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Abstract Smart grid constrained optimal control is a

complex issue due to the constant growth of grid com-

plexity and the large volume of data available as input to

smart device control. In this context, traditional centralized

control paradigms may suffer in terms of the timeliness of

optimization results due to the volume of data to be pro-

cessed and the delayed asynchronous nature of the data

transmission. To address these limits of centralized control,

this paper presents a coordinated, distributed algorithm

based on distributed, local controllers and a central coor-

dinator for exchanging summarized global state informa-

tion. The proposed model for exchanging global state

information is resistant to fluctuations caused by the

inherent interdependence between local controllers, and is

robust to delays in information exchange. In addition, the

algorithm features iterative refinement of local state esti-

mations that is able to improve local controller ability to

operate within network constraints. Application of the

proposed coordinated, distributed algorithm through

simulation shows its effectiveness in optimizing a global

goal within a complex distribution system operating under

constraints, while ensuring network operation stability

under varying levels of information exchange delay, and

with a range of network sizes.

Keywords Smart grid, Distributed optimization,

Demand-side management, Distributed generation,

Distributed storage, Approximate dynamic programming

1 Introduction

In recent years, researches into the broad field of smart

grids have been extremely active. The exciting and pow-

erful opportunities arising from new monitoring and con-

trolling infrastructure has given rise to many new ideas and

applications. However, the smart grid has also provided

many new challenges, for example, the limitation of

existing networks to accommodate new distributed gener-

ators (DG) [1, 2], and the added complexity from a wide

range of heterogeneous components [3]. The research focus

has included optimization of networks with high DG pen-

etration [4, 5], optimization through direct control of

storage and loads [6–11], the application of the extensive

smart grid monitoring and control devices for fault and

breach management [12, 13], communication, data man-

agement and smart meters [14–16], the use of grid con-

nected vehicles as both postponable loads and potential

storage devices [17–22], and optimal control of smart

buildings [23–26].

New methods are required to solve the range of opti-

mization problems arising from this new and evolving

environment. Many traditional methods employ centralized

solutions which are limited in their ability to solve some of
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the larger and more complex problems presented by the

smart grid. In particular their scalability, especially as more

DG and smart meters are rolled out, increasing the demand

on data transmission infrastructure and centralized comput-

ing resources [3, 27]. In such cases the volume of data and

delays in the asynchronous data transmission may adversely

affect the timeliness of centralized optimization results. As

such distributed approaches are often beneficial.

Distributed approaches can utilize local data by parti-

tioning the network according to such factors as the elec-

trical properties of the network and the forecast power flow

[28–30]. For example, in [31] epsilon decomposition is

used to determine the range of influence of the network’s

DG, which is then utilized to control voltages should they

exceed operating limits. Distributed approaches also ben-

efit from the local optimization that is independent of a

central bottleneck. For example in [32] a distributed

approach is taken to voltage regulation utilizing the smart

grid’s set of intelligent and cooperative smart entities. A

distributed game theoretic approach is taken to produce

optimal day-ahead schedules for DG, storage and loads in

[33–36]. In [37] the optimal generation schedule for DG is

evaluated through particle swarm optimization.

In spite of their benefits, many distributed approaches

must make approximations in order to operate with either

complete or partial independence from a central controller,

leading to varying levels of sub-optimality. Purely dis-

tributed solutions then aim to solve these sub-problems

without the benefit of global state information or obser-

vation of changes in global state. Design of distributed

algorithms must therefore be careful that these approxi-

mations do not lead to instability due to competing controls

between neighbouring regions, and must take into consid-

eration communication delays between sensors and local

controllers [38], and inaccuracies in local estimates of state

information [39]. Distributed solutions can therefore ben-

efit greatly from some form of coordination in order to

improve estimations.

The following list summarizes the key benefits of dis-

tributed, coordinated control.

1) Local data: Utilization of local data reduces data size

and improves privacy by reducing requirements for

data sharing.

2) Local optimization: Local controllers apply local data

to their optimization routines which can improve the

timeliness of optimization results.

