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Abstract
The control of unmanned underwater vehicles (UUVs) is 
challenging due to the non-linear and time-varying nature of 
the hydrodynamic forces from the surrounding fluid. In 
addition, the presence of external disturbances makes the 
control even more difficult. Model reference adaptive control 
(MRAC) is an adaptive control technique that performs well 
in such situations, while the improved composite/combined 
model reference adaptive control (CMRAC) is capable of 
better transient performance. However, the latter is yet to be 
used in UUV controls. Thus, this paper tests the suitability of 
CMRAC in UUV applications using validated simulation 
models and compares its performance against the standard 
MRAC. Several test scenarios have been considered including 
initial operation, external disturbance and thruster failure. 
Simulation results show that CMRAC offers better tracking, 
faster disturbance rejection and quick recovery from thruster 
failure compared to MRAC. In addition, CMRAC is more 
robust against parameter uncertainties and thus the control 
signal shows fewer oscillations, which in turn reduces the 
probability of actuator damage.

Keywords:  unmanned underwater vehicles, UUV, composite/
combined model reference adaptive control, external distur-
bances, thruster failure, remotely operated vehicle, ROV

1. Introduction
Unmanned underwater vehicles (UUVs) are exten-
sively used in industry, military and academia to 
carry out various underwater operations, such as 
inspection of subsea installations, gathering of 
marine and security data, and exploring marine and 
archaeological sites. In addition to these traditional 
large-scale applications, there is a growing trend in 

underwater exploration carried out by smaller UUVs 
offering affordable and flexible operations. This is 
mainly owing to the continuous improvement in 
UUV technologies. 

UUVs offer considerable challenges in autonomous 
control, mainly because of the coupled nonlinear and 
time-varying hydrodynamic forces and moments that 
adversely affect the motion of the vehicle. In addition, 
they are subjected to various external disturbances 
such as ocean currents, ocean waves and tether motion. 

In literature, there are several control techniques 
proposed to deal with these problems. The most pop-
ular and simple control solution is the proportional, 
integral and derivative (PID) controller (Miskovic et al., 
2006), but it does not perform well in highly nonlin-
ear systems. The sliding mode control (Yoerger et al., 
1985; Healey and Lienard, 1993) is another popular 
method that has been utilised over the past decades. 
It is more robust against disturbances and nonlineari-
ties compared to the PID control, but suffers from 
chatter, which is high frequency oscillations of the 
control signal. As a solution to this issue, chatter-free 
sliding mode controllers, referred to as higher order 
sliding mode control, have been proposed for UUVs 
and experimentally tested with promising results 
(Garci-Valdovinos et al., 2009; Pisano and Usai, 2004). 
Another robust approach is the H∞ control that has 
been simulated and tested for an autonomous under-
water vehicle (AUV; Roche et al., 2011). 

Model predictive control (MPC) is a well-known 
control method originally proposed for process 
control systems (Qin and Badgwell, 2003). Owing to 
the fast response, robust operation and relatively low 
tuning effort, MPC is gaining acceptance in other 
areas as well, with varying success (Vazquez et al., 
2014). MPC predicts the optimal future control 
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profile using a mathematical model of the system 
and current states. It has been simulated (Budiyono, 
2011; Medagoda and Williams, 2012) and experi-
mentally tested (Steenson et al., 2014) for UUVs 
with promising results. The major disadvantage of 
MPC is that if there is any modelling error or varia-
tion in model stability, then the performance is 
affected.

The intelligent control methods can be catego-
rised into three groups: fuzzy control; reinforcement 
learning; and artificial intelligence. An example of 
the use of fuzzy control for heading control of an 
AUV is given in Chang et al. (2003), while a fuzzy 
depth controller is given in Jun et al. (2011). Rein-
forcement learning for high level control is simu-
lated by Carreras et al. (2002), and the same for 
cable tracking of an underwater vehicle is tested by 
El-fakdi and Carreras (2008). A form of artificial 
intelligence called ‘language-centred intelligence’ 
is applied to AUVs in Hallin et al. (2009).

Adaptive control is the emerging control trend 
that has been successfully implemented in several 
UUVs (Antonelli et al., 2003; Maalouf et al., 2012). 
While robust control methods such as sliding mode 
and H∞ reduce the effect of uncertainty and non-
linearity, they do so at the expense of reduced per-
formance. Adaptive control offers the advantage of 
being able to adjust the controller output even in 
the presence parameter uncertainties and thereby 
ensure the possibility of achieving a much higher 
degree of robust performance. This is even more 
useful when it is difficult to get a good estimate of 
the model parameters owing to the lack of hydro-
dynamic testing facilities.

