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Abstract
Coralline algae are susceptible to the changes in the seawater carbonate system associ-

ated with ocean acidification (OA). However, the coastal environments in which corallines

grow are subject to large daily pH fluctuations which may affect their responses to OA.

Here, we followed the growth and development of the juvenile coralline alga Arthrocardia
corymbosa, which had recruited into experimental conditions during a prior experiment,

using a novel OA laboratory culture system to simulate the pH fluctuations observed within

a kelp forest. Microscopic life history stages are considered more susceptible to environ-

mental stress than adult stages; we compared the responses of newly recruited A. corym-
bosa to static and fluctuating seawater pH with those of their field-collected parents.

Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient

and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments

of daily ~x ¼ 8:05 (daytime pH = 8.45, night-time pH = 7.65) and daily ~x ¼ 7:65 (daytime

pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all

treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65.

This pattern was similar to the adults’ response, except that adults had zero growth under

fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from

10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of

fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimen-

tal treatments, from cryptic spores associated with the adult A. corymbosa. There was no

effect of experimental treatment on the growth of the benthic diatoms. On the community
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level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy

macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.

Introduction
Rising CO2 emissions are lowering the pH of the world’s ocean [1,2]. If anthropogenic emis-
sions continue unabated, the present average surface seawater pH of 8.1 is projected to drop to
7.8 by 2100 [1]. The projected drop in pH (i.e. increase in proton [H+] concentration) results
in changes to the seawater carbonate system, termed ‘ocean acidification’ (OA). OA could
cause wide-ranging effects to marine ecosystems, by affecting individual organisms at all tro-
phic levels, from bacteria to fish, and therefore ecosystem functioning [3–8]. Calcifying organ-
isms are particularly susceptible, because perturbations in the seawater carbonate system,
including changes in [H+] and [CO2(aq)], can reduce their ability to synthesise and/or maintain
calcium carbonate skeletons [9–11].

Coralline algae are calcifying red seaweeds (Rhodophyta) that dominate benthic coastal
waters from tropical to Polar regions, providing essential ecosystem services including struc-
tural frameworks and carbonate deposition [12]. They are considered the most susceptible of
all calcifiers to OA [13]; most laboratory/mesocosm studies reveal reduced rates of growth
and/or calcification [14,15] and field studies along natural pH gradients in volcanic vent sites
show reduced abundances in sites with lower pH [16–18]. The majority of studies on coralline
algae have been conducted in tropical and warm temperate regions (e.g. [16–19]), with fewer
studies on cold temperate species (e.g. [14,15,20]). This is surprising, because cold temperate
regions and the Polar seas are projected to be more vulnerable to OA because cold water
absorbs more CO2 [21,22].

In cold-temperate systems of the northern and southern hemispheres, coralline algae grow
in coastal waters within which strong diel, semi-diurnal and stochastic pH oscillations of vary-
ing amplitudes have been reported [14,23]. The pH variations are associated with biological
activity, with photosynthesis causing pH to increase during the day and respiration causing pH
to decrease at night [24]. Coralline algae are often associated with canopy-forming seaweeds,
especially members of the orders Fucales and Laminariales (termed ‘kelps’). The kelps are
responsible for changing pH in the surrounding water, for example, pH in kelp forests exhibits
large diurnal fluctuations changing> 0.25 units [23]. Coralline algae themselves can also meta-
bolically modify pH at their surface, within the diffusion boundary layer [20,25]. Therefore,
coralline algae, and other associated benthic organisms growing within or near coastal kelp for-
ests are naturally exposed to a daily cycle of both high (~8.86) and low pH (~7.7) [14,23].

The strong pH fluctuations of coastal kelp forest ecosystems changing> 0.25 units, are in
sharp contrast to those observed in the open ocean, where fluctuations range from 0.024 to
0.096 [23]. However, the majority of laboratory experiments testing the effects of OA on ben-
thic coastal organisms have been made in experimental systems that maintain a relatively con-
stant pH or in systems where pH is allowed to vary naturally but is not controlled [26]. An
exception is Cornwall et al. [14] who rigorously controlled pH and found that pH fluctuations
negatively affected the growth rates of an articulate coralline alga, Arthrocardia corymbosa,
although no other physiological diagnostics (e.g. photosynthetic efficiency, pigment content
and tissue elemental composition) were affected by pH or pH fluctuations. Therefore, pH fluc-
tuations can affect the outcome of experiments examining organismal responses to OA.

Acidification and pH Fluctuation Affect Coralline Algal Recruits
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The majority of experiments testing the effects of OA on seaweed have examined adults,
with relatively few studies on juveniles [27,28]. This is surprising because juveniles are consid-
ered the most susceptible life history stage to environmental stress [29–32]. Here we investigate
the effects of static vs fluctuating pH on the growth and development of new recruits of the cor-
alline alga Arthrocardia corymbosa (Lamarck) Decaisne (hereafter Arthrocardia).