3) Reduced Central Burden: Computational requirements

for the central controller are greatly reduced, even as

the network dimension increases, since much of the

burden is taken by the numerous local controllers.

In addition to these considerations, in the presence of

controllable storage and postponable loads, optimization is

no longer possible if only the current state is considered

since actions taken in the present will affect future states

and costs, resulting in the change of the original optimiza-

tion problem. In this case, the optimization problem must

consider the cost of operation into the future, and therefore

a timely model is desirable which also considers the

uncertainty introduced by the DGs, and to predict the

future states based on the present state and future controls.

Dynamic programming (DP) offers benefits over other

methods in solving this type of problem due to its ability to

reduce the problem’s computational complexity by the

combination of instantaneous decision making along the

state trajectory and the optimal cost-to-go function asso-

ciated with each state. In the case of a stochastic

optimization problem, in particular problems where the

expectation of future costs is difficult or impossible to

calculate, approximate dynamic programming (ADP) can

be applied to estimate the future costs. In addition to its

ability to handle difficult stochastic problems, ADP has the

added benefit of reducing a problem’s dimensionality by

summarizing the future states by a feature set.

ADP has been applied to many fields including control

of the smart grid [40]. In [41] an optimal ADP algorithm is

presented for the energy dispatch problem with grid-level

storage, including a rigorous proof of the algorithm’s

convergence. The increased observability and controlla-

bility of the smart grid is utilized to apply a dual heuristic

dynamic program to solving the dynamic stochastic opti-

mal power flow (OPF) problem in [42]. Q-learning is

applied to the optimal routing of shipboard power, storing

discrete values for state-action value pairs in [43]. In [44]

the problem of optimising DG output and storage is tackled

by balancing supply and demand at the customer level

through DP. In [45] operation of a micro-grid featuring

both DG, heat supply and storage is optimised through DP.

In [46] DP is applied to the multi-objective problem of

optimally allocating DG to an existing network.

Application of ADP by power system operators has

largely focused on the economic dispatch of power [40]. A

review of the economic dispatch literature since 1990 is

presented in [47]. These focus on resource allocation from

the generation point of view and not the distribution system

point of view. When applying ADP to the distribution

system it is important to consider the added complexities of

the network structure. Applying ADP to a distributed smart

grid problem while considering the implications of reduced

and delayed global state information exchange is the focus

of this paper.

In this paper we present a coordinated, distributed

algorithm based on distributed, local controllers and a

central coordinator for exchanging summarized global state

information, with the aim of optimizing resource allocation

of DG and storage, and managing deterministic loads in the
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smart grid, while maintaining network operating con-

straints and allowing for delays in data exchange. The

coordinated, distributed algorithm’s objectives are to:

1) Reduce the problem dimensionality compared to

centralized methods.

2) Improve local state estimation over purely distributed

approaches.

3) Be resistant to instability from competing local

controllers.

4) Be robust in the presence of delayed information

exchange.

This paper is organized as follows. Section 2 provides

the network analysis and dynamic programming frame-

work on which the study’s algorithms are built. Then in

Sect. 3 our smart grid optimization problem is formulated

as a distributed Optimal Power Flow problem. In Sect. 4

our proposed solution is presented through a centrally

coordinated distributed approximate dynamic program with

asynchronous information exchange between local and

central nodes. Finally, a case study is presented illustrating

the feasibility of this approach in Sect. 5, followed by the

study’s conclusion in Sect. 6.

2 Preliminaries

In this section, the relevant background is provided to

power flow analysis and dynamic programming, and the

approximations to their solutions on which the distributed

problem and solution of the paper are built.

2.1 Approximate power flow

In preparation of the distributed problem formulation of

Sect. 3.2, the approximations of power flow equations are

given. Power flow analysis of a network aims to find its

steady-state operation, where network state is defined as

bus power and voltage and line current. Newton–Raphson

power flow analysis can calculate the network state given

the bus admittance matrix and bus power for all busses.

However this may not be possible if only a subset of the

network’s bus powers is known—such as in the case of a

distributed optimization problem. In this case an approxi-

mation can be made.