The improved performance of adaptive control 
over PD control has been demonstrated by various 
studies (e.g. Antonelli et al., 2003; Maalouf et al., 
2013; Smallwood and Whitcomb, 2004). Smallwood 
and Whitcomb (2002) show that while fixed model 
based controllers performed better in known con-
ditions, adaptive control provides superior perfor-
mance under unknown conditions and parameter 
variations. In Cavalletti et al. (2011), large variations 
in mass and inertial parameters are considered, 
and comparisons are made between switching con-
troller and adaptive controller. These studies have 
shown that when there is a lack of knowledge of 
vehicle configuration, the adaptive controller has 
better performance. However, a major disadvantage 
of adaptive control is that, as the gains are adapted 
in a time-varying and nonlinear manner, it can lead 
to unacceptable transient response (Muse and Calise, 
2010).

Model reference adaptive control (MRAC) is one 
method where the system attempts to follow a refer-
ence signal generated by an ideal model (Åström 

and Wittenmark, 1995). The control parameters 
are adapted according to the error between the ref-
erence and actual state. Slotine and Li (1989) and 
Duarte and Narendra (1989) improved the MRAC 
to develop the composite/combined model refer-
ence adaptive control (CMRAC) technique. This 
technique goes beyond just tracking the error, as it 
attempts to predict a known value and use the 
resulting prediction error with the tracking error to 
adapt control parameters. 

Lavretsky (2009) has proposed an improved 
CMRAC technique, which is much easier to imple-
ment compared to the previous CMRAC methods 
and smoothens the transient response under various 
operating conditions. Since the improved CMRAC 
technique does not add too much complexity, it is 
an attractive control solution for small-scale UUVs, 
which have limited computational capabilities. How-
ever, the suitability and performance of the improved 
CMRAC in small-scale UUVs are yet to be tested and 
verified.

The authors have developed a small-scale, low-cost 
three-thruster remotely operated vehicle (ROV), 
named AMC ROV (see Fig 1), with control systems 
and haptic feedback teleoperation. This paper dis-
cusses the suitability of the CMRAC technique in 
such vehicles and compares its performance against 
the standard MRAC. The controllers were tested 
using a nonlinear numerical model of the ROV in a 
MATLAB/Simulink environment. The results show 
that CMRAC offers better tracking, faster distur-
bance rejection and quick recovery from thruster 
failure compared to the standard MRAC. In addi-
tion, the CMRAC is more robust against parameter 
uncertainties and thus the control signal shows less 
oscillation, which in turn reduces the probability of 
actuator damage. 

2. Notation and nomenclature
2.1. Notation
In this paper the following notations are used: 
+ – set of nonnegative real numbers;


n  – set of n × 1 real column vector; 


n m×  – set of n × m real matrices; 
(⋅)T – transpose;
(⋅)–1 – inverse; 
||⋅|| – Euclidian norm;
=∆ – equality by definition. 
The vector cross product × is defined by λ

→
 × a→ =∆ 

S(λ
→

)a→ where S is defined as:
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2.2. Nomenclature
The axes and directions for the following are shown 
in Fig 1.

Symbol Description Unit

{n} = {Oe, Xe, Ye, Ze}
Reference frame 
fixed to Earth 
(n-frame)

{b} = {Ob, Xb, Yb, Zb}
Reference frame 
fixed to body of 
vehicle (b-frame)

η1 = [n e d ]T
n-frame positions 
(north, east and 
down)

m

η2 = [φ θ ψ]T
Rotation angles 
around n-frame 
axis

rad

ν1 = [u v w ]T b-frame linear 
velocity

m/s

ν1 = [p q r]T b-frame angular 
velocity

rad/s

m, MRB
Mass and mass 
inertia matrix

CRB

Coriolis and 
centripetal  
matrix

MA, CA
Added mass 
matrices

D(ν) Damping matrix

Xu, Yv, Zw, Kp, Mq, Nr
Linear drag 
coefficients

Xu|u|, Yv|v|, Zw|w|, 
Kp|p|, Mq|q|, Nr|r|

Quadratic drag 
coefficients

Xu· , Yv·, Zw· , Kp·, Mq·, 
Nr·

Zero-frequency 
added mass 
coefficients

g(η)
Weight and 
buoyancy matrix

W
Weight of the 
vehicle

N

FB
Buoyancy force on 
the vehicle

N

(0 0 zb)
Coordinates of 
centre of buoy-
ancy in b-frame

m

rg
b = [xg, yg, zg]

Coordinates of 
centre of gravity in 
b-frame

m

τH = [XH, YH, ZH, 
KH, MH, NH]

Hydrostatic and 
hydrodynamic 
forces

N

τ = [τu τv τw τp  
τq τr]