This experiment is a continuation of Cornwall et al. [14], who grew field-collected mature
adults of Arthrocardia (Fig 1a) under (1) static pH 8.05 representing the current average global
surface water pH; (2) a diurnally fluctuating pH, with a daytime pH of 8.45 and night-time pH
of 7.65 (daily ~x ¼ 8:05); (3) a static pH of 7.65, which represents the projected ‘worse-case
scenario’ of a 0.4 unit reduction in pH over the next century; and (4) a pH that was fluctuated
diurnally around the average surface seawater pH projected for 2100, with a daytime pH of
8.05 and night-time pH of 7.25 (daily ~x ¼ 7:65). During the Cornwall et al. [14] experiment,
the adult Arthrocardia released spores onto the Perspex plates to which they were attached.
Here we follow the growth and the development of these spores to crusts and upright thalli,
under the same experimental conditions as Cornwall et al. [14], for a further 16 weeks. We
hypothesized that (1) coralline recruit growth rates in the low pH treatments (both static and
fluctuating pH 7.65) would be lower than rates under ambient pH treatments (both static and
fluctuating pH 8.05), (2) growth rates of coralline crusts under fluctuating pH will be lower
than those under static pH (cf [14] for adults), and (3) there would be no change in the %
weight of Mg Calcite between experimental treatments, as observed for adults (cf [14]). Also,
because the juveniles were recruited from adults that had already been in experimental culture
for 6 weeks, we were able to make broad comparisons between the growth and mineralogical
responses of the adults and juveniles to pH and pH fluctuation treatments. During this experi-
ment, a number of benthic diatoms and fleshy seaweeds also recruited, from cryptic spores
associated with the mature Arthrocardia, and these were identified and enumerated. For the
diatoms, we developed an a posteriori hypothesis at week 7 that diatom biomass will be compa-
rable under all experimental treatments because elevated CO2 would neither benefit nor nega-
tively affect diatom growth rate [7].

Materials and Methods

Algal material
Field material of Arthrocardia was collected using permits provided by the New Zealand Minis-
try of Fisheries to the University of Otago. The field site is not a marine reserve, nor is Arthro-
cardia classified as endangered.

This experiment is a continuation of Cornwall et al. [14], in which ‘clumps’ of mature
Arthrocardia, collected on 12th of March 2011 from under a canopy the giant kelpMacrocystis
pyrifera at 1.5 to 2 m depth in Karitane, Coastal Otago, New Zealand (45° 38' 20" S, 170° 40' 15"
E), were cultured under the static and fluctuating pH treatments (described below) for 6 weeks;
twenty-four clumps of Arthrocardia, each composed of 10 upright thalli standing on a small
crustose holdfast, were secured onto each of 24 circular Perspex plates (70 mm diameter) using
nylon fishing line. At the end of Cornwall et al. [14] visible post-settlement recruits were
observed on the Perspex plate under and around each articulate algal canopy; the adult Arthro-
cardia were removed from the culture system on April 24th 2011 [14], the Perspex plates were
photographed then returned immediately to their respective daytime experimental pH condi-
tions. In this study, the development of these coralline algal recruits was followed for 16 weeks,
until August 13th 2011.

Acidification and pH Fluctuation Affect Coralline Algal Recruits
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Experimental design: automated pH-controlled culture system
Seawater (salinity 34.3 SA) used during the experiment was collected from Portobello Marine
Laboratory, University of Otago, located in Harrington Point at the entrance of Otago Har-
bour. The water is well flushed and receives typical levels of coastal nutrients [33] and is not
influenced by heavy metal contamination [34]. Before use, seawater was filtered through Filter
Pure1 polypropylene spun cartridge (5 μm pore size) and ultraviolet sterilized with an Aqua-
step1 25 watts Ultraviolet Sterilizer. Initial concentrations of nitrate and phosphate were
2.302 ± 0.048 and 0.179 ± 0.008 μM, respectively.

The 24 plates upon which the corallines had recruited were grown in a flow-through Plexi-
glas1 acrylic culture tank (650 mL) following the assigned random pH treatments (n = 6) of
[14]. The mean daily pH treatments were two static pH levels (pHT 8.05 and 7.65) representing
present day and the worst case scenario future ocean under OA, respectively, and two diurnally
fluctuating pH treatments in which the mean surface ocean present day pH (8.05) and future
pH (7.65) was increased by 0.4 units during the day and decreased by 0.4 units a night: accord-
ingly, daytime pH was 8.45 and 8.05, and night time pH was 7.65 and 7.25, for the present and

Fig 1. The articulate coralline Arthrocardia corymbosa. (a) Reproductive sporophyte, (b) Tetraspores,
and (c) Germinating spores initially coalescing into an extensive crustose holdfast, which subsequently
develop into upright articulated fronds.

doi:10.1371/journal.pone.0140394.g001
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future ocean (2100) conditions, respectively. The 0.8 unit difference between night and day
time pH is comparable to the amplitude of summer pH fluctuations observed in the field [14].

The pH treatments were achieved using a modified version of the automated pH-controlled
culture system described by [35]. This system was housed in a walk-in growth chamber at
10.8°C under a 12:12 h light/dark cycle and a mean irradiance of 18 μmol photons m-2 s-1