From the Jacobian matrix of the Newton–Raphson

power flow analysis the sensitivity matrix can be

calculated:

K ¼

od
oP

od
oQ

ojvj
oP

ojvj
oQ

2
664

3
775

The sensitivity matrix provides a linear approximation of

the relationship between changes in nodal power and

voltage as follows:

dt
jvtj

� �
¼

d0
jv0j

� �
þ K

DPt

DQt

� �
ð1Þ

where jvtj\dt is the complex voltage at all busses at time t,

and DPt and DQt are vectors of the change in active and

reactive power at all busses since time t ¼ 0. Once these

approximations are made, K no longer needs to be recal-

culated for each change in network state considered by the

optimization process. This greatly reduces the burden on

the distributed controller.

The period for which this approximation is appropriate

will depend on the magnitude of any variations in network

state. If significant changes occur in the network then the

sensitivity matrix may require recalculation.

2.2 Dynamic smart grid problem: DP

A distributed approach to solving an optimization

problem in the smart grid should aim to find the solution

(or approximate solution) to the global problem. Here we

present the global problem and dynamic programming

approach that will be broken into a distributed problem in

Sect. 3.1.

For an initial state x0, the optimization problem is

defined as follows.

min
u

Juðx0Þ

s.t. u ¼ fu0; u1; . . .; uT�1g
xtþ1 ¼ fxðxt; ut;wtÞ
Gðxt; utÞ� 0; 8 t 2 ½0; TÞ

ð2Þ

where Juð�Þ is the cost-to-go function to minimize; the

given state sequence x ¼ fx0; x1; . . .; xTg results from

control sequence u; the receding prediction horizon T can

be chosen such that the variance of the expected state of the

system at t ¼ T is large, for example when forecast loads

and available intermittent energy supplies are uncertain.

Given the dynamic nature of this problem, we apply the

principals of dynamic programming (DP). DP selects the

best decisions recursively from the last step backwards

based on the cost of the present decision and the expected

future cost. The cost-to-go recursively is defined for a

given control sequence u ¼ fu0; u1; . . .g.

JuðxtÞ ¼ gðxt; utÞ þ E
w
Juðxtþ1Þjxt; ut½ � ð3Þ

where gðxt; utÞ is the cost of applying control ut when in

state xt; the expectation term E �½ � is the expected future

cost.
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Dynamic programming aims to minimise Ju, that is, find

the control sequence that solves

JðxtÞ ¼ min
u2UtðxtÞ

gðxt; uÞ þ E
w
Jðxtþ1Þjxt; u½ �

n o
ð4Þ

where UtðxtÞ is the set of admissible controls when in state

xt and is governed by the inequality constraints Gðxt; utÞ.

2.3 Dynamic smart grid solution: ADP

In preparation of the coordinated, distributed optimiza-

tion approach of Sect. 4, we seek an approximation of the

expectation term in (4). Since state transitions are depen-

dant on the previous state, action and random variables, the

smart grid optimization problem may present a large

number of reachable states for which the expectation of the

future cost-to-go must be calculated. Specifically, compu-

tational requirements will grow exponentially with respect

to the time horizon T. This is known as the ‘‘curse of

dimensionality’’. In the complex environment of the

smart grid it is therefore appropriate to make some

approximations.

As such, we replace the expectation from (4) with an

approximation defined as ~VtðxtÞ.
~JðxtÞ ¼ min

u2UtðxtÞ
gðxt; uÞ þ ~Vtðxut Þ

� �
ð5Þ

where xut is the post decision state at time t (i.e. the state

after applying controls u but before applying the stochastic

variations wt [48]); ~Vtð�Þ is the expectation approximation.

We no longer need to calculate the cost an exponentially

increasing number of times, however we do need to find an

appropriate approximation model for ~Vtðxut Þ and find a

process of training it. In Sect. 4.2 we present a distributed

ADP algorithm that trains ~Vtð�Þ and approximates ~JðxtÞ.
Below we discuss some considerations when choosing

training sample paths and some convergence issues.