Vector of inputs N

xf, rf, σf, uf Filtered x, r, σ, u 

Ix, Iy, Iz
Moments of 
inertia

Ar
n n∈ ×



Reference system 
matrix

Br
n m∈ ×



Command input 
matrix

r t m( )∈ Command input

x tr
n( )∈ Reference state 

vector
x t n( )∈ State vector

u t m( )∈ Control input 
vector

f x n m( ): →
System matched 
uncertainty

A n n∈ ×


Known system 
matrix

B n m∈ ×


Known control 
input matrix

Λ ∈ ×


m m

Unknown control 
effectiveness 
matrix

Θ ∈ ×


s m Unknown weight 
matrix

σ : R Rn s→
Known regressor 
vector

K Rx
n m∈ × Ideal feedback 

gain

K Rr
m m∈ × Ideal feed forward 

gain

K̂ Rx
n m∈ × Estimate of 

feedback gain

K̂ Rr
m m∈ × Estimate of feed 

forward gain

Θ̂ ∈ ×


s m Estimate of weight 
matrix

Γ Γ ΓΘx r, , Learning rates
e Tracking error
Ŷ(t) Estimate of Y(t)

λf
Filter inverse 
coefficient

Ixy, Iyx, Ixz, Izx, Izy, Iyz Products of inertia

3. Kinematic and dynamic model of the  
AMC ROV
This section presents the kinematics and the 
dynamic model of the AMC ROV. Two reference 
frames, namely Earth-fixed and body-fixed, are used 
for the convenience in modelling the dynamics of 
the ROV. 

3.1. Reference frames
The Earth-fixed reference {n} frame and the body-
fixed reference {b} frame used in the ROV model 
are shown in Fig 1. The {n} frame is coupled to 
Earth and acts as the inertial frame as the velocity 
of the ROV is small enough to neglect the effects 
of the forces acting on it due to the rotation of 
Earth (Perez and Fossen, 2005). The {b} frame is 
coupled to the vehicle and acts as the moving 
frame. 
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3.2. UUV kinematics
The general motion of a UUV in 6 degrees of free-
dom (DOF) is modelled by using the notation pre-
sented in Fossen (2011), which has been adopted 
from Society of Naval Architects and Marine Engi-
neers (SNAME, 1950). The 6-DOF kinematics 
equations for the UUV is given by Fossen (2011), 

n u v

w

= + −
+ +

cos cos (cos sin sin sin cos )

(sin sin cos cos s

ψ θ ψ θ φ ψ φ
ψ φ ψ φ i

in )θ
� (2)

e u v

w

= + +
+ −

sin cos (cos cos sin sin sin )

(sin sin cos cos s

ψ θ ψ φ φ θ ψ
θ ψ φ ψ i

in )φ
� (3)

d u v w= − + +sin cos sin cos cosθ θ φ θ φ� (4)

φ φ θ φ θ= + +p q rsin tan cos tan � (5)

θ φ φ= −q rcos sin � (6)

ψ
φ
θ

φ
θ

θ= + ≠ ±q r
sin
cos

cos
cos

, 900� (7)

3.3. UUV dynamics
According to Fossen (2011), Newton’s second law 
can be expressed in an arbitrary body-fixed coordi-
nate frame as:

M v C v vRB RB H+ = +( ) τ τ � (8)

where τH is the hydrostatics and hydrodynamic 
forces vector, τ is the vector of control inputs, MRB 
is the mass inertia matrix and CRB(ν) is the Coriolis 
and centripetal matrix. 

For deeply submerged vehicles equation (7) can 
be expanded to give;

M C M C

D g
RB RB A A ν ν ν ν ν ν

ν ν η τ

+ ( ) + + ( )
+ ( ) + ( )= � (9)

where MA and CA(ν) represent the added mass 
matrices that are generated by the forced motion 
of the vehicle body, and g(η) is the net buoyancy 
forces and restoring moments matrix. For a 
UUV, it is customary to consider a diagonal MA 
because the off-diagonal components are much 
smaller compared to diagonal terms for low 
speed underwater vehicles (Eng et al., 2014), 
thus:

M

X

Y

Z

K

M

N

A

u

v

w

p

q

r

= −






















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0























� (10)

while:
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where Xu· , Yv·, Zw· , Kp·, Mq·, Nr· and so forth are the 
zero-frequency added mass coefficients.