which is optimal for the growth of these coralline algae [14,15]. Briefly, the ambient seawater
pHT 8.01 ± 0.02 was increased to pHT 8.45 by using 0.5 M NaOH, and stored in a covered 150
L storage tank for further pH manipulation using the automated system. Seawater was drawn
from the storage tank into the 1 L mixing tank and target pHT levels were achieved by adding
0.5 M NaHCO3 and 0.5 M HCl. This method of pH adjustment results in changes to the car-
bonate chemistry and total alkalinity (AT) that are chemically identical to CO2 bubbling
[36,37]. After mixing, pHT was spectrophotometrically measured using indicator dye. When
the pHT level was within 0.03 units of the target pH, the seawater was transferred to the appro-
priate 1 L header tank. Both the mixing and header tanks were air-tight. If seawater pH adjust-
ment exceeded the 0.03 pH unit tolerance level, seawater in the mixing tank was sent to waste
and the process repeated until the desired pH and tolerance level were achieved. Once filled,
the pH-adjusted seawater from the header tank automatically supplied fresh medium to its
respective 650 mL culture tank. The inflow was located at the bottom while the outflow was at
the top of the air-tight culture chambers. The automated system required approximately 4.4
hours to complete one cycle of delivering seawater to all of the 24 header tanks. The order of
exchanging pH-adjusted seawater into each culture chamber was determined at random. To
maintain seawater supply for the semi-continuous flow-through culture system, seawater in
the storage tank was replenished 2× a day. To minimise the thickness of the diffusion boundary
layer at the surface of the organisms, culture chambers were provided with water movement
using magnetic bars under the Perspex plate, stirred at 550 rpm. This rpm provides an an
instantaneous seawater velocity of 4.3 cm s-1. The seawater velocities were previously measured
in the culture chamber using a Nortek Ventrino micro-Acoustic Doppler Velocimeter (micro-
ADV; C.A. Pilditch, University of Waikato, New Zealand). The micro-ADV was placed in the
culture chamber and then the velocity measured for 120 s, at 25 Hz, with the stirrer bar set at
550 rpm.

Coralline algal growth
The size of the coralline algal recruits that grew initially as crusts was quantified on two occa-
sions, on the 26th June and 13th August 2011. Recruits on the acrylic plates, submerged in sea-
water, were observed under a Leica EZ4 D stereo microscope. Colour images were captured
using the built-in digital 3MP camera and processed using the LAS EZ software for PC (Leica
Microsystems, Wetzlar, Germany). Coralline algal recruit surface area was then measured
using image processing software (ImageJ 1.46; http://imagej.nih.gov/ij/). Photos taken from
both time points were compared and the same ten individual haphazardly selected coralline
algal recruits were identified. Relative growth rates, μ, of each recruit disc were calculated as:

m ¼
ln Dt2

Dt1

� �

t2 � t1

where Dt is disc size at different time points (t1 and t2), respectively. Average μ was calculated
per culture tank (10 individuals) and treatments (n = 6, ± SE). In addition, the number of
upright thalli that developed from the crusts between the 26th of June and 13th of August were
counted.
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Skeletal mineralogy: x-ray diffractometry
At the end of the experiment, crusts and erect thalli of coralline macroalgae were removed
from the plates by scraping with a scalpel. Samples were bleached to remove organic material,
rinsed and dried. They were ground to a fine powder in an agate mortar with 0.1 g NaCl as an
internal XRD standard, spread out and dried on a glass slide to randomize crystallite orienta-
tion. Each slide was run through a PAN Analytical X'Pert PRO X-ray diffractometer at a scan
speed of 0.02571 °2 θ, over the range of 26 to 33 °2 θ. Peak heights (in counts) and positions (in
°2 θ) were determined using X'Pert Data Collector and High Score data processing. The halite
peak position was standardized to 31.72 °2 θ, and other peak positions corrected. The percent
Mg in the calcite by dry weight was calculated from calcite peak position (in °2 θ) using the
equation y = 30x−882 [38]. Each spectrum and the locations of ragged peaks were visually
inspected and confirmed. Relative peak height counts (ht) of aragonite (A1 at 26.213 °2 θ and
A2 at 27.216 °2 θ) and calcite (C1 at 29.4 to 29.8 °2 θ) were used to calculate Peak Height Ratio
(PR) for each graph: PR = (ht A1 + ht A2)/(ht A1 + ht A2 + ht C1). Wt% calcite was calculated
using the calibration of [39]: Wt % Calcite = 80.4 (PR)2–180.9 (PR) + 101.2. This method
assumes that only calcite and aragonite are present.

Observations on ‘fleshy’macroalgal recruits
During this experiment, a number of non-calcifying seaweeds recruited onto the Perspex
plates. The identity and number of these juvenile fleshy macroalgae on each Perspex plate was
recorded on day 60 and again on the final day of the experiment (day 111).

Benthic diatoms
Benthic diatoms were observed growing around the Plexiglas walls of each culture vessels and
on the surface of the Perspex plate. Diatom films around the Plexiglas walls were gently
removed with a soft-bristle paintbrush every 2 weeks to avoid dense cover, and in conducting
this removal, we were able to quantify the biomass of diatoms that accumulated every 2 weeks.
The result of the brushing was that the diatom cells were suspended within in each culture ves-
sel. These were decanted and the seawater immediately replenished with newly pH-adjusted
seawater stored in the header tank. Diatom biomass within a 2 ml aliquot removed from the
650 ml cell suspension was quantified every 2 weeks from 3rd June 2011 to 13th August 2011.
The 2 mL aliquot of the cell suspension from each culture vessel was fixed in glutaraldehyde at
1% final concentration. Cells were counted and identified under a Zeiss microscope (Axiostar
plus). For species identification, sets of 0.5 mL of aliquots were filtered onto 0.6 μm pore size
polycarbonate filters (Whatman) under low pressure of vacuum. The filters were then air-dried
on a plastic Petri-dish and examined using a scanning electron microscope (JEOL Ltd. Tokyo,
Japan) after being coated with gold.

