated in populations e and f. For population e 
(Fig.  1 e) with Matérn clustering in two patches of 

 FIG. 3 .              Boxplots displaying systematic variance estimator precision and accuracy. Thirteen variance estimators ( v  1 –  v  TCG  ) for 
survey mean density were tested using replicated systematic sampling of the six populations of Fig.  1 . The fi rst 10 variance estimators 
include the eight presented by Wolter ( 2007 ),  v  1 – v  8 , plus two extensions of Wolter estimators proposed by D ’ Orazio ( 2003 ),   v  STR   2  
and   v  W  . The three covered grid variance estimators (  v  RCG  ,   v  CCG  ,   v  TCG  ; row- covered, column- covered, and twice- covered, 
respectively) we propose here and describe in the Appendix. Each survey gave a measured mean density from 100 simulation 
transect counts. Box (25% and 75% quantiles) and whiskers (10% and 90% quantiles; arrows indicate that whiskers extend beyond 
the displayed  y - axis range) display variance estimate precision as the spread of 10 000 simulated estimated variances. The horizontal 
line in each box shows the median. Each red dot marker shows the mean of 10 000 variance estimates.  Y - axis scaling is given by 
dividing each estimator variance by the (single) true variance of 10 000 replicate survey mean densities. Blue lines show the value (1) 
at which estimated survey variance agrees with true. 

(a) (d)

(b) (e)

(c) (f)
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similar density,  v  W  (1.68) and  v  8  (2.19) were again by 
far the least biased (Table  1 , column e; Fig.  3 e), though 
all overestimated. After  v  W  and  v  8 , covered grid esti-
mators showed the least, though still large, bias 
(~3.73–3.93, Table  1 , column e). For this common 
ecological case of a population aggregating within 
habitat patches,  v  8  and the closely related  v  W  were 
again clearly superior, showing both lower bias and 

narrower interquartile ranges (Fig.  3 e), though over-
estimation remained. 

 For the most highly clustered population (Fig.  1 f), 
with Matérn clustering and restriction to two habitat 
patches of unequal density, all variance estimators 
performed poorly, overestimating and showing a wide 
spread of estimates;  v  W  showed the lowest bias (Table  1 , 
column f, row 18) and a modestly smaller than 

 FIG. 4 .              Twelve spatially autocorrelated populations, generated using the R package gstat, where the degree of autocorrelation was 
controlled by two parameters of the variogram, psill and range. Boxplots show the spread of 10 000 variance estimates for each of 
the 13 tested variance estimators, as in Fig.  3 . 
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average interquartile range (Fig.  3 f), while  v  8  performed 
less well (Fig.  3 f). Covered grid estimators were the 
next least biased (Table  1 , column f).  

  Variance estimator comparison with a second set of 
spatial populations 

 The principal new result obtained from these simula-
tions was the appearance of  v  8  and  v  W  as more reliable 
estimators of sampling variance for the systematic 
survey mean in clustered populations. This was observed 
for the fi ve spatial point populations (b–f), which 
express clustering by drawn habitat patch boundaries 
and Matérn (circular) aggregations. The question natu-
rally arises, how do these results extend to other 
plausible clustered populations? To test for sensitivity 
to the spatial point populations generated, we used a 
different set of algorithms to produce a second set of 
12 spatially autocorrelated populations (Fig.  4 , popula-
tions g–r). To sample these new populations, the same 
simulated systematic survey design was applied (Fig.  2 ) 
using  n  = 100 1 × 50 m transects. The 13 variance 
estimators were again applied to 10 000 simulated sys-
tematic surveys in each population to evaluate estimator 
performance.  