The gravitational force (W = mg) will act through 
the centre of gravity (CG), while the buoyancy 
force FB = ρg∇ will act through the centre of buoy-
ancy (CB). Here, g is the gravitational acceleration, 
ρ is the density of water and ∇ is the displaced water 
volume. Selecting that the origin of the body-fixed 
reference frame to coincide with CG (i.e. xg = 0,  
yg = 0, zg = 0), and assuming CG and CB are offset 
only in the z directions owing to symmetry and is 
denoted by zb, g(η), this is simplified to:

g
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W F

W F
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The damping forces on the UUVs can be written as 
the sum of the diagonal linear damping terms and 
nonlinear quadratic damping terms (Chin and 
Lau, 2012). Therefore, the damping matrix D(ν) is 
given as:

Fig 1: The three thrusters AMC ROV showing the Earth-fixed 
and body-fixed reference frames
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AMC ROV is propelled by three thrusters (T1, T2 
and T3). T1 and T2 are horizontal thrusters. The 
horizontal distance between the two along the Yb 
axis is d2, and the distance from CG to both thrust-
ers in the direction along the Zb axis is d1. T3 is the 
vertical thruster and its distance from CG along the 
direction of the Xb axis is d4. Thus, the thrust and 
moment input vector (τ) can be written as:

τ =

+

+ −
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The hydrodynamic coefficients of the AMC ROV 
used in simulations are given in Table 1.

Further details of the AMC ROV can be found in 
Le et al. (2013). 

4. Model reference adaptive control
A nonlinear uncertain dynamic system can be 
expressed as (Lavretsky, 2009):

�

�

x t Ax t B u t f x

x x t

( )= ( )+ ( )+ 
( )= = +

Λ ( ) ,

,0 0 � (15) 

where x t n( )∈  is the state vector available for feed-
back, u t m( )∈  is the control input vector, 
f x n m( ): →  is the system matched uncertainty, 

A n n∈ ×
  is the constant unknown system matrix, 

B n m∈ ×
  is the constant known control input matrix, 

and Λ ∈ ×


m m is a unknown diagonal control effec-
tiveness matrix. It is assumed that the uncertainty 
vector in Equation 15 is parameterised as f(x) = 
ΘTσ(x), x ∈ 0 where Θ ∈ ×



s m  is an unknown weight 
matrix and σ: Rn → Rs is a known regression vector 
of the form σ(x) = [σ1(x), σ2(x),...., σs(x)]T.

The ideal reference model that specifies a 
desired closed loop dynamic system is given by:

� �x t A x t B t x xr tr r r r r( )= ( )+ ( ) ( )= = +, ,0 0
� (16)

where x tr
n( )∈  is the reference state vector, 

r t m( )∈  is the given uniformly continuous bounded 
command, Ar

n n∈ ×
  is a Hurwitz reference system 

matrix, and Br
n m∈ ×



 is the command input matrix.

4.1. Standard model reference adaptive control
The objective of adaptive control is to design a 
feedback control law (u(t)) such that the state vec-
tor (x(t)) asymptotically follows the reference state 
vector (xr(t)), with the above assumptions. If A and 
Λ are known, then u(t) can be an ideal fixed gain 
control law, expressed as: 

u t K x K r xx
T

r
T T( )= + −Θ σ( )� (17) 

where K Rx
n m∈ ×  is the ideal feedback gain and 

K Rr
m m∈ ×  is the ideal feed forward gain that satisfies 

the matching condition given by: 

A A B K B B Kr x
T

r r
T= + =Λ Λ, � (18)

(13)

Table 1: AMC ROV hydrodynamic coefficients

Parameter Value Parameter Value Parameter Value Parameter Value

m 19.9Kg Xu·   –8.65Kg Xu –0.69Kgs–1 Xu|u| –32.30kgm–1

Ix 0.297Kgm2 Yv·   –12.23Kg Yv –0.54Kgs–1 Yv|v| –96.13kgm–1

Iy 1.304Kgm2 Zw·   –15.78Kg Zw –0.65Kgs–1 Zw|w| –115.37kgm–1

Iz 1.410Kgm2 Kp·   –0.63Kgm2 Kp –0.19Kgms–1 Kp|p| –15.70kgm
d2 0.18m Mq·   –0.78Kgm2 Mq –0.27Kgms–1 Mq|q| –21.25kgm
W–FB –2N Nr·   –0.56Kgm2 Nr –0.23Kgms–1 Nr|r| –17.23kgm
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Assuming that Equation 18 holds, it can be easily 
seen that the closed loop system is exactly the same 
as the reference model. Therefore, for any bounded 
command input (r(t)), Equation 17 provides a glob-
ally asymptotic tracking performance. When A and 
Λ are unknown, the previously mentioned ideal 
gains Kx, Kr and Θ cannot be chosen. Nevertheless, 
by assuming that such ideal gains exist, the adaptive 
control law is expressed as: 

u t K x K r xx
T

r
T T( )= + −ˆ ˆ ˆ ( )Θ σ � (19)

where K̂ Rx
n m∈ × , K̂ Rr

m m∈ ×  and Θ̂ ∈ ×


s m  are the 
estimates of the ideal unknown matrices KT

x , KT
r 

and Θ, respectively. 
From the Lyapunov analysis (Ioannou and 

Fidan, 2006; Narendra and Annaswamy, 2005), it 
can be shown that the system is asymptotically 
stable, i.e. ||e|| → 0 as t → ∞ if the update laws are 
given as: 