For the quantification of benthic diatom chlorophyll a (Chl a), 10 mL of the cell suspension
were filtered under a low vacuum (30–40 mm Hg) onto Whatman GF/F glass fiber filters. Pig-
ment was extracted in 90% acetone at 4°C in dark for 18 hours, and measured using a Turner
10-AU fluorometer [40]. Due to variable cell densities and different species’ composition in
each culture tank, biomass normalized Chl a concentration was standardized with particulate
organic carbon (POC) concentration and expressed as μg Chl a (μg C)-1.

For particulate organic carbon (POC) and nitrogen (PON) analysis, sample volumes of 20
ml were collected onto pre-combusted (450°C, 2 hours) Whatman GF/F glass fiber filters,
dried at 55°C, and wrapped in tin capsules. Molar POC and PON were quantified after ignition
in a Costech Elemental Combustion System (Costech Analytical Technologies Inc., Valencia,
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CA, USA), calibrated with EDTA (C:N = 4.29) and phenylalanine (C:N = 7.72) as reference
materials.

For particulate organic phosphorus, sample volumes of 10 mL were collected onto pre-com-
busted (450°C, 2 hours) Whatman GF/F glass fiber filters. These were rinsed with 2 mL 0.17
mol L-1 Na2SO4 solution, placed in 20-mL pre-combusted (450°C, overnight) borosilicate scin-
tillation vials with 2 mL 0.017 mol L-1 MgSO4 added. The liquid was evaporated to dryness at
95°C. For analysis, the vials were combusted at 450°C for 2 hours. After cooling, 5 mL of 0.2
mol L-1 HCl was added. The vials were then tightly capped and heated at 80°C for 30 minutes
for digestion. Dissolved phosphate concentration from the digested particulate organic phos-
phate (POP) sample was measured colorimetrically using a spectrophotometer as described in
[41].

For biogenic silica (BSi), sample volumes of 20 ml were collected onto 0.6 μm 47 mm poly-
carbonate filters, dried at 60°C, and then stored in a dessicator at room temperature until anal-
ysis. BSi was measured following the method of [42]. The BSi quota was standardized by Chl a
concentration and expressed as μmol (μg Chl a)-1.

Effect of community metabolism on seawater carbonate parameters
To determine if the algal assemblage modified seawater pH and alkalinity, these two parame-
ters were quantified on the 55th day of the experiment (June 18th 2011). For the carbonate
chemistry measurements, ambient seawater (pH 8.01), pH-adjusted seawater (initial pH 7.25,
7.65, 8.05, and 8.45), and after 4.4 h incubation during the day (18 μmol photons m-2 s-1 photo-
synthetically active radiation, PAR) from the initial pH (pH 7.65, 8.05, and 8.45) corresponding
to each treatment were collected and fixed in mercuric chloride. Briefly, at the end of the
4-hourly seawater exchange cycle in our close system, 500 mL seawater from each culture tank
was collected, just before the newly manipulated seawater stored in the header tank was
allowed to replenish seawater in each 650 ml culture vessel.

Seawater chemistry
Total alkalinity (AT) of samples was measured using the closed-cell titration method described
by [43]. AT, pHT, salinity, and temperature were used to calculate carbonate chemistry parame-
ters using the program SWCO2 [44].

Data analysis
The effect of mean pH (ambient/low), diurnal variation (fluctuating/static) and their interac-
tion on the above response variables (i.e. coralline algal growth rate, number of erect thalli,
skeletal mineralogy, and diatom Chl a, BSi, and Redfield ratios) were separately tested using a
two-way Analysis of Variance (ANOVA, P< 0.05) after homogeneity (Levene’s test) and nor-
mality (Shapiro-Wilk test) were satisfied. Significantly different groups were classified after
Duncan’s Multiple Range Test (DMRT, P = 0.05). Statistical analyses were done using SPSS
18.0 (SPSS, Chicago, IL, USA).

Results

Coralline algae
Under all experimental treatments, the spores of Arthrocardia germinated and grew into disc-
shaped crusts before upright fronds were observed to develop (Fig 1c). After nine weeks, crust
sizes were not significantly different between pH (P = 0.231), diurnal variation (P = 0.912) and
their interaction (P = 0.964; Fig 2a; 26 June). At week 16, larger crusts were observed under
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Fig 2. Spore development and growth rates of Arthrocardia corymbosa. (a) Crust size after nine (26th

June) and sixteen weeks (13th August) in culture, and (b) Corresponding growth rates of the coralline algal
recruits. (c) Growth rates (n = 6, ± SE) of the reproductive adults from Cornwall et al. [14] are re-plotted here
to facilitate a direct comparison of the patterns in growth responses of adults vs recruits to static vs fluctuating
pH. Experimental pH treatments (x-axis) were static (s—) and fluctuating (f l) pH conditions. Diurnally
oscillating pH with mean daily pH 8.05 (f l) received pH-modified seawater of pH 8.45 during day and pH 7.65
at night, while mean daily pH 7.65 (f l) received pH-modified seawater of pH 8.05 during day and pH 7.25 at
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static pH 8.05 (Fig 2a; 13 August), but the main effects of pH and diurnal variation, as well as
their interaction, were not significantly different (P> 0.05). Within this latter 7-week period,
the specific growth rate differed between pH (ANOVA, P = 0.020; DMRT, P = 0.05; pH
8.05> pH 7.65) and diurnal variation (ANOVA, P = 0.027; DMRT, P = 0.05;
static> fluctuation) but their interaction was not significantly different. Growth rate was high-
est under static pH 8.05 and lowest under fluctuating pH 7.65 (Fig 2b). Crust growth rate at μ =
0.009 was 37–56% lower under the fluctuating pH 7.65 relative to the other three treatments (μ
= 0.015–0.022). At the end of the experiment, a greater number of upright thalli were observed
under the static pH 7.65 (�x ¼ 48 � 29 SEÞ (Fig 3a); 63–86% fewer upright thalli were
observed in all other treatments (Fig 3a). Due to high variability between replicates, this differ-
ence was statistically non-significant between pH (ANOVA, P = 0.275), diurnal variation
(ANOVA, P = 0.159) and their interaction (ANOVA, P = 0.450). Some bleaching of coralline
recruits was noted across all treatments (S1 Fig) and there was no difference between the pro-
portions of bleached individuals in any treatment. The percentage skeletal weight of MgCO3 in
calcite was 14.5% lower in the pH 7.65 treatments compared to the pH 8.05 treatments (Fig
3b). The difference was statistically significant between pH (ANOVA, P = 0.016), but not
between diurnal variation (ANOVA, P = 0.804), and their interaction (ANOVA, P = 0.255).