 The autocorrelation properties of these new popula-
tions were controlled by two parameters of the vari-
ogram,  psill  and range. Following Goslee ( 2006 ), we 
used the gstat R package (Pebesma and Wesseling 
 1998 , Pebesma  2004 ), which provides routines for krig-
ing and simulation, to allocate organism point loca-
tions. The range specifi es the separation distance beyond 
which points are effectively uncorrelated. For all simu-
lated populations of Fig.  4 , we set the nugget (i.e., 
measurement error of repeated sampling at the same 
location) equal to zero. With a zero nugget, the psill 
parameter we control equals the sill as normally defi ned, 
being the asymptotic value of the semivariance at 
separation distances greater than the range. Two values 
of psill (1 and 10) were chosen, and for each of these, 
six values of the range of autocorrelation: 0.001, 10, 
50, 100, 150, and 200 m. The R code used to gener-
ate this second set of populations is given in 
Supplement 3. 

 By testing the two values of psill, we examine two 
suites of populations where the maximum density of 
tight clusters differ by an order of magnitude, broad-
ening these results to apply for a wider range of pos-
sible natural fi eld populations. Simulating a broad array 
of autocorrelation distances (range values) tests the 
robustness of these results from populations that are 
effectively uncorrelated in space (range = 0.001 m) to 
those correlated over long distances (range = 200 m) 
greater than the length of transects (50 m) and the 
distance between neighboring transects (100 m). 

 By this method of generating autocorrelated spatial 
populations, unoccupied areas arose naturally within 
the study region (see point maps of these 12 

populations in Fig.  4 ). Clustering is visually evident 
in the point maps as range increases. 

 The results for this second set of 12 populations 
(Fig.  4 ) show qualitative similarity, with some differ-
ences, to those observed for the six populations 
described previously. The textbook estimator ( v  1 ) was 
again consistently the worst performer, overestimating 
the sampling variance greatly for increasingly autocor-
related populations (Fig.  4  boxplots, populations i–l 
and o–r). 

 In Fig.  3 , for the four populations restricted to patches 
of habitat (b, c, e, less strongly for f), the variance 
estimators can be approximately ranked in terms of 
bias starting with the worst bias of  v  1  >  v  2 – v  3  >  v  4 – v  6  
>  v  RCG – v  TCG  > or >>  v  8  and  v  W . In Fig.  3 , only the 
population with no habitat patches (d) did not express 
this trend, yielding similar overestimation bias for esti-
mators  v  2 – v  6  and  v  RCG – v  TCG , though  v  1  was again the 
worst, and  v  8  and  v  W  were by far the best. 

 This same bias trend was evident for a majority of 
the gstat populations in Fig.  4 , strongly (i, l, q) or 
weakly (j, o, p), but was less evident for others (k, r). 

 Again  v  7  showed unacceptably poor performance 
for all 12 populations of Fig.  4 . D ’ Orazio ’ s extension 
of  v  2 ,  v  STR2 , as in Fig.  3 , showed high overestimation 
bias similar to  v  2 , overestimating more than other 
estimators (except  v  1 ) for the high- range autocorrelated 
populations (k, l, q, r). 

 The performance outcomes for  v  8  and  v  W  were 
similar to those of Fig.  3 , but differed between the 
two levels of psill. For psill = 10,  v  8  and  v  W , in the 
more clustered populations (p–r) were the best per-
formers, showing both low bias and much tighter 
spreads of variance estimates, much like for popula-
tions b–e. However with psill = 1, for populations j 
and k,  v  8  and  v  W  showed large underestimation bias, 
as previously reported by Wolter ( 2007 ) for  v  8  and 
by D ’ Orazio ( 2003 ) for  v  W , despite being much more 
precise. For populations l and r with the longest tested 
autocorrelation range (200) under both psill levels,  v  8  
and  v  W  were both much less biased and much more 
precise. 

 One general trend was identifi ed by varying the range 
parameter. At some value of the range, between 10 
and 50 m for psill = 1, and below range = 10 for psill 
= 10, all variance estimators shift from below to above 
the blue line (Fig.  4 , h compared to i and m to n), 
that is, from all underestimating to all, except  v  8  and 
 v  W , overestimating the true sampling variance. 