ˆ

ˆ

ˆ

( )

( )

( )







K e PB

K r e PB

e PB

x t

t

x

x
T

r r
T

x
T

x= −

= −

=

Γ

Γ

Θ ΓΘσ

� (20) 

where Γx = ΓT
x > 0, Γr = ΓT

r > 0 and ΓΘ = ΓT
Θ > 0 are 

learning rates, e = x – xr is the tracking error, and 
P = PT > 0 is the solution of the algebraic Lyapunov 
equation (0 = AT

r  P + PAr + Q , where Q = QT > 0). 
A block diagram of the MRAC control architecture 
is given in Fig 2.

4.2. Composite/combined model reference 
adaptive control
In the MRAC described earlier, the error between 
system states and the reference model is used to 
adjust the parameters. An indirect adaptive compo-
nent can be added to that by using a prediction 

error, i.e. the difference between some quantity 
and its prediction. To do this, it is necessary to gen-
erate a suitable prediction error. According to 
Lavretsky (2009), the quantity used for the predic-
tion (Y(t)) is written as: 

Y t B B B x x A x B r

u

T T
f f r f r f

f
T

f

( )= ( ) −( )− −( )
= +( )

−1
λ

σΛ Θ � (21)

where xf, rf, σf  and uf are the filtered versions of x, 
r, σ and u. The filter is a stable first-order filter with 
the transfer function G s f

fs( )= +

λ

λ , where λf  > 0 is the 
filter inverse constant. This expression for Y(t) has 
the advantage that it can be calculated at any time 
(t) using the state Y(t), filter state (xf (t)) and fil-
tered command (xf (t)) without using the state 
derivative (ẋ(t)), which would be required if filter-
ing is not used.

It is now possible to estimate Y(t) by using the 
bilinear predictor model as: 

ˆ( ) ˆ ˆY t u f
T

f= +( )Λ Θ σ � (22)

which is an estimate of the incalculable signal Λ(uf + 
ΘTσf), where Λ̂ is the estimate of Λ. The predic-
tion error for CMRAC is defined as eY = Ŷ(t) – 
Y(t). It can be shown by the Lyapunov analysis 
that if the update laws are given as shown in the 
following equation, then the tracking error and 
prediction error are globally asymptotically stable, 
i.e., lim , lim :
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where Γx = ΓT
x > 0, Γr = ΓT

r > 0, ΓΛ = ΓT
Λ > 0 and ΓΘ = 

ΓT
Θ > 0 are learning rates and Pr = PT

r > 0 is the 
unique solution of the algebraic Lyapunov equa-
tion 0 = AT

r  Pr + PrAr + Q , where Q = QT > 0). 
A block diagram of the CMRAC control architec-
ture is shown in Fig 3. 

4.3. Control model of the AMC ROV
While the full nonlinear kinematics (equations 
2–7) and dynamics (equations 9) developed in 
section 3.2 are used to simulate the motion of the 
actual ROV, they cannot be used as a base for con-
trol design due to limitations in the sensors and 
actuators on the actual vehicle. The three thruster 
configuration allows control of only surge, yaw and 
depth, but sway, roll and pitch remain uncontrolled. Fig 2: Standard MRAC control architecture
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The vehicle is designed to minimise roll and 
pitch moments, thus supporting the assumption 
that the pitch and roll DOFs remain stable, which is 
important for an under-actuated vehicle. This 
assumption also makes the control design easier, 
enabling a simpler model, i.e. the control model, to 
be developed for the purpose of controller design. 
This model takes the form of Equation 15 in order 
to apply the previously defined MRAC method. In 
the control model, the following assumptions are 
made: 

(a)	uncontrolled DOFs of pitch angle (θ) and 
roll angle (φ) are assumed to be negligible; 
and 

(b)	the Coriolis forces are assumed to be negligible. 

From assumption (a), the kinematics in Equations 
(4) and (7) becomes decoupled. From assumption 
(b), the 6-DOF dynamics in Equation 9 also becomes 
decoupled. This enables each DOF to be consid-
ered separately as a second order system. Even 
though this model is not theoretically justified, it 
has been successfully implemented with reasonable 
accuracy in many practical control designs (Small-
wood and Whitcomb, 2004). 