Observations of fleshy seaweed recruitment
Turfing brown and green algae were observed in all treatments (S1 Table) and other fleshy
brown macroalgae were found in all treatments except static pH 8.05 (S1 Table); identified
were juvenile Durvillea sp., Dictyota sp. and Desmarestia lingulata (S1 Table, S2 Fig). Two spe-
cies of fleshy red macroalgae were found in the fluctuating pH 8.05 treatment (S1 Table) and a
crustose coralline species, Synarthrophyton patena, was also identified in this treatment (S1
Table, S2 Fig), which released tetraspores upon examination (S2c Fig). It should be noted that
the specific species that arose in each culture container will depend on the spores available as
epibionts on Arthrocardia thalli at the start of the experiment; we cannot therefore infer effects
of OA or pH fluctuations.

Benthic diatoms
At least six species of benthic diatoms, consisting of naviculoid (Navicula sp., Fallacia sp.),
monoraphid (Cocconeis sp., Achnanthes sp.), and nitzschioid (Nitzschia sp., Cylindrotheca sp.),
were observed across all treatments (S3 Fig). There was no effect of experimental treatment
(i.e. pH, diurnal variation and their interaction; ANOVA, P> 0.05) on diatom community bio-
mass (Chl a) or frustule silica content (BSi quota) (Fig 4a and 4b). Likewise, diatom stoichiom-
etry (C:N, C:P, N:P, C:N:P) was not significantly different between treatments (S2 Table).

Community metabolism and seawater carbonate chemistry
For each experimental treatment, the pH increased compared to the initial pH of the treatment
after 4.4 h incubation at 18 μmol photons m-2 s-1 (Table 1). In static pH 7.65, pH increased by
0.15 (30% decreased in H+) after 4.4 h compared to static pH 8.05 where pH increased by 0.04
(9% decrease in H+). The 4.4 hourly seawater exchange in the culture chambers effectively

night. Static treatments received the same pH during day and night. In (b) and (c), points sharing the same
letters are not significantly different (DMRT, P>0.05). c) Note that adult relative growth rate is on a dry weight
basis whereas relative growth rates of new recruits (b) are on a surface area basis.

doi:10.1371/journal.pone.0140394.g002
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exposed the community to persistent ambient (pH = 8.05–8.09) and ‘OA’ (pH = 7.65–7.80)
seawater.

The calculated aqueous CO2 was 171% higher under static pH 7.65 compared to static pH
8.05. After 4.4 h, the change in pH and AT suggests 2.2× higher CO2 uptake under static pH
7.65 (37%) compared to static pH 8.05 (16%). However, the higher CO2 availability and assimi-
lation under static pH 7.65 did not affect HCO�

3 uptake (11%) which remains comparable to
HCO�

3 uptake (10%) under static pH 8.05 (Table 1).

Fig 3. Number of fronds and skeletal mineralogy of Arthrocardia corymbosa. (a) Mean number of
upright thalli (n = 6, ± SE) during two sampling periods, and (b) Corresponding skeletal mineralogy of the
coralline algal recruits at the end of the experiment. The pH treatments were the same as in Fig 2. a) The
main effects of pH and diurnal variation, as well as their interaction were not significantly different (ANOVA,
P > 0.05). b) Percentage dry weight of MgCO3 in calcite was reduced by 14.5% under both low mean daily pH
treatments. There was a statistically significant difference between pH (ANOVA, P = 0.016), but not between
pH fluctuation (ANOVA, P = 0.804), nor their interaction (ANOVA, P = 0.255). Horizontal bar groupings and
different letters refer to significant differences between mean values (n = 6, ± SE).

doi:10.1371/journal.pone.0140394.g003
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Under fluctuating pH 8.05 and pH 7.65, communities previously exposed to night-time low
pH 7.65 and pH 7.25 were subsequently exposed to seawater with a higher daytime experimen-
tal pH 8.41 (target pH = 8.45) and pH 8.05 (target pH = 8.05), respectively. During the first
cycle under the light phase, the seawater pH decreased by 0.83% and 0.43% after 4 h under fluc-
tuating pH 8.05 and fluctuating pH 7.65, respectively (Table 1).