 Overall, the trends for populations g–r showed simi-
larities to those of populations a–f, with generally 
lower or much lower bias of  v  8  and  v  W , always higher 
precision of  v  8  and  v  W  in more highly clustered popu-
lations, and tendency of  v  8  and  v  W  to underestimate, 
even in some clustered populations (b, c, i, j, k). 
Between these two best performers,  v  W  showed greater 
underestimation bias for some populations (b, c, j, l, 
q). For all unclustered populations (a, g, h, m),  v  8  
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and  v  W  underestimated the true sampling variance more 
than other estimators.   

  DISCUSSION 

  True precision of random and systematic survey designs 

 The square grid systematic design gave variances of 
the survey mean that were three to fi ve times smaller 
than the random survey design in populations that 
clustered by habitat patchiness, aggregating behavior, 
or both (Table  1 , row 5, columns b–f). This implies 
that a random design would require ~300–500 transects 
to equal the precision of 100 systematically allocated 
transects for estimating population density in these 
clustered populations. 

 Such large (300−500%) reductions in sampling error 
variance under a systematic design were not found 
in the majority of previous studies. One possible 
reason for this is that this study uses synthetic popu-
lations, while many studies used enumerated real world 
data. Another reason is that we have sought to rep-
licate levels of clustering more commonly observed 
in marine sampling, while these studies more often 
used forest or landscape data. However, in Cochran ’ s 
( 1977 :223) table of variance ratios, stratifi ed random 
variances were sometimes two to fi ve times wider 
than systematic, and all survey design comparison 
studies we cited have found that systematic designs 
are more precise than simple random or stratifi ed 
random. Cochran ( 1946 , see also Iachan  1982 ) ana-
lytically proved that a systematic design is more precise 
for linear populations whose spatial autocorrelation 
declines exponentially with separation distance. 
Examples of systematic designs bringing higher survey 
precision in spatially autocorrelated populations were 
reported in a range of applied ecological contexts 
(e.g., Dunn and Harrison  1993 , Ambrosio et al.  2004 , 
Aune- Lundberg and Strand  2014 ) and in the applica-
tion of Euclidean distance analysis to animal habitat 
selection analysis (Benson  2013 ) and in stereology 
(Gundersen et al.  1999 ). 

 Restricting organisms that are otherwise randomly 
distributed to habitat patches covering 22% of the 
survey study area was alone suffi cient to yield a high 
(~300–400%) level of precision improvement with sys-
tematic sampling (Table  1 , rows 5 and 6, columns 
b,c). Previous studies comparing random with systematic 
designs (or comparing the variance of systematic vari-
ance estimators) have not investigated the effect of 
demarcated patchiness in species habitat. Since restric-
tion to favorable habitats is typical of most natural 
populations, this source of imprecision must be encoun-
tered by many environmental and ecological 
surveys. 

 In clustered populations, meaningful improvements 
in survey effi ciency permit either lower- cost surveys 
or more precise information from a given sample 

size, affording large increases in statistical power. 
As the cost constraints on fi eld studies and envi-
ronmental monitoring increase, meaningful improve-
ments in effi ciency favor the choice of a systematic 
design. 

 In addition to (1) higher survey precision in clustered 
populations, two further natural advantages favor a 
systematic design: (2) systematic designs are more 
practical to implement. Sample locations positioned 
on a grid makes systematic designs easier to plan and 
carry out. Field studies often use systematic designs 
for this reason. (3) A systematic grid of measurements 
is superior to random sample locations for use as 
data input to geostatistical (i.e., contour) mapping. 

 Spatial mapping inference, modeling the distribution 
of organisms across the study region, for example by 
ordinary kriging (Marchant and Lark  2007 ) or spatial 
modeling using maximum likelihood (Diggle and 
Ribeiro  2007 ), generally give more reliable estimates 
when survey sample locations are allocated uniformly 
across the study region, ideally augmented by additional 
samples at shorter distance scales (Diggle and Ribeiro 
 2007 ). 

