
Climate Drift in the CMIP3 Models

ALEXANDER SEN GUPTA

Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

LES C. MUIR AND JACLYN N. BROWN

Centre for Australian Weather and Climate Research, CSIRO Wealth from Oceans National Research Flagship,

Hobart, Tasmania, Australia

STEVEN J. PHIPPS

Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

PAUL J. DURACK, DIDIER MONSELESAN, AND SUSAN E. WIJFFELS

Centre for Australian Weather and Climate Research, CSIRO Wealth from Oceans National Research Flagship,

Hobart, Tasmania, Australia

(Manuscript received 7 June 2011, in final form 20 November 2011)

ABSTRACT

Even in the absence of external forcing, climate models often exhibit long-term trends that cannot be

attributed to natural variability. This so-called climate drift arises for various reasons including the following:

perturbations to the climate system on coupling component models together and deficiencies in model physics

and numerics. When examining trends in historical or future climate simulations, it is important to know the

error introduced by drift so that action can be taken where necessary. This study assesses the importance of drift

for a number of climate properties at global and local scales. To illustrate this, the present paper focuses on

simulated trends over the second half of the twentieth century. While drift in globally averaged surface prop-

erties is generally considerably smaller than observed and simulated twentieth-century trends, it can still in-

troduce nontrivial errors in some models. Furthermore, errors become increasingly important at smaller scales.

The direction of drift is not systematic across different models or variables, as such drift is considerably reduced

in the multimodel mean. Despite drift being primarily associated with ocean adjustment, it is also apparent in

atmospheric variables. For example, most models have local drift magnitudes in surface air and ocean tem-

peratures that are typically between 15% and 35% of the twentieth-century simulation trend magnitudes for

1950–2000. Below depths of 1000–2000 m, drift dominates over any forced trend in most regions. As such steric

sea level is strongly affected and for some models and regions the sea level trend direction is reversed. Thus

depending on the application, drift may be negligible or may make up an important part of the simulated trend.

1. Introduction

Climate models are vital tools for helping us under-

stand and attribute long–term changes in the global

climate system. These models allow us to make physi-

cally plausible projections of how the ocean–atmosphere

system might evolve in the future under given greenhouse

gas emission scenarios. Models are not complete or per-

fect replicas of the real world, however. Many physical

processes are only approximated or parameterized in

the models while others are omitted entirely. This can

lead to biases in the simulated climate. Here we focus on

a particular problem inherent in coupled climate models

that lead to spurious trends in climate simulations. This is

commonly referred to as climate drift.

Climate drift is primarily associated with deficiencies

in either the model representation of the real world or

the procedure used to initialize the model. Over long time

scales drift is primarily associated with slow adjustments
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té

o
ro

lo
g

iq
u

e
s

C
o

u
p

le
d

G
lo

b
al

C
li

m
a

te
M

o
d

e
l,

v
e

rs
io

n
3

(C
N

R
M

-C
M

3
)

O
ld

e
r

m
o

d
e

l
in

it
ia

li
ze

d

fr
o

m
L

E
V

8
2

7
0

1
1

1
0

—
P

C
M

D
I

5
C

S
IR

O
-M

k
3

.0
In

d
iv

id
u

a
ll

y
sp

u
n

u
p

co
m

p
o

n
e

n
ts

1
2

0
1

0
to

1
2

0
(3

m
e

m
b

e
rs

)
—

P
C

M
D

I;
(C

o
ll

ie
r

e
t

a
l.

2
0

0
4)

6
C

S
IR

O
-M

k
3

.5
In

d
iv

id
u

a
ll

y
sp

u
n

u
p

co
m

p
o

n
e

n
ts

1
7

0
1

0
to

1
4

0
(3

m
e

m
b

e
rs

)
—

P
C

M
D

I;
(G

o
rd

o
n

e
t

a
l.

2
0

0
2)

7
G

F
D

L
C

li
m

a
te

M
o

d
e

l
v

e
rs

io
n

2
.0

(C
M

2
.0

)

L
E

V
3

0
0

1
1

to
1

1
5
1

(3
m

e
m

b
e
rs

)
—

P
C

M
D

I.
S

o
m

e
fo

rc
in

g
ch

a
n

g
es

in
sp

in
u

p
p

ri
o

r
to

y
r

2
0

0

8
G

F
D

L
-C

M
2

.1
L

E
V

3
0

0
1

1
to

1
8

1
(3

m
e

m
b

e
rs

)
—

9
G

IS
S

A
tm

o
sp

h
e

re
–O

ce
a

n
M

o
d

e
l

(G
IS

S
-A

O
M

)

L
E

V
2

0
0

–
2

5
0

0
—

P
C

M
D

I

1
0

G
IS

S
-E

H
L

E
V

0
1

1
2

0
to

1
1

6
0

(9
m

e
m

b
e

rs
)

—
P

C
M

D
I

1
1

G
IS

S
-E

R
O

ld
e

r
m

o
d

e
l

v
e

rs
io

n
2

0
0

1
5

to
1

1
0

0
(9

m
e

m
b

e
rs

)
—

P
C

M
D

I

1
2

F
le

x
ib

le
G

lo
b

al

O
ce

a
n

–
A

tm
o

sp
h

e
re

–
L

a
n

d

S
y

st
em

M
o

d
e

l
g

ri
d

p
o

in
t

v
e

rs
io

n
1

.0
(F

G
O

A
L

S
-g

1
.0

)

In
d

iv
id

u
a

ll
y

sp
u

n
u

p

co
m

p
o

n
e

n
ts

1
0

0
1

0
to

1
1

0
(3

m
e

m
b

e
rs

)
—

P
C

M
D

I

1
3

IN
G

V
S

ca
le

In
te

ra
ct

io
n

E
x

p
er

im
e

n
t

[S
IN

T
E

X
-G

(S
X

G
);

E
C

H
A

M
4

]

In
d

iv
id

u
a

ll
y

sp
u

n
u

p

co
m

p
o

n
e

n
ts

fr
o

m

L
E

V

0
1

1
0

0
—

P
C

M
D

I
(d

es
cr

ip
ti

o
n

u
n

cl
ea

r)

1
4

IN
M

-C
M

3
.0

L
E

V
2

8
0

1
0

F
P

C
M

D
I.

(f
o

rc
in

g
m

o
d

ifi
e

d
y

r
2

0
0

)

1
5

L
’I

n
st

it
u

t
P

ie
rr

e
-S

im
o

n
L

ap
la

ce

C
o

u
p

le
d

M
o

d
e

l,
v

e
rs

io
n

4

(I
P

S
L

C
M

4
)

L
E

V
8

2
3

3
0

1
0

—
P

C
M

D
I.

1
6

M
IR

O
C

3
.2

(h
ir

e
s)

S
n

a
p

sh
o

t
o

f
p

re
v

io
u

s

v
e

rs
io

n

1
0

9
1

0
—

P
C

M
D

I.