Discussion
The first hypothesis, that regardless of static or fluctuating pH the growth rates of the coralline
recruits would be lower in pH 7.65 treatments compared to pH 8.05 treatments, was supported,
and the second hypothesis that growth rates would be lower in fluctuating treatments than
static was also supported. The growth responses of the newly recruited juvenile Arthrocardia to
static and fluctuating pH followed the same pattern as those reported for the mature Arthrocar-
dia, which were the ‘parental stock’ for the juveniles in this experiment [14]. The patterns are
illustrated in Fig 2b and 2c, where the specific growth rates of adults (wet wt. basis) are plotted

Fig 4. Responses of benthic diatom assemblage. (a) Chlorophyll a, and (b) Biogenic silica (both n = 6, ±
SE) of (c) Benthic diatom assemblage in culture tanks. The pH treatments were the same as in Fig 2. a) and
b) The main effects of pH and diurnal variation, as well as their interaction were not significantly different
(ANOVA, P > 0.05).

doi:10.1371/journal.pone.0140394.g004
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below those of the juveniles (surface area basis); while absolute differences in growth rate can-
not be compared, the similarity of the pattern of growth responses to both pH and pH fluctua-
tion is striking.

For the juveniles, however, the responses to mean pH and pH fluctuation treatments appear
‘less severe’ than those reported for the adults, as there was no significant difference between
static pH 8.01, fluctuating pH 8.01 and static pH 7.65. Furthermore, in the fluctuating pH 7.65
treatment of Cornwall et al. [14], the adult growth rate was close to zero whereas for the juve-
niles a positive growth rate was recorded. This finding suggests that the juveniles were less
severely affected by the experimental treatments than the adults.

Table 1. Summary of seawater carbonate chemistry. Carbonate parameters (n = 6, ±SE) were calculated from total alkalinity (AT, n = 6) and pH (n = 6)
measurements of seawater corresponding to each treatment. (+) and (–) refers to % increase and decrease, respectively, in carbonate chemistry parameters
after 4.4h incubation under 18 μmol photons m-2 s-1.

Treatment Cycle Target
pH

EXPM
pH

H+ ×
10−3

μmol
kg-1

pCO2

μatm
AT

μmol
kg-1

DIC μmol
kg-1

H2CO3

μmol
kg-1

HCO
�
3

μmol
kg-1

CO2�
3

μmol
kg-1

ΩA ΩC

Static pH 8.05 Night 8.05 8.05
(0.001)

9.00
(0.031)

430 (2) 2484
(11)

2285
(0.866)

19.32
(0.093)

2117
(1.313)

149
(0.536)

2.26
(0.008)

3.56
(0.013)

Day 8.05 8.05
(0.004)

8.90
(0.084)

425 (6) 2484
(11)

2283
(2.381)

19.09
(0.250)

2114
(3.618)

151
(1.476)

2.29
(0.022)

3.59
(0.035)

After 4.4h
light
incubation

8.09
(0.037)

8.08
(0.659)

356
(44)

2278
(55)

2068
(60.739)

15.98
(1.982)

1902
(64.372)

151
(13.295)

2.29
(0.202)

3.59
(0.317)

% change (+) 0.52 (-) 9.23 (-)
16.26

(-)
8.26

(-) 9.42 (-) 16.30 (-) 10.04 (+) 0.09 (+) 0.09 (+) 0.09

Fluctuating,
mean daily
pH = 8.05

Night 7.65 7.65
(0.005)

22.48
(0.233)

1180
(16)

2484
(11)

2439
(1.817)

52.11
(0.687)

2323
(1.921)

66
(0.783)

0.99
(0.012)

1.56
(0.019)

Day 8.45 8.41
(0.003)

3.92
(0.028)

158 (2) 2484
(11)

2073
(2.664)

7.11
(0.079)

1779
(4.382)

288
(1.792)

4.37
(0.027)

6.85
(0.043)

After 4.4h
light
incubation

8.34
(0.024)

4.61
(0.269)

183
(15)

2339
(12)

1990
(8.977)

8.25
(0.687)

1741
(20.598)

241
(12.969)

3.65
(0.197)

5.74
(0.309)

% change (-) 0.83 (+) 17.52 (+)
16.24

(-)
5.84

(-) 4.02 (+) 16.09 (-) 2.11 (-) 13.30 (-)
13.30

(-)
13.30

Static pH 7.65 Night 7.65 7.65
(0.002)

22.39
(0.094)

1174
(6)

2484
(11)

2438
(0.731)

51.88
(0.276)

2322
(0.774)

66
(0.315)

1.00
(0.005)

1.57
(0.008)

Day 7.65 7.65
(0.001)

22.34
(0.039)

1172
(3)

2484
(11)

2438
(0.307)

51.78
(0.116)

2322
(0.325)

66
(0.132)

1.00
(0.002)

1.57
(0.003)

After 4.4h
light
incubation

7.80
(0.029)

15.71
(1.110)

741
(68)

2271
(16)

2177
(18.110)

32.96
(2.978)

2061
(19.338)

84
(6.118)

1.28
(0.093)

2.00
(0.146)

% change (+) 2.00 (-) 29.71 (-)
36.78

(-)
8.56

(-) 10.71 (-) 36.35 (-) 11.24 (+) 27.47 (+)
27.47

(+)
27.47

Fluctuating,
mean daily
pH = 7.65

Night 7.25 7.23
(0.002)

59.03
(0.325)

3227
(26)

2484
(11)

2584
(1.383)

139.13
(1.090)

2420
(0.482)

26
(0.196)

0.39
(0.003)

0.62
(0.005)

Day 8.05 8.05
(0.004)

8.88
(0.078)

424 (6) 2484
(11)

2282
(2.554)

19.04
(0.268)

2113
(3.881)