Policy Iteration When dealing with high-dimensional

problem spaces it can be difficult or impossible to evaluate

all control policies that visit each state. As such a common

solution to training the approximation (and the one used in

this study) is to analyse a series of sample paths through

Monte-Carlo simulation. Each sample path defines a con-

trol sequence uðkÞ ¼ ½uðkÞ0 ; . . .; u
ðkÞ
T�1� that is refined over a

series of iterations (k). The sample paths can be chosen

randomly forming an exploration policy. However, this

approach can form a good approximation only if an

appropriate representative sample set is taken from the

state space. In other cases it may be possible to exploit the

structure of the problem and follow an exploitation policy.

If the sample paths are chosen according to a pure

exploitation policy, then

u
ðkþ1Þ
t ¼ argmin

u2UðkÞ
t ðxtÞ

gðxðkÞt ; uÞ þ ~VtðxuðkÞt Þ
n o

ð6Þ

where the choice of control at iteration k þ 1 is chosen

according to the approximation of the optimum at iteration

k. While some applications such as those studied in [40]

can obtain optimal results from a pure exploitation policy,

it is often required that a combination of exploration and

exploitation be used to search for a broad approximation

and then refine it.

ADP Convergence Issues Approximate dynamic pro-

gramming has been successfully applied to many applica-

tions. It is developed with an heuristic belief that if both the

value function can be approximated with sufficient accu-

racy and optimal policies with respect to the approximated

value function can be learnt, then the true optimal policy

can be approximated with sufficient accuracy. Even though

ADP is developed in this intuitive way, numerous proofs of

both convergence and optimality have been developed for

specific applications. Generally the nature of the approxi-

mation will determine the convergence and optimality of

the ADP algorithm. According to [48], experimental results

have shown the importance of the approximation’s form

being capable of capturing the true value function and new

samples being able to improve the estimate of not only the

sample state but also a large number of other states. In [49]

a number of convergence results are reviewed for various

continuous function approximations and in [40, 41] the

concavity of resource allocations is exploited to form a

convergent algorithm.

3 Distributed smart grid problem

Here we formulate the distributed smart grid optimiza-

tion problem as a distributed dynamic OPF problem. To

this end the distributed dynamic smart grid problem and

distributed approximate power flow is presented. This

section then concludes with the calculation of voltage

estimation errors as a measure of the limitation of a dis-

tributed approach.

3.1 Distributed dynamic OPF

We consider a distribution network with sensitivities K,
and featuring controllable DG and storage. The goal of

dynamic OPF is to minimize costs
P

t gðxt; utÞ over a time

window [0, T], by changing the control sequence futg,
subject to state transition xtþ1 ¼ fxðxt; ut;wtÞ. We therefore

define the cost-to-go according to (3) for control sequence

u ¼ futg recursively as

JuðxtÞ ¼ gðxt; utÞ þ Ewt
Juðxtþ1Þjxt; ut½ � ð7Þ
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where JuðxtÞ represents the cost of network operation and

power generation and, in the case of a deregulated com-

petitive market, includes power import from third parties,

and may also include bias towards renewable and dis-

tributed generation. Sequence fxtg and futg define the real

and reactive power output and consumption of DG, loads,

storage and smart devices, and storage capacities.

The vector of bus powers corresponding to generator

busses is defined as SDG and is constrained by minimum and

maximum complex The vector of bus powers corresponding

to generator busses is defined as SDG and is constrained by

minimum and maximum complex magnitudes

S�DG � jSDGj � SþDG: ð8Þ

Similarly, bus powers corresponding to storage are defined

as SS and are constrained by

S�S � jSSj � SþS : ð9Þ

The control vector is then defined as ut ¼ ½SDG;t SS;t�. The
vector of bus powers corresponding to load busses is

defined as SL, and the vector of storage capacities is

defined as q and is subject to constraints

0� q� qþ: ð10Þ

The control vector is then defined as xt ¼ ½SL;t qt�. Finally
we define the noise vector as wt ¼ ½DSL;t DSDG;t�, where
DSL;t is a random variation in load power, and DSDG;t is a
random variation in DG output.