While controllers were built for all three control-
lable DOFs, the surge was not studied due to lack of 
speed sensor that would make any future experi-
mental verification difficult. With these assump-
tions, the heading and depth decoupled control 
models are expressed as: 

ψ = r � (24) 

mrṙ  = Nrr + Nr|r|r |r | + τr , where mr = Iz – Nṙ 
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From Equations 24 and 25, the state space form is 
obtained as:





ψ
θ

ψ

r r











=

















+






0 1

0

0

11




 ( )+θ τ θ3 2r r r � (26)

Similarly, the depth of the vehicle is given by:
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Equations 27 and 28 are written in the matrix 
form as: 
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It is noted that both subsystems represented by 
Equations 26 and 29 have the general state space 
form of:
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4.4. Reference model
In order to derive the direct control reference 
for both the MRAC and CMRAC techniques, an 
ideal reference model is required. As the control 
model (see Equation 30) is of 2nd order, the ref-
erence model should also be of the same order 
for both heading and depth control. Taking and 
x1 = ψr or dr and x2 = rr or wr depending on the 
subsystem, a standard 2nd order transfer func-
tion with desired natural frequency (ωn) and 
damping ratio (ζ) can be written as: 
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Fig 3: CMRAC control architecture
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Converting Equation 31 into a state space form 
gives:
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Applying the matching condition in Equation 18 
yields:
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Therefore, the ideal feedback gain and feed 
forward gain can be written as: 
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5. Simulation results
The control model of AMC ROV was implemented 
in the MATLAB/Simulink simulation platform and 
its behaviour incorporating the MRAC and CMRAC 
controllers were observed under the following 
operating scenarios.

5.1. Simulation scenarios
5.1.1. Initial operations 
In this mode of operation, the standard MRAC and 
CMRAC control methods are simulated for 400s at 
the start of a mission. This represents the situation 
of the initial operation either at the very beginning 
of a mission or after a task or parameter variation. 
The objective of this operation is to compare the 
tracking performance of the two methods for 

changes in heading and depth at two different for-
ward velocities. The reference model is selected 
with an approximate rise time of tr = 10s, settling 
time of ts = 20s and peak overshoot of PO = 0%. 
This corresponds to a ωn = 0.3 rad/s and ζ = 1 for 
both depth and heading. Furthermore, there is a 
positive buoyancy of approximately 2N. This in 
turn gives the ideal gains for the controllers from 
Equation 34, as shown in Table 2.

5.1.2. External disturbances
The two control methods were tested under an 
external disturbance of 10N on the vehicle from 
top along the Zb axis against a positive buoyancy of 
2N for 1.5m constant depth control. The distur-
bance was applied after 800s and held for 1s. In 
order to give sufficient time for the MRAC tracking 
error to become practically indistinguishable from 
the CMRAC tracking error, an 800s learning period 
was applied before introducing the external distur-
bance. The objective was to see how well the con-
trollers could reject the external disturbance.

5.1.3. Thruster failure
A vertical thruster failure of 80% was simulated 
after 800s. This was done with the vehicle holding 
depth against a positive buoyancy of 2N. The verti-
cal thruster can normally produce close to 20N of 
thrust, but in the failure case, it will reduce close to 
4N. This type of failure can occur because of an 
electrical failure or a snared propeller. 

The aim of these tests was to show that the adap-
tive controllers are able to overcome such distur-
bance and failures, and to compare the performance 
of the two control methods in such situations.

5.2. Results of simulation
5.2.1. Initial operations
The first task in implementing CMRAC for the 
ROV was to set the unique parameters. These are 
the CMRAC gain γc and filter constant λf . After sev-
eral trials, it was observed that simply increasing 
these gains does not always give better perfor-
mance, thus it was important to select the values 
that gave the overall best performance. This was 
achieved through an iterative process giving suita-
ble values for γc and λf  as 4 and 10, respectively.

Table 3 gives the parameter estimates for the 
ideal gains in Table 2. It is seen from Tables 2 and 3 
that not all parameters converge to the actual value. 
This is expected as parameter convergence requires 
persistent excitation and, while the simulation 
used, a simple command signal of 400s. A better 
way to compare the performance under initial 
operation is to look at the tracking error for the 
MRAC and CMRAC methods given in Table 4.

Table 2: Ideal parameters of heading and depth 
controllers (assuming that all the unknowns are 
known)

Ideal  
parameters

Heading 
controller

Depth  
controller

Kx1 –0.1773 –3.2112
Kx2 –0.9518 –20.7580
Kr   0.1773 3.2112
θ4 –17.23 –115.37
θ5 N/A –1.99
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From Table 4, it is clear that CMRAC is much bet-
ter at reducing the tracking error in contrast to 
MRAC. The reduction in heading tracking error for 
CMRAC versus MRAC at learning rate 1 is 69% (fac-
tor of 3) and the reduction in depth tracking error 
is 95% (factor of 22). When the gain is increased 10 
fold, both tracking errors of MRAC are reduced by 
87% (factor of 7) while both tracking errors for 
CMRAC are reduced by 97% (factor of 38).