151
(1.584)

2.29
(0.024)

3.60
(0.038)

After 4.4h
light
incubation

8.02
(0.036)

9.62
(0.821)

435
(62)

2279
(21)

2102
(37.684)

19.48
(2.748)

1954
(46.144)

130
(12.361)

1.98
(0.187)

3.10
(0.294)

% change (-) 0.43 (+) 8.27 (+)
2.49

(-)
8.25

(-) 7.89 (+) 2.26 (-) 7.56 (-) 13.72 (-)
13.72

(-)
13.72

doi:10.1371/journal.pone.0140394.t001
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Cold temperate coralline algae such as Arthrocardia that grow at the rock surface within
kelp beds are naturally exposed to a wide range of pH, including pH 7.65, which is as low as the
predicted average surface seawater pH for 2100 [14,23]. Hurd et al. [45] postulated that calcify-
ing organisms naturally exposed to a wide range of pH may be better able to tolerate OA than
those growing in a temporally constant pH. This was not the case for adult Arthrocardia,
which had growth rates close to zero under the fluctuating pH 7.65 treatment (Fig 2c), in
which a very low night-time seawater pH of 7.25 most likely contributed to partial dissolution
of skeletal calcium carbonate [14]. The juvenile recruits of Arthrocardia, however, showed pos-
itive growth under this extreme environmental treatment (fluctuating pH 7.65, Fig 2b). This
was surprising because early life-history phases are thought to be more susceptible to environ-
mental stress factors, e.g. UVR [31,32] compared to their respective adult life stages.

There are two explanations as to why the juveniles maintained a positive growth rate in the
most ‘severe’ experimental treatment (fluctuating pH 7.65) while the adults had a growth rate
close to zero (Fig 2c and [14]). First, in this experiment the juveniles had periodic overgrowth
of diatoms, which was removed every 2 weeks. These diatom films create a physical barrier
between the calcifying coralline algal surface and the seawater. The pH at the surface of the
crustose growth form of the juvenile coralline algae is therefore likely to be very different to
that of the adults, as it will be modified by the diatom‘s metabolism [15]. The average pH at the
surface of the crust-forming juveniles is therefore likely to be higher on average during a daily
cycle, due to diatom photosynthesis, and this may moderate the very low night-time pH of
7.25.

A second, and not mutually exclusive, explanation is that of a positive carry-over effect on
the next generation after exposing reproductive adults to an environmental stress i.e. OA. Such
a positive effect has also been reported on the progeny of adult oysters grown in elevated pCO2

[46]. Likewise, meiospores of kelps releases from adults exposed to low-UV are more suscepti-
ble to UV-stress experiments compared to progeny of adults exposed to high UV [47]. There-
fore, it is possible that the exposure of fertile Arthrocardia sporophytes to high/fluctuating
pCO2 induced a preconditioning response to their spores to tolerate lower pH; these two ideas
require experimental testing.

Cornwall et al. [14] was the first to experimentally simulate the pH fluctuations observed in
nearshore kelp forest in the laboratory, and this study is the first to examine the responses of
juvenile coralline algae to pH fluctuations. Flynn et al. [48] suggest that in a future ocean, algae
will experience pH fluctuations, within the diffusion boundary layer (DBL) at their surface,
that are larger than those previously experienced, because the buffering capacity of seaweed is
reduced with reduced pH. Both Cornwall et al. [14] and this experiment on juveniles reveal
that fluctuations strongly affect the response of corallines to OA compared to static treatments.
Manipulating pH fluctuations is technically difficult, and in these first such experiments ([14]
and this study), the pH changed suddenly from the daytime to night-time pH, and vice versa.
In future experiments, more gradual changes would be ideal. It is, however, clearly important
to consider pH fluctuations if we are to determine the influence of OA on coastal systems,
many of which are dominated by strong diurnal pH signals [23].

Our third hypothesis, that experimental treatment would not affect the mineralogy of juve-
nile Arthrocardia, as reported by Cornwall et al. [14], was not supported. While diatoms can
possibly increase pH at the surface of the crust forming juveniles, this would likely still not be
sufficient to increase pH from 7.65 to 8.05 during daytime. Therefore, the decrease in Mg-cal-
cite under pH 7.65 treatments compared to pH 8.05 suggests that the calcified structures of
juvenile Arthrocardia recruits may be more porous and susceptible to dissolution compared to
more compact adult skeletal structures. For example, low pH/high H+ weakens calcified struc-
tures in adult Lithothamnion glaciale [49]. Likewise, weaker calcite skeleton was observed in
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adult coralline algae exposed to low pH [50]. Species-specific changes in calcification rates, sol-
ubility, and density of calcite under ocean acidification have also been reported in other crus-
tose coralline algae [51]. This study is the first to be able to compare the mineralogical
responses to pH and pH fluctuations of juvenile coralline algal mineralogy with those of the
field-collected adults, and further detailed studies are warranted.

Various fleshy algae recruited into our experiment, most likely germinated from cryptic
propagules associated with and disentangled from the Arthrocardia thalli. We cannot make
comparisons between treatments, as the results are descriptive, but it is of interest that a wide
range of green, red and brown seaweeds recruited into each treatment, including the ‘severe’
pH 7.65 fluctuating treatment. The ability of these non-calcifying seaweeds to grow under
these conditions suggest that they are tolerant to low pH, as also found forMacrocystis pyrifera
and Ulva rigida [52–54], and fluctuating pH.