The network must be operated within the regulatory

voltage limits specified by

d� � ~dt � dþ;

jv�t j � j~vtjt � jvþt j;
ð11Þ

where the voltage approximations ½~dt j~vtj�T in (13) have be

used. Constraints (8), (9), (10) and (11) together form the

inequality constraints Gðxt; utÞ.
To present to the distributed dynamic OPF problem we

assume that costs, controls and state are separable and can

therefore be calculated by local controllers. Then given the

subset of network busses B with a strong coupling to the

local controller the problem is formally presented as

follows:

min
uB

JuBðxB;0Þ

s.t. xB;tþ1 ¼ fxðxB;t; uB;t;wB;tÞ;
GBðxB;t; uB;tÞ� 0; 8 t 2 ½0; TÞ

ð12Þ

where uB ¼ fuB;0; uB;1; . . .; uB;Tg, uB;t 2 ut, xb;t 2 xt and

wB;t 2 wt. An illustration of a network’s subset structure is

given in Fig. 1. The solution to this distributed optimal

power flow problem is defined in Sect. 4 where approxi-

mate dynamic programming is applied.

3.2 Distributed power flow

We denote the subset of busses known to the local

controller as B, and all other busses in the network as �B.

We can then say that changes in state in the busses of �B

will impact the state in the busses of B leading to estimate

inaccuracies. We quantify this by the through the following

linear approximation of (1).

~dt
j~vtj

" #

B

¼
d0
jv0j

� �

B

þ KB;B

DPt

DQt

� �

B

þ DvB;�B

DvB;�B ¼ KB;�B

DPt

DQt

� �

�B

ð13Þ

where ½~dt j~vtj�TB are the approximate voltages in B, KB;B are

the self-sensitivities within B, KB;�B are the sensitivities of

busses in B with respect to external changes, ½DPt DQt�TB are

the changes in power since time t ¼ 0 at busses in B, and

½DPtDQt�T�B are the changes in active and reactive power

since time t ¼ 0 at all busses in �B.

The advantage of a distributed approach can be seen in

(13). The subset of global state that is weakly coupled to

the local controller is reduced to a single value, DvB;�B,

which can be approximated as constant for the duration of

the local controller’s optimization. In Sect. 4.1 we present

an algorithm based on � decomposition to define the

strongly coupled subset B based on the value of DvB;�B.

3.3 Distributed voltage approximation Error

The Sensitivity matrix (Kt) is time variant and we are

approximating its value as constant as at time t ¼ 0. We

denote the error introduced at time t as eKt , which is

dependant on the size of ½DPt DQt�T.
An error is also introduced due to the approximation of

local voltages given in (13) due to a lack of real-time

global state information. This error is quantified as the

DG1
Sm

DGn
DG2

DG2

S1

S1

···

Distribution network

Fig. 1 Distributed network structure
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difference between the true change in voltage and the

approximation given in (13):

evt ¼
dt
jvtj

� �

B

�
~dt
j~vtj

" #

B

¼ KB;�B

DPt

DQt

� �

�B

� D~vB;�B

ð14Þ

where D~vB;�B is the last known value of the change in

voltages in B due to the network state external to B. Under

normal operating conditions the sensitivities change

slowly, justifying the linear approximation of (13). As such

typically eKt � evt , and so we concentrate on reducing evt .

This error represents a limitation to the distributed

approach. As such the error is reduced through the iterative

process between the global and local controllers described

in Sect. 4.3.

While eKt may be acceptably small while the changes in

injected power vary minimally, however if the network

state changes significantly then the central coordinator can

recalculate and redistribute relevant portions of the sensi-

tivity matrix. This process is further discussed in Sect. 4.3.

4 Proposed coordinated distributed solution

A solution to the distributed problem presented in Sect.

3.1 is now offered as a coordinated, distributed, iteratively

refined approximate dynamic program. To achieve this, the

global problem must first be reduced to a set of distributed

problems. This is achieved through a power flow based �

decomposition. The distributed problem is then solved

through an ADP algorithm whose approximation of state

and optimal control is refined through the introduction of a

central coordinator.