1
7

M
IR

O
C

3
.2

m
e

d
iu

m
-r

e
so

lu
ti

o
n

v
e

rs
io

n
[M

IR
O

C
3

.2
(m

e
d

re
s)

]

S
n

a
p

sh
o

t
o

f
p

re
v

io
u

s

v
e

rs
io

n

1
0

9
/3

00
1

0
—

P
C

M
D

I.
(c

o
n

fl
ic

ti
n

g
in

fo
rm

at
io

n
)

1
8

M
e

te
o

ro
lo

g
ic

al
In

st
it

u
te

o
f

th
e

U
n

iv
e

rs
it

y
o

f
B

o
n

n
,

E
C

H
O

-G

M
o

d
e

l
(M

IU
B

E
C

H
O

G
)

O
ld

e
r

m
o

d
e

l
v

e
rs

io
n

fr
o

m
L

E
V

6
1

0
to

1
2

0
0

(5
m

e
m

b
e

rs
)

H
F

P
C

M
D

I

4622 J O U R N A L O F C L I M A T E VOLUME 25



in the simulated ocean that are independent of any ex-

ternal factors such as increased greenhouse gases. As

a result, in trying to understand the long-term rate of

change in a climate simulation arising from external forc-

ing, we need to pay heed to both low-frequency natural

variability and any spurious drift that exists in the model.

Significant efforts by the climate modeling community

have gone into reducing climate drift, which has meant

that most climate models can now be successfully run

without the need for unphysical flux adjustments. Never-

theless climate drift still persists. In this paper we quantify

the size of drift relative to twentieth-century trends in

climate models taking part in the Coupled Model In-

tercomparison Project phase 3 (CMIP3), which was used

to inform the Intergovernmental Panel on Climate

Change (IPCC) Fourth Assessment Report (AR4).

Climate drift tends to operate on two distinct time scales

(previously referred to as ‘‘major drift’’ for large magni-

tude rapid drift and ‘‘minor drift’’ for slow long time scale

drift, Cai and Gordon 1999). Large discontinuities in sur-

face fluxes during the coupling of the various component

models can cause rapid drift. The initial adjustment of the

atmosphere, surface ocean, and sea ice to this perturbation

is relatively fast, with a new equilibrium generally being

achieved after a few years. A variety of techniques have

been used to reduce this ‘‘coupling shock.’’ For example,

individual model components can be equilibrated using

different boundary forcing combinations in sometimes

quite elaborate multistage spinup procedures (e.g.,

Moore and Gordon 1994; Power 1995; Cai and Chu 1996;

Large et al. 1997). However, some initial, albeit reduced

adjustment to the coupling, generally persists.

A more pervasive problem relates to the millennial

adjustment time scale of the deep ocean. This may be

associated with various factors including 1) deficiencies

in the model physics, 2) inaccuracies in the model for-

mulation (which might for example lead to heat or salt/

freshwater not being conserved), 3) the propagation of

discontinuities associated with coupling shock through

the ocean interior, and 4) a sparsity in the observational

data used to initialize the model. Climate model simu-

lations are often initialized from some observational

dataset (Table 1). Given a perfect model and a perfect

set of observations, the simulated climate system should

be initialized in a dynamical balance. However, defici-

encies in model physics mean that a model’s dynamical

balance will be different to that of the real world. The

model will therefore drift. A lack of observational data,

particularly in the deep ocean, and the need to

interpolate this data will also mean that a dynamically

consistent observationally based initial state is unlikely

to exist. As such even with a perfect model some drift

would still occur.
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Climate drift can, in principle, be alleviated via long

model integrations. Such integrations are feasible and

routinely done for low-resolution models (e.g., Phipps

et al. 2011). However, to perform such simulations at

the higher resolution used for climate projections is at

present computationally prohibitive. Flux adjustments

have also been widely used in the past whereby pre-

determined heat and/or freshwater adjustments are made

over the duration of long climate simulations (Sausen

et al. 1988). Such adjustments are a pragmatic partial

solution to drift; however, they are also inherently non-

physical. It is therefore hard to envisage a satisfactory

near-term solution to the issue of climate drift. As the

models become more realistic, however, we would expect

the problem to become less significant. This is already

apparent. In the Coupled Model Intercomparison Project

phase 2 (CMIP2), 10 of the 17 models employed ad hoc

and nonphysical flux adjustments to reduce climate drift to

maintain a relatively stable simulated climate state

(Houghton et al. 2001; Räisänen 2001). Even with flux

adjustment, however, drift was still evident (Covey

et al. 2006). In CMIP3, only 6 of the 24 contributing

models used flux adjustments. Yet despite the removal of

flux adjustment the replication of the observed climate

has improved considerably (Reichler and Kim 2008). This

abandonment of flux adjustment can be partly attributed

to improved and more physically consistent model pa-

rameterizations, increased resolution, and dynamical

cores in the updated models. The shift was driven by

a general discomfort with the use of physically untenable

techniques. Previous work has demonstrated, for exam-

ple, that the details of flux adjustment can have major

impacts on transient simulations (Neelin and Dijkstra

1995; Tziperman 2000). Tziperman (2000), for instance,

show that two equally plausible flux adjustment formu-

lations can lead to a recovery or a sustained slowdown

of the thermohaline circulation after an initial warming

induced slowdown.

The quantification of drift requires the examination of

control simulations in which forcing terms (e.g., solar

irradiance, greenhouse gases) are maintained at fixed

levels. Any long-term trend in these control simulations

will be due to climate drift (and possibly low-frequency

variability). Forced simulations that are initialized from

these control simulations will therefore also contain a

trend component that is spurious and associated with

drift. In the CMIP3 models the twentieth-century hind-

cast simulations (20C3M, which extends from the late

nineteenth century to ;2000) are initialized from a

long preindustrial control simulation under constant

late nineteenth-century boundary conditions. As the

control simulation is, for most models, integrated beyond

this branching point, a period of temporal overlap is

available, which can in principle be used to identify, and

where necessary remove, the drift from the forced simu-

lation (Fig. 1). However, given a concurrent record of

forced and control simulations (which is not guaranteed

for all model/variable combinations in the CMIP3 re-

pository) three interrelated complications exist. First,

as with the identification of a forced trend, identifying

the drift is hampered by inherent natural variability. When

short time periods are analyzed or low-frequency natural

variability exists, aliasing can produce spurious trends

unrelated to either climate drift or external forcing.

FIG. 1. Schematic of the temporal evolution of a simulated state variable (e.g., global tem-

perature) during a preindustrial control simulation and subsequent simulations of the twentieth

century and future scenarios.
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Second, the trajectory of the drift is unknown. Long

integrations (e.g., with models used for paleoclimate

analysis) often show that for large-scale metrics (e.g.,

global temperature) there is an asymptotic approach to

a final state that is approximately linear on sufficiently

short time scales (see for example Cai and Gordon 1999,

Fig. 3). However, at a regional scale, the form of the

drift may be more complex as changes can propagate to

a region via multiple pathways. Third, it is likely that

there are nonlinear interactions between drift and the

climate state. The fact that the rate of drift slows as the

climate state approaches equilibrium demonstrates that

drift is sensitive to the mean state. As the mean state of

a forced simulation in general diverges from that of the

corresponding control simulation, it seems inevitable

that any drift in the control simulation will increasingly

become a worse proxy for drift within the forced simu-

lation with time.

A number of methods have been used to remove the

drift from a forced simulation. Commonly a linear trend

is calculated for an overlapping portion of the control

simulation, either for some metric (e.g., global-average

temperature) or on a grid point by grid point basis

(Gregory and Lowe 2000; Meehl et al. 2007b; Sloyan and

Kamenkovich 2007; Katsman et al. 2008; Santer et al.