Our fourth (a posteriori) hypothesis, that diatom biomass will not be affected under all pH
treatments, was supported. Diatoms are ubiquitous marine flora and their establishment inside
our culture chambers most likely originated from epibiontic cells on the articulate thalli of
adult Arthrocardia assemblage during the Cornwall et al. experiment [14]. The presence of an
efficient carbon concentrating mechanism (CCM) in diatoms did not alter their performance
under any pH treatment [55,56]. Moreover, diatoms also have membranes that are highly per-
meable to CO2 allowing a high flux of diffusive CO2 from the medium to the cell followed by
active transport of carbon from the cytoplasm to the chloroplast [57]. As they have a high CO2

affinity, it is unsurprising that no negative effects of experimental treatments were recorded,
even under fluctuating pH 7.65; this finding is consistent with James et al. [15]. Diatoms were
observed to cover the inside of the culture chambers, both the Plexiglas side panels and the sub-
strate (Fig 4c). In contrast, fleshy and coralline macroalgal recruits settled and grew only on the
Plexiglas substrate, making the total cover of diatoms greater than that of fleshy and coralline
macroalgae. The higher Δ CO2 under static pH 7.65 may be attributed to diatom CO2-uptake.
Metabolism-mediated changes in seawater carbonate chemistry [45,58,59] may reduce the neg-
ative effects of OA in the future, increasing pH to a more suitable range for pH-sensitive species
and promote diverse species community development.

Although the responses of diatoms to OA are reported to be species-specific, most studies
either show similar [60–63] or enhanced [55,60,64,65] specific growth rates under elevated
CO2. However, despite diatom’s ability to regulate internal acid-base balance, extremely low
pH = 6.4 can negatively impact internal pH homeostasis and growth rate [66]. Likewise,
medium alkalization due to high metabolic activity can have a negative effect. For example, an
inverted U-shape relationship between pH and growth rate was observed in Thalassiosira
weissflogii: growth rate was highest under an external pH (pHe) of 7.8 and lowest under
extreme acidic (pHe 6.4) and basic (pHe 8.5) conditions [66]. On the other hand, acidification
also modified the species’ intracellular silicic acid and biogenic silica (BSi) contents per cell.
Unlike the inverted U-shape relationship between pH and growth rate, silica condensation and
incorporation into the frustules was favoured under acidic and basic conditions giving a U-
shape relationship between pH and silicic acid, and pH and BSi [66].

Conclusions
Our study suggests that for juvenile Arthrocardia: (1) the growth rates are less sensitive to static
pH 8.05 and pH 7.65 pH treatments compared to the same mean pHs with diurnal fluctua-
tions, (2) exposure to fluctuating pH, especially to the extremely low night-time pH associated
with the fluctuating pH 7.65 treatment, negatively affected their growth rate compared to static
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pH treatments, (3) the % weight of Mg Calcite in juveniles was significantly reduced at pH 7.65
compared to 8.05, and (4) diatom biomass was not affected by either pH or pH fluctuations.

Finally, some pH-sensitive species may survive lower pH conditions when they grow in the
presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of
the local microhabitat. Moreover, the potential for acclimation and adaptation of early life his-
tory stages and first (F1) and second (F2) generation of offspring in response to acidification
warrants further investigation.

Supporting Information
S1 Fig. Arthrocardia corymbosa recruits after 22 weeks’ cultivation. Recruits (a-c; g-i) under
static and (d-f; j-l) under fluctuating pH conditions. Static treatments received pH 8.05 (a-c)
and pH 7.65 (g-i) during day and night. Diurnally oscillating pH with mean daily pH 8.05 (d-f)
received pH-modified seawater of pH 8.45 during day and pH 7.65 at night, while mean daily
pH 7.65 (j-l) received pH-modified seawater of pH 8.05 during day and pH 7.25 at night. Scale
bars = 2mm.
(TIF)

S2 Fig. Fleshy and other coralline macroalgal recruits. Genera, species and functional groups
associated with juvenile Arthrocardia corymbosa recruits as summarized in S1 Table: (a) foliose
red, (b) filamentous red, (c) discoid and warty Synarthrophyton patena, (d) green and brown
turfs among young A. corymbosa upright frond with crustose base, (e) Durvillaea sp., (f) Dic-
tyota sp., (g) Desmarestia lingulata, indicated by an arrow, and (h) brown thread-like filaments.
Scale bars = 2mm, except (c) and (h), scale bar = 1mm.
(TIFF)

S3 Fig. Images of diatoms taken with a scanning electron microscope (SEM).Multi-species
benthic diatom assemblage consisting of two or more of the below were observed under all pH
treatments. (a) Fallacia sp., (b) Achnanthes sp. 1, (c) Cocconeis sp. 1, (d) Cocconeis sp. 2, (e)
Achnanthes sp. 2, (f) Navicula sp., (g) naviculoid species, (h) Cylindrotheca sp., (i) nitzschoid
species, (j) dividing Nitzschia sp. 1, (k) dividing Navicula sp., and (l) Nitzschia sp. 2.
(EPS)

S1 Table. Observations of macroalgae that recruited into the experimental culture tanks
during the experiment. (+) indicates the presence of a particular functional group and/or
genus/species that grew within an individual replicate culture chamber/tank (numbered 1–24)
that was associated with one of the four experimental treatments.
(DOCX)

S2 Table. Stoichiometry of benthic diatom biomass under the four experimental treatments
(see Methods). Values in parentheses are standard error (± SE; n = 6).
(DOCX)
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