Table 5 shows that when the speed is increased, 
the tracking errors significantly increase; this is due 
to the simulated Coriolis forces. When speed is 
increased to 0.4m/s, the MRAC error is increased 
by a factor of 28, while CMRAC error is increased 
by factor of 392 for heading and 476 for depth. 
However, the heading error of CMRAC is still less 
than the MRAC by a factor of 5 and the depth error 
is less by a factor of 31. 

To compare the performance further, the speed 
was increased to 1 m/s which is the theoretically 
maximum speed for this vehicle. The errors further 

increased by factor of 3 and 16 for MRAC, and fac-
tors 5 and 23 for CMRAC. However, CMRAC still 
had errors less than MRAC by factors of 3 and 2 for 
heading and depth, respectively. While the degrada-
tion in heading error is skewed due to a large error 
initially, the underactuation prevents recovery of 
pitch change. This is because of the Munk moment 
that violates the negligibility of the pitch angle, lead-
ing to a larger error in depth. It is clear for a high-
speed UUV, the Coriolis effects cannot be neglected 
in the control model. It would also be interesting to 
see in experimental trials if the unmodelled coupled 
damping terms will have a stabilising effect that 
counteracts the destabilising moment.

Table 6 looks at the control input for depth and 
heading, where another possible advantage of the 
CMRAC method is evident. This method always has 
a reduced maximum signal compared to MRAC, 
which could be important in conditions where the 
vehicle is operating near actuator saturation limits. 
That advantage increases with the learning rate, 

Table 3: Comparison of MRAC and CMRAC heading and depth 
parameter estimates for a learning rate of 100 at u = 0m/s

Parameter 
estimates

Heading control Depth control

MRAC CMRAC MRAC CMRAC

K̂  x1 –0.12908 –0.13986 –3.92363 –2.76506
K̂  x2 –0.10034 –0.0162 –4.79137 –0.50745
K̂  r   0.128897   0.139862   1.807527   0.877888
θ̂ 4   0.003453   0.000358   0.185291   0.06049
θ̂ 5 N/A N/A –1.97112 –1.98634

Table 4: Comparison of MRAC and CMRAC heading and depth tracking errors at different learning rates at u = 0m/s

Tracking 
errors

Learning rate of 1 Learning rate of 10 Learning rate of 100

MRAC CMRAC MRAC CMRAC MRAC CMRAC

ψe_rms 0.836543 deg 0.259213 deg 0.114131 deg 0.00673 deg 0.012856 deg 0.000175 deg
re_rms 0.220118 

deg/s
0.023329 
deg/s

0.079061 
deg/s

0.002144 
deg/s

0.029858 
deg/s

0.000243 
deg/s

ψe_max 4.973075 deg 3.348591 deg 1.24143 deg 0.665549 deg 0.212608 deg 0.08163 deg
de_rms 0.0705m 0.003212m 0.010007m 0.000087m 0.001062m 0.000002m
we_rms 0.022432m/s 0.000277m/s 0.008428m/s 0.00005m/s 0.002943m/s 0.00001m/s
de_max 0.477399m 0.415807m 0.083731m 0.074056m 0.009695m 0.008283m

Table 5: Comparison of MRAC and CMRAC heading and depth tracking error at learning rate 100 
and u = 0.4m/s and 1.0m/s

Tracking error U = 0.4 m/s U = 1.0 m/s

MRAC CMRAC MRAC CMRAC

ψe_rms 0.364533 deg 0.068744 deg 1.119117 deg 0.348575 deg
re_rms 0.120072 deg/s 0.010769 deg/s 0.432113 deg/s 0.047405 deg/s
ψe_max 2.810244 deg 2.210998 deg 6.362412 deg 5.233558 deg
de_rms 0.029654m 0.000953m 0.453423m 0.221136m
we_rms 0.008001m/s 0.000032m/s 0.062124m/s 0.006830m/s
de_max 0.139869m 0.140079m 1.174144m 1.176519m
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thus at learning rate of 1 the reduction is only 3.5% 
but at a learning rate of 100 the reduction is 14%. 
Another advantage is that the high frequency con-
tent in the control signal of CMRAC is less com-
pared to that of MRAC. However, Table 6 also 
provides a possible disadvantage of the CMRAC 
method, especially if the UUV is autonomous. It 
shows that the root mean square (RMS) value of 
the CMRAC control signal is greater than MRAC at 
higher learning rates. This results in an overall 
increase in power consumption. For a learning rate 
of 100, this increase is 21%. 

An interesting point regarding the control sig-
nal is that all these comparisons are done at the 
same learning rate. However, as seen before, if the 
same tracking error is to be maintained by both 
controllers, the learning rate of MRAC has to be 
increased. Thus, assuming the tracking error of 
CMRAC at a learning rate of 10 is acceptable; an 

equivalent tracking error with MRAC corresponds 
to learning rates of 200 and 1,000 for heading and 
depth. 