2009; Sen Gupta et al. 2009; Downes et al. 2010). This

trend from the control simulation (i.e., the drift) is then

subtracted from the forced simulation trend. This tech-

nique assumes a linear drift that is coherent in the con-

trol and forced simulations and that low frequency

variability is not significantly biasing the calculation of

the linear trend. This method is equivalent to subtract-

ing the control simulation from the forced simulation on

a time step by time step basis and finding a linear trend

from the resulting time series. An attempt to use the

differenced time series to map out the temporal evo-

lution of the forced response (as opposed to the long-

term trend) would be somewhat misleading, however,

as the subtraction of the control adds spurious vari-

ability to the resulting time series (e.g., Gregory et al.

2001; Sun and Hansen 2003). This can be easily dem-

onstrated by subtracting two random time series. The

variance of the differenced time series is equal to the

sum of the variances of the constituent time series.

Another approach is to find the difference in a given

climate variable between two time slices in both the

forced and the control simulation. Subtraction of these

differences provides an estimate of the forced signal. This

method has the advantage of requiring less model output

to calculate the forced change, but conversely is subject

to more extreme aliasing as a result of natural variability.

More complex drift removal techniques may fit higher-

order functions to the control output (e.g., Gregory et al.

2001, 2006; Ammann et al. 2007). While a linear drift

seems justifiable on shorter time scales (as it is driven

by slow ocean adjustment), the assumption becomes

less tenable on longer time scales, as we might expect

drift to diminish. As such for long simulations the use

of higher-order drift removal is probably desirable (e.g.,

Gregory et al. 2006, uses a cubic polynomial drift to ex-

amine multicentennial sea level change). For shorter time

scales, such higher-order drift techniques would be more

likely to confuse drift and low-frequency natural variability.

Previous studies have examined the mechanisms driv-

ing drift in individual climate models (Rahmstorf 1995;

Power 1995; Bryan 1998; Cai and Gordon 1999). In addi-

tion, Covey et al. (2006) performed a comprehensive as-

sessment of drift for the previous generation of CMIP21

models. They noted that while these models showed

considerable improvement over those used in the previous

intercomparison, the problem of drift, although improved,

was still significant. To our knowledge no similar system-

atic assessment of the importance of drift has been con-

ducted for the CMIP3 models. As such, our aim is to

quantify the scale of the drift problem, in the context of

simulated trends over the second half of the twentieth

century, for the current generation of CMIP3 climate

models, thereby updating the work of Covey et al. (2006).

In particular we identify under what circumstances drift is

important relative to the forced trends when presenting

estimates of climate change. We demonstrate that drift

remains an important factor, that must be taken into ac-

count not only in the analysis of ocean changes but also

when estimating forced trends in the atmosphere.

In the remainder of this paper we provide a brief in-

troduction to the CMIP3 models (section 2), discuss the

method chosen for our drift estimation (section 3), and

evaluate the size of the surface and interior ocean drift

(section 4) for a variety of climate parameters. Finally

a discussion and recommendations are provided in

section 5.

2. CMIP3 models

In our examination of climate drift we use output

from CMIP3, archived by the Program for Climate Model

Diagnoses Intercomparison (PCMDI). CMIP3 is an

initiative of the World Climate Research Programme

(WCRP) to bring together output from an unprecedented

array of 24 climate models used to inform the IPCC AR4

(Table 1; for details on the initiative see Meehl et al.

2007a). Output from two standard experiments is examined

here: 1) a preindustrial control simulation (PICNTRL)

incorporating a seasonally varying but annually un-

changing forcing indicative of the late nineteenth cen-

tury and 2) a climate simulation from the late nineteenth
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century to ;2000 (20C3M) that incorporates observed

greenhouse gas concentrations, with a subset of models

also including variable solar radiation, volcanic aerosols,

and anthropogenic ozone (along with other atmospheric

forcing agents). We only examine the transient 20C3M

simulations and no projection scenarios. In the 20C3M

simulations the forced signal is still relatively weak (com-

pared to future projection scenarios, which are subject

to stronger radiative forcing) while the drift is rela-

tively strong, as we might expect it to diminish with

time. Examination of the twentieth century therefore

provides a worst case estimate of the relative impor-

tance of climate drift to forced trend. For each model

one or more 20C3M simulation is initialized from a snap-

shot of the corresponding PICNTRL simulation. There

is considerable inconsistency with regard to the avail-

able variables, time spans, and numbers of realizations

across the various experiments and models making up

the CMIP3. As such analysis of different variables will

generally involve slightly different subsets of models.

The CMIP3 repository contains a large set of nomi-

nally independent models encompassing a broad range

of resolutions and incorporating a variety of different

physical parameterizations (although component models

and parameterizations are often implemented in more

than one model; for more information see Sen Gupta

et al. 2009, Table 1). For the ocean component, resolu-

tions vary from the eddy-permitting Model for Inter-

disciplinary Research on Climate 3.2, high-resolution

version [MIROC3.2(hires); 0.2888 3 0.1988 3 47 levels]

to the coarse-resolution Goddard Institute for Space

Studies Model E-R (GISS-ER; 58 3 48 3 13 levels).

Most models employ a z-level vertical coordinate, al-

though isopycnal, sigma, and hybrid schemes are also

represented. They also implement some form of the

Gent and McWilliams (1990) parameterization to ac-

count for the effect of unresolved eddy processes. As

noted previously a major change from the CMIP21

models is that the CMIP3 models—except for the

INGV-ECHAM4, the global Hamburg Ocean Primi-

tive Equation (ECHO-G) models, the Meteorological

Research Institute Coupled General Circulation Model,

version 2.3.2 (MRI CGCM2.3.2), the Institute of Nu-

merical Mathematics Coupled Model, version 3.0 (INM-

CM3.0), and the two Canadian Center for Climate

Modelling and Analysis (CGCM3.1) models—do not use

flux adjustments.

Table 1 shows information regarding model spinup

times for the CMIP3 models. Spinup strategies employed

by each modeling group and for each model are different.

Some undertake a coupled spinup integration directly

from an observed initial state, while others use a snapshot

from a previous model realization or from separately

spun up ocean and atmosphere model components. In

comparison to CMIP21 models (Covey et al. 2006,

their Table 2) there has been a general reduction in

spinup times (the time between coupling and the start of

20C3M simulations) in the CMIP3 generation of models.

The median spinup time has gone from ;250 yr (Covey

et al. 2006, their Table 2) to ;200 yr (CMIP3, Table 1).

This is in part a consequence of improvements in model

stability. However, it may also be symptomatic of the

fact that the increase in model complexity and resolu-

tion and the need for multiple scenario experiments has

overshadowed increases in computational power. In

addition, timelines for inclusion in the CMIP–IPCC pro-

cess often mean that modeling groups have insufficient

time in which to perform long simulations. Table 1 con-

tains various gaps and conflicting pieces of information,

which are indicative of the lack of information provided

by some of the modeling groups regarding the spinup

procedures either to PCMDI or in the relevant model

documentation.