 Random sample locations provide an uneven cover-
age and so a less consistent source of spatial infor-
mation, and random sampling is not often chosen 
for mapping applications. In application to abalone 
fi shery management, from surveys using semi- 
systematic (Byth and Ripley  1980 ) density measure-
ments, maps of spatial distribution were validated in 
a fi sh- down experiment (McGarvey et al.  2008 ). 
Contour maps generated from semi- systematic surveys 
before and after fi shing were faithful predictors of 
where higher abalone densities were confi rmed by 
commercial fi shing, and where population density 
changed most by fi shing removals. Geostatistical map-
ping methods, including kriging (Marchant and Lark 
 2007 , Li and Heap  2008 ) and spatial statistical mod-
eling (Diggle and Ribeiro  2007 ) also benefi t by infor-
mation about autocorrelation over shorter separation 
distances than the distance between systematic samples 
(Diggle and Lophaven  2006 ). Subdividing each transect 
into quadrats and recording organism counts in each 
quadrat along (within) transects permits shorter (1–100 
m) scales of spatial autocorrelation to be measured 
directly (McGarvey et al.  2010 ). Other modifi cations 
of systematic designs, such as combinations of sys-
tematic, stratifi ed, and random (Quenouille  1949 ) have 
been proposed. 

 One practical advantage favors a random design. 
Harbitz and Pennington ( 2004 ) showed that the short-
est path among random sample locations traces, on 
average, a shorter sampling pathway than along a 
systematic grid. This outcome refl ects one objective 
of systematic sampling, to maintain a wider mean 
distance between neighboring sample locations, mini-
mizing the effect of spatial autocorrelation, and 
covering the survey region more uniformly. In 
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practice, identifying the shortest path among random 
sample locations can be challenging, particularly for 
larger sample sizes, there being no general mathemati-
cal solution to the traveling salesmen problem. 
Moreover, in practice, with varied topography and 
surveys run monthly or yearly over large areas, a 
shorter path may be a smaller consequence for prac-
tical implementation of surveys for researchers in 
the fi eld than other practical advantages of a sys-
tematic design. 

 Systematic designs probably achieve the greatest pre-
cision advantage in pelagic sampling applications. In 
terrestrial studies, the availability of remote sensing 
and direct observation means that differences in habitat 
type can be readily discerned and mapped, permitting 
reliable stratifi cation of the study region, often greatly 
improving survey precision. In pelagic sampling using 
a net, with either vertical or horizontal tows, very high 
levels of sampling variance are common (Pennington 
 1983 ,  1996 ). Remote sensing can only provide pre- 
survey knowledge of the surface layer, and the pelagic 
environment varies over time. High levels of clustering 
are common in pelagic environments, due to both high 
patchiness and dense aggregations spread over three 
dimensions, resulting in differences among sample counts 
of sometimes two to three orders of magnitude (many 
samples with zero counts, and a few samples with very 
high counts of hundreds or thousands of eggs or larvae, 
or of adults when fi sh are schooled). Aggregations of 
copepods over coral reefs were measured in swarm 
densities of hundreds of thousands per cubic meter 
(Hamner and Carleton  1979 ). 

 Other species known to aggregate include swarming 
ants (Vandermeer et al.  2008 ), bees (Fefferman and 
Starks  2006 ), and fl ocking birds (Farley et al.  2008 ). 
Other examples include sampling for invasive pests 
such as locusts (Clark  1969 ), algal blooms (Ochumba 
and Kibaara  1989 ), or more rare species limited to 
suitable but less well identifi ed habitat (Brown  1984 , 
Ellingsen et al.  2007 ). 

 In choosing between a random or systematic alloca-
tion of sample locations in environmental monitoring 
or ecological fi eld work, researchers face a trade- off. 
In autocorrelated (clustered) populations (identifi ed, in 
practice, by meaningful numbers of low or zero transect 
counts and a few big counts), a systematic survey 
design will nearly always be more precise (Cochran 
 1946 ,  1977 , D ’ Orazio  2003 ). In more highly autocor-
related populations, such as the fi ve clustered popula-
tions (b–f) of Fig.  1 , the improvement in survey estimate 
precision with systematic sampling is large. On the 
other hand, a random design brings more reliably 
estimated, unbiased confi dence intervals using the text-
book estimator,  v  1 , by meeting the assumption of 
independence. The trade- off is better (more precise or 
effi cient) estimates with a systematic design in clustered 
populations, but how (much more) precise remains 
uncertain.  