5.2.2. External disturbances
Table 7 shows that at a gain of 10, the maximum 
displacement of the vehicle is marginally better for 
the CMARC method but recovers faster from the 
disturbance compared to MRAC (see Fig 4). In 
addition, Fig 5 shows that the CMRAC method has 
less oscillatory control signal. This effect on the 
control signal becomes clearer when the gain is 
increased to 100, while the change in depth is neg-
ligible for both cases. The difference in control sig-
nals is more pronounced, as shown in Fig 6. The 
recovery time for MRAC increases four-fold when 
learning rate is increased in contrast to CMRAC, 
where the recovery time decreases by a factor of 
5.5. 

Table 6: Comparison of control input at different learning rates

Control 
input

Learning rate 1 Learning rate 10 Learning rate 100

MRAC CMRAC MRAC CMRAC MRAC CMRAC
τr_rms 0.008432Nm 0.008822Nm 0.008350Nm 0.013139Nm   0.007844Nm   0.017548Nm
τr_max 0.039357Nm 0.040294Nm 0.047701Nm 0.051586Nm   0.065525Nm   0.061448Nm
τw_rms 2.162904N 2.111423N 2.168059N 2.340919N   2.149274N   2.609471N
τw_max 6.680641N 6.452177N 9.239823N 8.630128N 11.679424N 10.035248 N

Table 7: Comparison of depth controller response to an impact of 10N

Learning rate = 10 Learning rate = 100

MRAC CMRAC MRAC CMRAC

Maximum depth change 0.075m 0.07m 0.01m 0.01m
Time to depth error to get below 0.01m 20s 7s N/A N/A
Maximum control signal value 16N 15.6N 17.7N 17.2N
Time for control signal to settle to final value 190s 11s 75s 2s

Fig 4: Depth change for 10N impact with learning rate = 10 
for (a) MRAC (b) CMRAC
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Fig 5: Control signal for 10N impact with learning rate = 10 
for (a) MRAC and (b) CMRAC
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5.2.3. Thruster failure
The plots in Fig 7 show that the depth is quickly 
recovered by CMRAC, while MRAC tends to oscil-
late around the required depth after the thruster 
failure when learning rate is set to 10. The control 
signal also has a similar difference with long-term 
oscillations manifesting in MRAC, as seen in Fig 8. 
When learning rate is 100, the depth hardly varies 
for both methods with smaller oscillations for 
CMRAC when the thruster fails, as seen in Table 8. 

These results prove suitability of both MRAC and 
CMRAC as the controller in UUVs and their ability 
to adapt to the changes in the system. The differ-
ence in the two methods is more evident in the con-
trol signal. Fig 9 shows that MRAC has much larger 
oscillations that last for a longer duration, while the 
CMRAC has small oscillations for a shorter dura-
tion. Therefore, overall the CMRAC method exhib-
its better performance than MRAC.

Fig 6: Control signal for 10N impact with learning rate = 100 
for (a) MRAC and (b) CMRAC
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Fig 7: Depth change for 80% thrust loss with learning rate = 
10 for (a) MRAC and (b) CMRAC
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Fig 8: Control signal for 80% thrust lost with learning rate = 
10 for (a) MRAC and (b) CMRAC
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Fig 9: Control signal for 80% thrust lost with learning rate = 
100 for (a) MRAC and (b) CMRAC
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Table 8: Comparison of MRAC and CMRAC for 80% loss of thrust 

Gain = 10 Gain = 100

MRAC CMRAC MRAC CMRAC

Maximum depth change 0.06m 0.06m <0.01m <0.01m
Time to depth error to get below 0.01m large 22s N/A N/A
Maximum control signal value 17.8N 17.3N 23.6N 17.5N
Time for control signal to settle to final value large 28s Large 5s
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6. Conclusion
In this work, the suitability of CMRAC as a controller 
for an UUV and its performance against the standard 
MRAC were studied using numerical simulations. For 
the same learning rate, the CMRAC method has 
shown better tracking performance compared to 
MRAC for heading and depth changes during a mis-
sion or after a task or parameter variation. In addition, 
as the learning rate is increased, the improvement in 
tracking error is higher with CMRAC, and the exter-
nal disturbance rejection and recovery are better.

Furthermore, the control signal produced by 
CMRAC contains fewer oscillations compared to 
that of the standard MRAC. Even though both con-
trollers are capable of overcoming thruster failures, 
CMRAC is more robust to such effects with fewer 
oscillations in both the output and control signals. 
Overall, it can be concluded that CMRAC with its 
additional predictive error is preferred over stand-
ard MRAC for the control of UUVs. Future work 
will concentrate on adding integral feedback and 
testing CMRAC experimentally.
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