3. Climate drift correction

Below we examine 1950–2000 trends from the 20C3M

hindcasts for the CMIP3 models and investigate the bias

introduced by climate drift. This period was selected as

it has been the focus of recent new observational anal-

ysis (e.g. Durack and Wijffels 2010) and is only over the

latter half of the twentieth century that there is strong

evidence for an unambiguous anthropogenic signal in

the observations (Solomon et al. 2007). As we are in-

vestigating relatively short time spans we make the

common assumption that any drift will be approximately

linear. This assumption would be less tenable if we were

examining longer time scales over which drift might be

expected to diminish over time. The short timespan also

means that trend estimates, for both the PICNTRL and

20C3M simulations, are likely to be confounded by low-

frequency natural variability. To reduce this effect we

define the drift as a linear trend in the PICNTRL sim-

ulation over an extended period, where possible, 1900–

2050 (which brackets 1950–2000). The time variable in

PICNTRL experiments was offset, where required, such

that the branch point for the PICNTRL and 20C3M

simulations was labeled with the same year. Inspection

of the control experiments suggests that drift tends to be

approximately linear over this time scale. This time span

is a subjective choice, but it provides a compromise

between being sufficiently long to avoid some of the

aliasing by natural variability yet sufficiently short to

account for the fact that over long time scales the tra-

jectory of the drift is likely to be nonlinear. Not all

modeling groups provide sufficient PICNTRL output to
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meet this criterion, so the closest time period is then

used. We do not apply the same procedure to the cal-

culation of the forced 20C3M trend as the degree of

forcing ramps up considerably with time and so the

assumption of linearity would be less likely. However,

where multiple twentieth-century realizations exist for

a particular model (which is the case for a number of

models), we averaged over all realizations to obtain trend

estimates for that model. As low-frequency variability is

not coherent across multiple realizations, such aver-

aging helps to reduce the effect of aliasing.

An alternative trend estimation method was also per-

formed whereby a multiparametric regression was per-

formed on the 20C3M and PICNTRL that sought to

reduce the effect of climate variability related to vari-

ous climate drivers (e.g., El Niño–Southern Oscillation,

Southern Annular Mode, and volcanic and solar forcing;

method described in Durack and Wijffels 2010). While

we do not present this here, these results were not sub-

stantively different to those shown here using the simple

linear trend removal.

4. Results

a. Surface drift

Widely used metrics of global change are averaged

surface air temperature (SAT) and sea surface temper-

ature (SST). The observed linear trend of globally aver-

aged SST over the last 50 years of the twentieth century

is ;0.4 K (50 yr)21 based on the Second Hadley Centre

Sea Surface Temperature dataset (HadSST2) (Rayner

et al. 2006) or ;0.3 K (50 yr)21 based on the interpolated

HadISST1 (Rayner et al. 2003). Larger values are ob-

tained for global air temperatures: ;0.48 K (50 yr)21

based on the Hadley Centre–Climate Research Unit Tem-

perature Anomalies, version 3 (HADCRUT3) (Brohan

et al. 2006) and ;0.54 K (50 yr)21 based on National

Aeronautics and Space Administration (NASA) GISS

surface temperature analysis (GISTEMP) (Hansen et al.

2010). The 50-yr trends from the available CMIP3 models

show considerable spread (Fig. 2). However the multi-

model mean changes [based on the raw 20C3M simula-

tion output, 0.55 6 0.22 K (50 yr)21 for SAT (black line)

and 0.33 6 0.2 K (50 yr)21 for SST (mean 6 standard

deviation) (gray line)] are consistent with the observa-

tional estimates. It is important to determine how much

of the simulated warming is due to drift and how much is

actually attributable to external forcing. For both SST

and SAT the globally averaged drift ranges between about

20.16 to 10.07 K (50 yr)21. Consistent with results from

the CMIP2 models (Covey et al. 2006), for individual

models, the magnitude of the drift is considerably less

than both observational estimates of the 1950–2000

trends and the corresponding 20C3M estimates. For

most models the drift accounts for less than 20% of the

signal, however, the drift magnitudes are often not

negligible and should be accounted for in the final esti-

mate of warming in each model. The globally averaged

drift in SST and SAT is largest [.0.1 K (50 yr)21]

for Istituto Nazionale di Geofisica e Vulcanologia (Italy)

(INGV) ECHAM4, Commonwealth Scientific and

FIG. 2. Drift-corrected (bars) and raw (circles) 1950–2000 trend for (a) SAT and (b) SST. Horizontal lines indicate

the multimodel means for drift-corrected (continuous) and uncorrected (dashed) SAT and SST. Horizontal gray

bands indicate observational range based on two datasets in each case (see text for further details). Flux adjusted

models are indicated in bold. Observational datasets include HadSST2, HadISST, HADCRUT3, and GISTEMP (see

text).
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Industrial Research Organisation Mark version 3.0

(CSIRO Mk3.0), and the Institute of Atmospheric

Physics (IAP) model (the latter model only for SAT).

For ECHAM4 and CSIRO Mk3.0 this corresponds to

a drift induced error in SST of over 30% in the raw 20C3M

trends. Note that the ECHAM4 drift is based on only

100 years of PICNTRL that terminates before the

start of the 20C3M simulation (a concurrent control

period is unavailable). This seriously undermines the

confidence that can be placed in this drift estimate. As

expected, the flux adjusted models all have relatively

small drifts (,10%). It is also apparent that the use of

flux adjustment does not lead to consistently high or low

estimates of 20C3M trends, as these models include

both the fastest and slowest warming. Despite the drift

making up a small but nontrivial fraction of the 1950–

2000 forced trend for some models, the drift-corrected

multimodel mean trends of 0.34 6 0.21 K (50 yr)21 and

0.57 6 0.24 K (50 yr)21 for SST and SAT, respectively,

are statistically indistinguishable from the raw 20C3M

multimodel mean trends. This is because the drift is not

systematic across the models and tends to cancel out in

the model mean.

While climate drift is of negligible importance when

considering the multimodel mean for large-scale surface

properties, this is not necessarily the case when consid-

ering individual models or examining trends at regional

or local scales, discussed below.

While forced trends in surface temperature are posi-

tive almost everywhere around the globe, this is not the

case for the drift, nor is it the case for forced trends in

other properties including salinity and precipitation. As

such, a more appropriate metric for expressing the rel-

ative importance of the drift can be achieved by first

taking the magnitude of the trend (for both 20C3M and

PICNTRL) at each grid box before averaging globally

(Fig. 3). This provides an average measure of the typical

local error in the 20C3M trend if drift is unaccounted

for—a very different measure to that shown in Fig. 2.

For SST (Fig. 3a) the drift makes up ;20% or less of the

FIG. 3. Scatterplots of globally averaged drift magnitude vs globally averaged 20C3M trend magnitude (a) SST and

(b) SAT [K (50 yr)21], (c) SSS [psu (50 yr)21], and (d) precipitation [mm (day)21 (50 yr)21]; 20C3M trend calculated

from 1950–2000 period; drift calculated from 1900–2050 period in PICNTRL (or closest possible equivalent period;

NB. only 100 years of PICNTRL available for INGV ECHAM4). 20C3M trends are averages of all available en-

semble members. Open circles—flux adjusted. Lines indicate where climate drift is 10%, 20%, etc. of the 20C3M

trend. Model numbers given in Table 1.
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raw 20C3M trend in the majority of models. However, in

four of the models the drift exceeds 30%, and in the

case of ECHAM4 exceeds 60% of the 20C3M trend.