  Testing variance estimators for systematic surveys 

 To address this uncertainty, following Wolter ( 1984 , 
 2007 ), we tested a suite of variance estimation formulas 
applicable for use with systematic sampling. Some 
recent studies of systematic variance estimators have 
limited comparison of the textbook variance estimator 
to one of several forms of post- stratifi cation estimator 
(Dunn and Harrison  1993 , Aune- Lundberg and Strand 
 2014 ) represented in this study by  v  2  and  v  3 . We 
examined a wider range of variance estimators than 
previous studies, evaluating Wolter ’ s eight variance 
estimators, and fi ve variance estimators designed for 
use in spatially resolved (not linear) populations, two 
proposed by D ’ Orazio ( 2003 ), and three covered grid 
balanced difference estimators proposed here 
(Appendix). 

 We did not assess model- based approaches, which 
show considerable promise (Simmonds and Fryer 
 1996 , Aubry and Debouzie  2000 ,  2001 , Diggle and 
Ribeiro  2007 , Cressie and Wikle  2011 , Fewster 
 2011 , Opsomer et al.  2012 ) but are more difficult 
to code and implement than the simpler design- 
based systematic survey variance estimators tested 
here. Model- based methods depend on a correct 
choice of model assumptions for the true spatial 
distribution of organisms inside the survey study 
region, including its autocorrelation structure 
(Särndal et al.  1978 , Diggle and Ribeiro  2007 ). 
This can work very well for studies carried out 
on restricted sites, but semi- variograms included 
in Aune- Lundberg and Strand ( 2014 ) demonstrate 
the challenges of fitting models to real- world data 
for large and variable regions. Modeling methods 
continue to advance, and Bayesian methods (Cressie 
and Wikle  2011 ) or Gaussian random fields across 
the spatial domain (Thorson et al.  2015 ) offer 
further statistical modeling power for surmounting 
the high and complex variability common in real 
spatial data. 

 The other important class of survey methods we 
did not examine was adaptive sampling (Thompson 
and Seber  1996 , Seber and Salehi  2013 ). These can 
be designed for estimating density in clustered popula-
tions by placing higher sampling intensity where the 
species of interest occurs with higher probability as 
inferred from the survey itself. Generally these must 
be tailored to each application, and the aim is to 
fi nd adaptive designs that are unbiased. Asking 
researchers to implement decisions in the fi eld in real 
time about where and whether to sample can be chal-
lenging, with overestimation a potential risk (McGarvey 
 2006 :93). An alternative method for targeting the 
higher density sub- areas with higher sampling intensity 
for which non- bias can be assured by classical statistics 
is to (pre- ) stratify the study region. Strata can be 
drawn in subsequent iterations of a monitoring survey 
after a contour map from an initial uniform- grid 
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systematic survey demarcates areas of high and low 
density. Systematic sampling within well- drawn strata 
(Cochran  1977 :226–227, Aune- Lundberg and Strand 
 2014 ) offers two ways to reduce survey sampling 
variance. 