Given the strong coupling between SST and SAT over

the ocean, it is of little surprise that the scatter for SAT

(Fig. 3b) follows a similar pattern to SST. In general,

however, the SAT drift makes up a slightly lower pro-

portion of the 20C3M trend. For salinity, drift magni-

tudes span 10%–70% of the 20C3M trend magnitude

(excluding INGV ECHAM4 where the size of the drift

actually exceeds that of the 20C3M trend), with a large

proportion of models exceeding 30%. Despite using

freshwater flux adjustment, two of the flux adjusted

models still have drift magnitudes that exceed 30%

[with CGCM3.1(T47) approaching a 50% error]. Drift

in sea surface salinity (SSS) represents either a re-

distribution of salt within the ocean, a net flux of fresh-

water into or out of the ocean, or a failure to conserve

either salt or freshwater.

Based on our examination of the literature, drift within

atmospheric variables is rarely assessed in the exami-

nation of trends in transient climate simulations. For

example in the IPCC AR4 report, only drift in SAT was

accounted for. Other atmospheric variables were not

subject to drift correction (H. Teng 2011, personal

communication). A tight coupling between SST and the

surface atmosphere means, however, that there is rea-

son to expect drift in atmospheric properties and in-

deed we have shown this to be the case for SAT. In

addition, to first order (i.e., assuming little change in the

atmospheric circulation), changes in evaporation minus

precipitation (E 2 P) are expected to scale in proportion

to the changes in SAT and therefore over oceanic re-

gions to SST (and the mean E 2 P field; e.g., Held and

Soden 2006; Covey et al. 2006; Romps 2011). Indeed,

we find that most models have substantial drift magni-

tudes in precipitation of between 15% and 35% (Fig. 3d).

The strong coupling between the ocean and atmospheric

drift is evident in the high correlations (r ; 0.9) between

SST drift magnitudes and drift magnitudes across the

models, in both SAT and precipitation.

b. Drift on regional scales

While the globally averaged drift magnitude provides

an estimate of the typical size of local drift, the drift may

be highly heterogeneous and some locations may have

much larger drift magnitudes than others. Examination

of the individual models shows that there are certain

common regions where the magnitude of the drift is rel-

atively large (Figs. 4b,e,h,k). While the magnitude of the

drift may be coherent the sign of the drift in these re-

gions is not (i.e., these regions may show either large

positive or negative drift). Maps of multimodel-mean

drift magnitudes and the associated 20C3M trend mag-

nitudes highlight some of the robust spatial structures

in the drift (Fig. 4).

A number of studies pertaining to individual models

find that drift in the ocean is sensitive to ocean convec-

tion and as a result drift magnitudes tend to be largest

at high-latitude regions where deep convection occurs

(Rahmstorf 1995; Cai and Chu 1996; Cai and Gordon

1999). Even when no discontinuity in surface fluxes

occurs during model coupling, coupled feedbacks lead

to instability and drift in the ocean convection zones

(Rahmstorf 1995). A number of early studies noted a re-

duction of drift, in a variety of ocean and atmosphere

variables, associated with the incorporation of the GM

eddy parameterization (Gent and McWilliams 1990).

This is a result of the parameterization’s suppression

of excessive convective activity (Boville and Gent 1998;

Bryan 1998; Hirst et al. 2000). Large mid- to high-latitude

drift magnitudes are common across the CMIP3 models

(Figs. 4b,e,h). SST drift magnitudes generally reach a

maximum in the midlatitude regions and in the vicinity

of sea ice where strong convective activity takes place.

This is particularly problematic, with regard to the esti-

mation of forced trends, in the mid- to high-latitude

Southern Ocean where the simulated 20C3M warming

tends to be relatively weak (Fig. 4a) and so the drift

makes up a large part of any trends in the 20C3M sim-

ulations. This weak warming trend persists under future

projections (Sen Gupta et al. 2009), implying that the

error associated with the drift will remain problematic

when considering future projections. SST drift is of less

importance at lower latitudes where the drift magnitude

is small compared to the warming signal.

SAT drift (Fig. 4e) generally mirrors the pattern de-

scribed for SST with a midlatitude enhancement in drift.

The SAT and SST drift become decoupled, however,

at high latitudes, particularly over the Arctic region and

the Weddell Gyre where drift magnitude remains large

in SAT, but is small in SST (Figs. 4b,e). This is likely due

to the insulating effects of sea ice and the fact that

a small change in sea ice cover can substantially change

SAT, via modified air–sea heat exchange, while SST re-

mains relatively unchanged close to the freezing point.

Similarly, for the 20C3M raw trends (Figs. 4d,e), the

polar amplification of temperatures, only significantly

affects SAT and not SST.

The largest 20C3M trends in SSS are primarily related

to freshening in the Arctic and the midlatitude northern

Atlantic (Fig. 4h). The largest drifts are also evident at

higher latitudes of the Northern Hemisphere. Although

there is considerable intermodel spread, the largest drifts

tend to occur in the northwestern North Atlantic, where

SST drift magnitudes are also large. While this may be
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related to oceanic processes alone, the SSS drift may

stem in part from changes in the local water fluxes re-

lated to changes in SST. This is supported by the ele-

vated precipitation drift magnitudes over this region,

which (as noted previously) would scale with changes

in SST assuming that the atmospheric circulation re-

mains relatively unchanged.

While there are large intermodel differences in the

simulated climate change trends across models, in

general precipitation trends are consistent with an

intensification of the hydrological cycle, with wet

areas becoming wetter and dry areas becoming drier

(Allen and Ingram 2002; Held and Soden 2006; Allan

et al. 2010). Unlike surface temperature, the largest

drifts in precipitation occur in the tropical regions

(Fig. 4k). This is presumably a consequence of the

change in the hydrological cycle scaling not only with

drift-related temperature changes (which are largest at

midlatitudes, Fig. 4b), but also with the mean E 2 P

(Held and Soden 2006), which is greatly enhanced at

tropical latitudes.

Figure 5 shows raw 20C3M trends and the associated

drift over the high precipitation western tropical Pacific,

for a selection of models. While the drift is generally

smaller than the 1950–2000 20C3M trend, it becomes

important in certain regions. For example in mottled

regions the drift makes up at least 50% of the 20C3M

trend. Such localized drift becomes important when con-

ducting regional attribution studies or regional projec-

tions for individual islands—something that is becoming

more prevalent as stakeholders require more policy-

relevant, regional- and local-scale information.

FIG. 4. (left) Multimodel mean 20C3M trend magnitude, (middle) multimodel mean drift magnitude, and (right) number of models in

which the local drift magnitude exceeds the globally averaged drift magnitude for (a)–(c) SST [8C (50 yr)21], (d)–(f) SAT [8C (50 yr)21],

(g)–(i) SSS [psu (50 yr)21], and (j)–(l) precipitation [mm (day)21(50 yr)21]. A total of 22, 24, 20, and 23 models where used in the analysis

of SST, SAT, SSS, and precipitation, respectively.
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c. Drift in the ocean interior

It takes considerable time for surface temperature (or

freshwater) anomalies resulting from increased anthro-

pogenic forcing to be advected or mixed into the deep

ocean. As a result, over the twentieth century, any warm-

ing signal, outside of the deep convection regions, is pri-

marily constrained to the upper few hundred meters of

the ocean (e.g., Levitus et al. 2005). However, the prop-

agation of surface anomalies resulting from any coupling

FIG. 5. Precipitation trends [mm (day)21 (50 yr)21]. (a),(b),(e),(f) ‘‘Raw’’ 1950–2000 20C3M trends and

(c),(d),(g),(h) associated climate drift for a selection of models (listed at top of each panel) over the tropical Pacific.