 Among the eight that he tested for systematic sam-
ples, Wolter ( 1984 ,  2007 :332) recommended the two 
post- stratifi cation variance estimators ( v  2  and  v  3 ). 
Fewster ( 2011 ) noted that these have become the most 
commonly applied (e.g., Millar and Olsen [ 1995 ], one 
by Simmonds and Fryer [ 1996 ], Kingsley [ 2000 ]) for 
systematic surveys. However, the simulation results 
here (Table  1  and Fig.  3 ) found  v  2  and  v  3 , after  v  1 , 
to be the most overestimation biased in clustered 
populations. Similar overestimation bias by  v  2  and  v  3  
was also evident in the 12 populations (i–l, o–r) of 
Fig.  4 , though for these, the differences between  v  2  
and  v  3  and other estimators (besides  v  8  and  v  W ) were 
less pronounced. D ’ Orazio ’ s ( 2003 )  v  STR2 , an adapta-
tion of Wolter ’ s  v  2 , was similarly biased. This poor 
performance by the post- stratifi cation variance estima-
tors could refl ect their having been developed and 
tested by Wolter for linear, rather than spatially, 
autocorrelated populations. We did not test the Matérn 
( 1947 ) two- dimensional versions of local spatial dif-
ference estimators used in Scandinavian forest surveys 
(reviewed by Heikkinen  2006 , Aune- Lundberg and 
Strand  2014 ). 

 We found Wolter ’ s versions of balanced difference 
estimators ( v  4 – v  6 ) to be less biased than the post- 
stratifi cation estimators for populations b, c, e, i, l, 
q, and less clearly so for f, j, o, and p. Covered grid 
estimators, which we developed as extensions of Wolter ’ s 
 v  4 – v  6 , improved on  v  4 – v  6  in spatially clustered popula-
tions b–c, e–f, l, p, q, and more weakly so for i, j, 
k, o. Covered grid estimators ( v  RCG ,  v  CCG ,  v  TCG ) were 
the second best performing category of variance 
estimator. 

 For clustered populations, covered grid ( v  RCG ,  v  CCG , 
 v  TCG ) and other estimators ( v  1 – v  6 ,  v  STR2 ) were con-
siderably more biased, and much less precise, than 
the best performers among the 13 we tested here,  v  8  
and  v  W . However, for  v  W  in populations b, c, q, and 
for both  v  8  and  v  W  in populations i, j, k, underesti-
mation of sampling variance for some clustered popu-
lations was evident (Figs.  3  and  4 ). 

 These results were effectively reversed in unclustered 
populations, where all 13 estimators underestimated 
the true variance (a, h, m), with  v  8  and  v  W  being the 
most, rather than the least, biased (a, g, h, m). Future 
work could address the considerable underestimation 
bias that remains for  v  8  and  v  W  in unclustered 
populations. 

 Wolter ( 2007 :332) reported that  v  8  has remarkably 
good properties for the simulated populations with 
spatial autocorrelation or a linear trend. D ’ Orazio 
( 2003 :293) also concluded that  v  W  was the appropri-
ate choice for populations with high spatial 

correlation. But Wolter and D ’ Orazio observed under-
estimation bias of  v  8  and  v  W  respectively, and overall 
found in favor of post- stratifi cation estimators, nota-
bly for lower sample sizes and lower levels of 
autocorrelation.  

  Future work: improving on ν 8  and ν W  

 The problem of estimating the variance of the 
systematic sample mean was fi rst addressed in 
Scandinavian forestry in the 1920s and 1930s 
(Heikkinen  2006 ), and later in North American for-
estry (Hasel  1938 , Osborne  1942 , Finney  1948 ,  1949 , 
Bourdeau  1953 ). A series of studies by statistical 
sampling theorists from the 1940s onward, fi rst 
reviewed by Buckland ( 1951 ), extended Cochran ’ s 
idea of a superpopulation model to investigate sta-
tistical properties of estimators in spatial populations 
where systematic sampling was more precise 
(Quenouille  1949 , Das  1950 , Jowett  1952 , Williams 
 1956 , Hannan  1962 , Iachan  1982 , Bellhouse and 
Sutradhar  1988 ). However, this theoretical approach 
has not yet produced a robust, unbiased variance 
estimator generally usable with systematic data sets 
(see e.g., Cochran  1977 ). Wolter ( 1984 ,  2007 ), 
D ’ Orazio ( 2003 ), and others proposed and investigated 
a selection of diverse estimators. The  unexpectedly 
strong performance that we observed for  v  8  and its 
close variant  v  W  may suggest a pathway forward 
toward still more reliable variance estimates under 
 systematic sampling. 