Mottling indicates regions where the magnitude of the drift or 50% or more of the 20C3M trend.

1 JULY 2012 S E N G U P T A E T A L . 4631



shock over the spinup period and subsequent pre-

industrial control and the growth of errors resulting

from deficiencies in model physics, will have had a much

longer time period (in most cases) over which to pervade

the ocean interior. Consequently, we expect to see a

comparatively strong drift in the deep ocean. The pre-

dominance of drift over any climate change signal in the

deep ocean was noted by Gleckler et al. (2006) when

examining ocean heat content a subset of CMIP3 models.

They found that the anthropogenic signal was generally

confined to the upper 500 m over the 1850–2000 period.

The evolution of globally averaged 20C3M tempera-

ture with depth is shown here for three CMIP3 models

(Figs. 6a,b,c). As expected, the simulations demonstrate

a surface-intensified warming becoming stronger over the

century. However, significant model-dependent trends

are also evident in the deeper ocean. These subsurface

trends also exist in the concurrent PICNTRL simula-

tions (Figs. 6d,e), indicating that they are not a result of

any imposed forcing and are therefore spurious. In fact

by simply subtracting the PICNTRL simulations from

the 20C3M simulations, most of the signal deeper

than ;500 m is removed (Figs. 6f,g). This clearly dem-

onstrates a requirement for careful drift removal when

investigating the subsurface ocean. The fact that sub-

traction of the PICNTRL simulation so effectively re-

moves the deep signal also indicates that, at least on

these global scales, the drift component evident in the

PICNTRL simulation exists relatively unmodified within

the 20C3M simulation and nonlinear modulation of the

drift in the forced experiment is relatively small. The

third model, INGV ECHAM4, shows quite dramatic

deep spurious trends over the twentieth-century simu-

lation (Fig. 6c). However, for this model no concurrent

PICNTRL simulation is available. As such, we would be

inclined to exclude this model from any analysis of the

subsurface ocean and be wary of any conclusions drawn

even at the surface.

Figures 7a and 7b show the globally averaged drift

magnitude (i.e., the absolute value of the PICNTRL

trends are taken prior to global averaging) for potential

temperature and salinity with depth for each model and

the multimodel mean. Significant drift in temperature

and salinity occurs throughout the water column. The

vertical structure of temperature drift is highly variable

across the models. There is a weak tendency for drift to be

larger in the upper 1500 m than at deeper levels, although

it weakens again over the upper few tens of meters in

many of the models. In contrast, the 20C3M warming

trend (multimodel mean shown in red) is clearly in-

tensified at the surface. After linear drift correction the

forced trend is considerably smaller than the corre-

sponding raw 20C3M trend at depth. This results in a sit-

uation where forced trends dominate over the drift above

;1500 m while drift tends to dominate below this depth.

This is similarly true for salinity, although the transition

depth is shallower. This results from a systematic surface

intensification in the drift magnitude for salinity across all

the models.

The magnitude of the drift compared to the total

20C3M forced signal is quantified for the full set of

CMIP3 models at two different depths (Fig. 8). At 100 m

FIG. 6. Evolution of anomalous (relative to 1900) globally averaged ocean temperature at different depths for (left to right) three

models: CCSM3.0, MIROC3.2(hires), and INGV ECHAM4 models. (top) 20C3M (1900–2000); (middle) concurrent period of PICNTRL;

and (bottom) 20C3M minus PICNTRL (no concurrent PICNTRL available for ECHAM4 model). 10-yr running average applied.
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the error introduced by the drift is mostly within 10%

to 40% of the 20C3M signal for temperature and 20%

to 70% for salinity. Even at this shallow depth the drift

is considerably more important than at the surface (Figs.

3a,c). At 3000 m any trend in the forced experiment for

both variables is almost entirely related to drift (i.e., all

points sit close to the 100% line). It is again apparent,

particularly in the case of salinity, that the near-surface

drift exceeds the deep drift (suggesting that atmosphere–

ocean freshwater fluxes are playing an amplifying role).

Some consistent patterns of drift can be found across

the models (Fig. 7, lower panels). For temperature, the

enhancement of drift in the upper part of the water col-

umn is located primarily in the regions of deep con-

vection and along the sea ice edge, particularly in the

Northern Atlantic (but also the north eastern Pacific and

around the Southern Ocean, see also Fig. 4b). At most

latitudes the drift magnitude at the surface decreases

again. A possible explanation for this is that surface drift

may be subject to damping by the atmosphere, so that

heat from areas of positive drift is transferred to areas

of negative drift.

The surface intensification of the salinity drift de-

scribed above is evident at all latitudes but is strongest

in the North Atlantic and Arctic Oceans. Little drift

amplification is evident around Antarctica. This pattern

of enhanced Arctic salinity change is also present in the

trend pattern in the 20C3M simulations (Figs. 4g,h).

This suggests that there are amplifying feedback pro-

cesses acting in the Arctic that are less important in the

Antarctic, whether the system is being driven by change

associated with drift or external forcing. Such feedbacks

may be related to the presence of extensive multiyear ice

in the Arctic and the fact that Arctic temperatures are

FIG. 7. (top) Globally averaged (left) temperature [K (50 yr)21] and (middle) salinity [psu (50 yr)21]

drift magnitudes with depth. Shown are individual multimodel mean drift magnitude (thick black line)

and multimodel mean 1950–2000 20C3M globally averaged trend magnitude (thick red line). Also shown

are the drift-corrected 1950–2000 trends (thick red dashed line). (bottom) Multimodel mean zonally

averaged drift magnitude with depth for (left) temperature and (right) salinity (calculated by taking

gridpoint trend magnitudes and then zonally averaging). ECHAM4 is excluded in the calculation of

multimodel means as no concurrent PICNTRL exits for drift calculation. Flux adjusted models are in

bold.
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generally warmer and close to the ice melting point

(Serreze and Francis 2006). As noted for SST drift, the

drift magnitudes in temperature around Antarctica and

in the Arctic Ocean are small (Figs. 7 and 4a,b), as upper-

ocean temperatures are insensitive to any changes in sea

ice. A further factor that may account for the enhanced

surface salinity drift away from regions of sea ice is that

drift in the SST will drive changes to the atmospheric

hydrological cycle (via coupled changes to lower tro-

pospheric temperatures), thus causing spurious drifts in

salinity that would be independent of any direct ocean

derived salinity drift.

It is interesting to note that there are positive corre-

lations between temperature and salinity gridpoint drifts

at most depths across all the models (Fig. 9). This

suggests that the changes in temperature and salinity are

partially density compensating. This becomes particu-

larly evident in the deep ocean where correlations are

very large (although care must be taken in assigning

confidence to the correlation values, as the spatial pat-

tern of temperature and salinity drift have high degrees

of spatial autocorrelation). Covariance of temperature

and salinity will act to partially compensate the effect

drift has on density and thus on steric sea level rise and

circulation. Drift in these properties still persists how-

ever. Sen Gupta et al. (2009) has shown that, for some

CMIP3 models, the twenty-first-century projected changes

in the overturning circulation of the Southern Ocean are

significantly modified by drift, although in most cases the

drift is relatively small compared to the forced change.

For 100-yr changes under the Special Report on Emis-

sions Scenarios (SRES) A2 emissions scenario, they find

that drift was more important in the Antarctic and abyssal

overturning cells, related to the formation and

FIG. 8. Scatterplots of PICNTRL (1900–2050) vs 20C3M globally

averaged trend magnitude (1950–2000) globally averaged trend at

100 and 3000 m for (a) potential temperature and (b) salinity. Lines

indicate where climate drift is 10%, 20%, etc. of the 20C3M trend.

The ECHAM4 model is off the scale shown with drift in excess of

0.38C yr21. Model numbers given in Table 1.

FIG. 9. Correlation between gridpoint drifts in temperature and

salinity for different depths, averaged across all models (thick line).

The spread in the correlations, represented by an intermodel stan-

dard deviation is shown in gray. The 90% significance level is also

shown (dashed line). This has been calculated by cross-correlating

temperature and salinity fields from all possible combinations of

models (at each depth level) and examining the resulting correla-

tion probability distribution function. The large correlations re-

quired for 90% significance, for increasing depth, is a result of

trends in temperature and salinity becoming much more spatially

homogenous at greater depths. This increased spatial autocorre-

lation in effect dramatically reduces the number of degrees of free-

dom when computing confidence levels.
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northward export of bottom waters, than in the wind

driven Deacon cell. A large drift in the Atlantic over-

turning circulation has also been noted in one of the

climate models (Fichefet et al. 2003).

d. Implications for steric sea level rise

As discussed above, drift in temperature and salinity

dominates 20C3M trends throughout most of the sub-

surface ocean. In the calculation of steric sea level rise,

a given temperature or salinity change will generally

have less effect at depth than near the surface. As the

amount of expansion for a given change in temperature

or salinity is itself a function of temperature, salinity,

and pressure (in particular warmer water expands more

than colder water for the same increase in heat content),

the changes in temperature near the warm surface ocean

have a proportionally larger influence on steric sea level

rise than temperature changes in the cold deeper ocean

(at least away from the well mixed high-latitude regions).

Nevertheless, given that the global warming signal over

the twentieth century is predominantly limited to the top

few hundred meters, in most regions, while ocean drift

extends through the entire water column, drift still in-

troduces considerable bias into both regional and global

sea level rise.

The CMIP3 models show a broad range of estimates

for steric sea level rise over 1950–2000 (Fig. 10a). The

spread in the raw 20C3M estimates is considerable (stan-

dard deviation ;0.76 mm yr21 with a multimodel mean

of 0.45 mm yr21). In addition a number of the models

indicate a lowering of sea level over the period. For the

drift-corrected sea level rise (i.e., by using drift corrected

temperature and salinity) values become considerably

more consistent (standard deviation ;0.36 mm yr21)

and all models now indicate a rise in sea level. While

considerable intermodel variability still exists the drift-

corrected multimodel mean (;0.59 mm yr21) is con-

sistent with the Domingues et al. (2008) observational

estimate (0.52 6 0.08 mm yr21, for 0–700 m, 1950–2003).

Figure 10a shows raw 20C3M trends and drift-corrected

estimates of forced trend for steric sea level rise, in-

cluding multiple ensemble members where available;

ensemble members for a given model are generally ini-

tialized from the same PICNTRL experiment but from

different points in time, usually separated by multiple

years (Table 1). Nevertheless the drift, which is derived

from different time periods from a single PICNTRL

simulation, is very similar across ensemble members,

suggesting that the linear drift approximation is valid

and that natural variability is not having a major effect

on the drift estimates. Figure 10b shows a scatter of the

raw 20C3M trend magnitudes versus drift magnitudes.

The drift-related error varies considerably across the

models from less than 10% to over 200% for the

ECHAM4 model (see previous discussion of this

model).

As with surface drift, subsurface drift in temperature

and salinity is spatially heterogeneous and so can re-

sult in a larger bias on regional scales. This is particu-

larly important for assessing twentieth-century regional

changes, where the steric component of sea level rise is

a major component of the total (e.g., Domingues et al.

2008). Figure 11 shows both the raw 20C3M and drift-

corrected 1950–2000 trends for three models (calculated

from the surface to the bottom). A few models (e.g.,

MRI-CGCM2.3.2) have a well-equilibrated pre-

industrial control throughout the ocean and so are es-

sentially untroubled by drift. However, most models are

significantly affected in certain regions. In fact for many

models and regions the sign of the sea level trend is

changed by the spurious drift. For instance in the

CSIRO Mk3.0 model the steric sea level anomaly over

much of the tropics and midlatitudes, estimated from the

raw 20C3M temperature and salinity, changes sign once

the drift is taken into account.

5. Discussion

Despite major advances in the fidelity of coupled cli-

mate models in their reproduction of the observed cli-

mate system (Randall et al. 2007; Reichler and Kim 2008)

spurious trends in model simulations, known as climate

drift, still persist, independent of any external forcing.

Despite the best efforts of modeling groups, climate drift

is an issue that is likely to persist for some time to come.

As such, the appropriate level of importance must be

given to this problem depending on the application at

hand. In some instances drift is of primary importance

and cannot be ignored. For example, in the deep ocean

or for depth-integrated properties drift may dominate

over any externally forced signal. In some applications,

however, climate drift has a relatively minor effect and

can be safely ignored. This is often the case when deal-

ing with multimodel means of the surface climate. Drift

appears not to be systematic with regards to its sign and

tends to cancel out where a large number of models are

considered. In addition the relative importance of drift

will generally diminish into the future as the forced trend

becomes larger (at least for some time) and the drift (at

least in principle) should diminish.

a. Drift issues for examining climate model output

Below we raise a number of points that should be

considered by those examining model output in the con-

text of forced trends:
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Below ;(1–2) km, the drift generally dominates over

any forced trend. Any study examining subsurface pro-

cesses or depth-integrated properties like steric sea level

rise, must pay careful attention to how drift is treated.

The drift in sea level can be large enough to reverse the

sign of the forced change both regionally and in some

models for the global average. Conclusions drawn from

such studies may be sensitive to the method by which the

drift is corrected for.

Globally averaged drift for SST and SAT is for all

models substantially smaller than forced trends in the

twentieth century. For this reason when considering such

globally averaged variables, drift is often considered of

relatively minor importance, especially compared to the

FIG. 10. Steric sea level rise trends (1950–2000). (top) Raw (circles) and drift-corrected (bars)

globally averaged steric sea level rise for individual models and drift-corrected multimodel

mean (dashed line). (bottom) Scatterplots of PICNTRL (1900–2050) vs 20C3M (1950–2000)

globally averaged steric SLR trend magnitude calculated for surface to 700 m and for the full

water column. Steric SLR drift is computed by differencing trends computed from raw and

drift-corrected temperature and salinity.
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uncertainty in the model spread. This is in part due to

the fact that the forced trend is positive almost every-

where, while the sign of the drift varies regionally. The

drift in this case will on average make up ;10% of the

forced trend (and not exceed 30% for SST or 20% for

SAT, see Fig. 2). In addition, the sign of drift does not

appear to be systematic across the models. Thus, when

using an unweighted multimodel mean drift has a much

reduced impact. This appears to be generally true for all

the variables considered here.