 These two least biased and most precise variance 
estimators for clustered populations,  v  8  and  v  W , use 
formulas that explicitly correct for the observed level 
of autocorrelation (if positive) between successive sys-
tematic samples. In particular,  v  8  is written (Wolter 
 2007 :302):

       

where   
�̂�=

1
s

2
⋅(n−1)

n−1∑
i=1

(y
i+1− ȳ) ⋅ (y

i
− ȳ)

   . 

 The autocorrelation   ̂𝜌    in  v  8  quantifi es observed cor-
relation between successive points in the systematic 
sample grid. In D ’ Orazio ’ s  v  W  ( 2003 ), Moran ’ s index 
of spatial autocorrelation was substituted for   ̂𝜌    in 
seeking a two- dimensional generalization of  v  8 . Future 
development of better systematic variance estimators 
in two- dimensional autocorrelated populations should 
seek to account for the full autocorrelation function 
vs. separation distance (Quenouille  1949 , Matérn  1960 , 
Diggle and Ribeiro  2007 ) to improve on  v  8  and  v  W . 
Relatively low bias by  v  8  and  v  W  for positively auto-
correlated (clustered) populations suggests that the   ̂𝜌    
- dependent correction terms can work well for 

v8 =

{
(1− f)(s2∕n)[1+2∕ ln(�̂�)+2∕(�̂�−1−1)], if �̂�lt;0

(1− f)(s2∕n), if �̂�≤0
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organisms clustering by either patchiness of habitat 
or aggregating behavior, and for the majority of popu-
lations clustering by a specifi ed variogram autocorrela-
tion structure. But  v  8  and  v  W  substantially underesti-
mated variance in the unclustered populations. 

 We conjecture that one important improvement to 
 v  8  and  v  W  which could reduce this underestimation by 
 v  8  and  v  W  in unclustered populations would be to extend 
its reach to permit more direct use of   ̂𝜌    estimates that 
are negative. In Wolter ’ s  v  8 ,        the correction terms  are  
(2∕ ln(�̂�)+2∕(�̂�−1−1)) applied only for positively auto-
correlated (clustered) populations, necessary, in particu-
lar, since   ̂𝜌    is used as the argument of a log function. 
In randomly distributed populations, where   ̂𝜌    averages 
around zero, the chance of a sampled negative or posi-
tive value is about equal. The   ̂𝜌    sign asymmetry in 
Wolter ’ s  v  8  formula specifi es that no correction is made 
to the textbook variance estimator for   ̂𝜌≤0   , which 
plausibly leads, in part, to the observed underestimation 
bias of  v  8  and  v  W  in CSR populations. A systematic 
variance estimator is sought which does not truncate 
for negative   ̂𝜌    and which can incorporate not merely 
a single scalar   ̂𝜌    but the full dependence of autocor-
relation on separation distance within the survey study 
region (Cochran  1946 , Quenouille  1949 , Diggle and 
Ribeiro  2007 ; P. J. Diggle,  personal communication ).   

  CONCLUSIONS 

 Systematic survey designs are superior to random 
designs in clustered populations for three important 
reasons. They provide more precise survey estimates 
in populations that cluster by habitat patchiness or 
aggregating behavior, they are easier to implement, 
and they produce input data suitable for geostatistical 
mapping. The better precision of systematic designs 
for estimating population density should extend to any 
environmental or ecological quantity that depends on 
population density such as standing stock biomass, 
CO 2  absorbed or released, or prey consumed. To 
address the overestimation of confi dence intervals for 
systematic surveys in clustered populations, among 
those evaluated,  v  8  and  v  W  were clearly superior for 
estimating the variance of the survey sample mean, 
but these were the worst performing in unclustered 
populations. The statistical search is ongoing for a 
variance estimator usable with systematic surveys that 
is unbiased (or meaningfully less biased) in both clus-
tered and random populations.  
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