As surface drift is spatially heterogeneous, the re-

gional importance of drift for individual models can be

much larger than the global figures suggest. We have

presented a number of analyses showing globally aver-

aged drift magnitudes versus 20C3M trend magnitudes

(Figs. 3, 8, and 10) for various variables. These plots

provide a measure of the average error that would be

incurred in estimating the forced 1950–2000 trend for

a particular location and model, if no drift correction

were applied. For example a typical error in calculat-

ing a regional forced SST trend in the Bjerknes Center

for Climate Research (BCCR) Bergen Climate Model,

version 2.0 (BCM2.0), CSIRO Mk3.0, and GISS-EH

models without accounting for drift would be 30% to

40% (Fig. 3a). This is an average value and so larger

(and smaller) errors would be expected at different lo-

cations.

Studies examining ocean fields from coupled climate

models routinely take climate drift into account through

some form of correction. As far as we are aware, this

is not generally the case for the analysis of atmospheric

fields. However, surface ocean drift will necessarily

propagate to the atmosphere via air–sea coupling. This

is evident in the strong correlations that exist between

globally averaged SST drift magnitude and the drift

magnitude of SAT and precipitation across the models.

As such, drift in atmospheric properties, for example,

SAT and precipitation, can make up a significant pro-

portion of 20C3M trends. As an example, for pre-

cipitation (Fig. 3d) in 13 out of 21 models the error

incurred by ignoring drift at a given location typically

exceeds 20% for 1950–2000. Consideration of regional

drift is particularly important as there is an increasing

effort to use regional and local-scale information from

individual climate models to inform regional impact

studies.

Spurious trends in temperature and salinity suggests

that density would also show substantial drift, although

FIG. 11. (left) Raw 20C3M and (right) drift-corrected steric sea level rise for the full water column (mm yr21) for

(top to bottom) three of the CMIP3 models. Drift-corrected values are calculated using drift-corrected temperature

and salinity.
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some degree of density compensation tends to occur in

the models (Fig. 9). This would in turn drive dynamical

changes to the ocean via changes in stratification, the

overturning circulation, and geostrophic flow where

there are spatial differences in density drift. It has al-

ready been noted that the sensitivity to stratification

changes at high latitudes is an important factor in am-

plifying drift in these regions (Rahmstorf 1995; Cai and

Gordon 1999). While we have not explicitly examined

drift in circulation, Sen Gupta et al. (2009) have shown

that, for some models, the projected changes in the

overturning circulation of the Southern Ocean over the

coming century are significantly modified by drift, al-

though in most cases the drift is relatively small com-

pared to the future forced change. Preliminary analysis

also suggests that drift in the tropical Pacific circulation

may be important in selected models.

As evidenced by the fact that drift diminishes with

time, climate drift is sensitive to the mean state of a

model. The mean state can change because of external

forcing or because of natural variability. This implies

that drift in the preindustrial control will not be a perfect

proxy for the drift within a transient simulation. While

we offer no solution to this problem, it is important to

recognize that this introduces some degree of uncer-

tainty into any drift-corrected forced trend estimate.

Long spinup simulations can greatly reduce the rate

of climate drift. However, this comes at a cost. A long

integration necessarily means that the climate state has

more time to diverge from the initial ‘‘observed’’ state.

This has implications for the evaluation of climate

models; that is, assessing their realism in simulating the

observed system. It is often assumed that a ‘‘good’’

model is simply one that can adequately reproduce

a realistic mean state. Such an assessment is often used

to select models or even weight models to provide a

best estimate of future projections (see Knutti 2010

for a review). However, historical simulations and sub-

sequent projections are branched from spinup integra-

tions of very different lengths. As such, a physically

realistic model that has been integrated for a long pe-

riod of time (to reduce any drift) may exhibit a poorer

mean state than a less physically realistic model that

has had only a short spinup time and so retains a strong

memory of the observational data used in the model

initialization. Knowledge of the rate of a model’s drift

during the spinup phase may in itself be a useful in-

dicator of model realism, as a realistic model would

have a final state that is close to the observationally

derived initial state (assuming the initialized observed

fields are dynamically consistent). The relative impor-

tance of a stable climate versus a realistic mean state

must be carefully considered.

b. Improving the assessment of climate drift
in the future

While the WCRP’s Working Group on Coupled Mod-

elling (WGCM) provide detailed guidelines with respect

to historical, projection, and sensitivity experiments,

little guidance is provided with respect to the control

simulation, other than that the control should be ex-

tended for sufficient duration to span any historical and

projection simulations (Taylor et al. 2011). With the

next IPCC round looming, simulation strategies for

CMIP5 are set and simulations well underway. Nev-

ertheless, some steps can still be taken to aid with the

analysis of model output in the context of climate drift,

and certain steps can be considered for future sets of

simulations:

d Length of spinup simulations should not be neglected

in the attempt to produce an increasing number of

projections. The lack of a stable climate is a consider-

able hindrance in the primary objective of the CMIP5

climate models—making future projections. It is en-

couraging that all four of the Geophysical Fluid Dy-

namics Laboratory (GFDL) climate models that will

provide output for CMIP5 have been spun up in coupled

configuration for ;2000 yr (S. Griffies 2011, personal

communication). Similarly the new generation of Ca-

nadian Centre for Climate Modelling and Analysis

(CCCma) models has spun up for ;800 yr (O. Saenko

2011, personal communication).
d Modeling groups should make available the longest

possible period of preindustrial control that extends

prior to the start of forced simulations. This greatly

aids in understanding the temporal evolution of the

drift and allows a better separation between drift and

low-frequency natural variability. As a minimum a

preindustrial control simulation for a period running

concurrently to any forced simulations should be

made available (while this has usually been the case

for CMIP3, it is not universally so).
d All variables archived as part of the forced simulations

should also be provided for the control simulations.

As shown above ocean drift is also inherent in the

dynamical ocean fields and propagates to the rest of

the climate system.
d Where possible multiple control simulations should be

provided. As with forced experiments, this would be

a powerful way to extract a robust trend when consider-

able low-frequency variability exists. Three modeling

groups provided multiple control simulations (that ran

for greater than 100 yr) as part of CMIP3.
d Spinup procedures and experimental design should be

fully documented. This information was often lacking at

the PCMDI repository for some of the CMIP3 models.
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d In the absence of a clear direction forward to alleviate

climate drift in the near term, it seems important to

keep open the question of flux adjustment within

climate models that suffer from considerable drift.

Flux adjustments are nonphysical and therefore in-

herently undesirable. They may also fundamentally

alter the evolution of a transient climate response

(Neelin and Dijkstra 1995; Tziperman 2000). Never-

theless, flux adjustment can alleviate climate drift, at

least in surface temperature, which is also nonphys-

ical and inherently undesirable.
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