4.1 Power flow based � Decomposition

The following algorithm’s objective is to define a set of

strongly coupled busses, B, while minimizing voltage

estimation errors at the controlled bus, b 2 B, of a local

controller. For the purpose of this study we assume that

each controllable device in the smart grid has a local

controller at its bus, which we designate as its controlled

bus. The size of B is constrained such that both the com-

munication and computation burdens at the local controller

are reduced. This is achieved through observation of both

the sensitivity matrix and forecast shifts in power and is

based on � decomposition (see [31] for an example of �

decomposition).

To minimize the impact of external state changes in the

distributed power flow calculation of (13) and therefore

reduce the error of (14) and improve state estimation, we

must aim to minimize DvB;�B. As such we apply �

decomposition to the change in voltage at the controlled bus:

Dvb ¼ Kb

DP

DQ

� �
¼ Kb;B

DP

DQ

� �

B

þ �R ð15Þ

where R is a residual vector with all values less than 1, and

� is a scalar that quantifies the level of decoupling of subset

B. We refer to the value of B that minimizes �R as the �-

tolerant subset.

Clearly �R ¼ Dvb;�B from (13) and must be minimized

across the timewindowof the optimization in order to find the

best subset B. To this end we define the largest likely shift in

active and reactive power from forecast data up to time T to be

DPmax

DQmax

� �
¼ argmax

DPt

DQt

����
����; t 2 ½0; TÞ

� �
ð16Þ

where k � k denotes the vector’s norm. Then the �

decomposition can be performed as a constrained

minimization of DvB;�B:

B ¼ argmin
B�½1;n�

Kb;�B

DPmax

DQmax

� �

�B

����
����

CB �CðmaxÞ

ð17Þ

for an n bus network, where CB is the number of control-

lable units in B, and CðmaxÞ is the maximum number of

controllable units allowed for any local subset.

On a practical note, this minimization can be achieved

with relative ease if we define the product of the sensitivity

matrix and changes in power as an ordered sum. That is

Dd

Djvj

� �

b

¼ Kb

DPmax

DQmax

� �
¼

Pn
i¼1

odb
oPi

DPi þ
odb
oQi

DQi

	 


Pn
i¼1

ojvbj
oPi

DPi þ
ojvbj
oQi

DQi

	 


2
6664

3
7775

ð18Þ

where Pi and Qi are the elements of ½Pmax Qmax�T. We can

then take the Cmax most significant elements of the sum as

our B and thereby the remaining summands make up the

minimal kKb;�B½DPmax DQmax�T�Bk.
Through this process the size of DvB;�B is reduced and

therefore the likely local impact of changes external to the

local controller are also reduced. The value of DvB;�B is

approximated as constant and further refined through

information updates as described in Sect. 4.3.

Remark The optimality of (12) is dependent on the error

in state, which is defined by ev, from (14). � from (15)

impacts the size of DvB;�B and therefore the size ev, and ev

determines the error in state since voltage v � x. Conse-

quently � will indicate the deviation from optimality in

(12). Moreover, if ev can be reduced, the approximation of

optimality may also be improved.
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4.2 Distributed optimization through ADP

with partial state information

To solve the problem of (12) we must first be able to

calculate the cost-to-go from (3), which involves a difficult

to calculate expectation term. As such the expectation is

replaced with an approximation defined as ~VtðxtÞ and Juð�Þ
is approximated as follows:

~JuðxtÞ ¼ gðxt; uÞ þ ct ~Vtðxut Þ; ð19Þ

where xut is the post decision state, and ~Vtð�Þ is the

approximation of expected future costs. Assuming the esti-

mator ~Vtð�Þ is available then the difficulty in applying (19) to

solving (12) is only due to the dimensionality of u which has

been reduced through the process described in Sect. 4.1.

Training of ~Vtð�Þ is performed according to the iterations

of algorithm 1 by the local controller with controlled bus b,

and � tolerant subset B. The local controller of Fig. 2

provides a simplified view of the process. In Fig. 2, KB;B is

the local sensitivities; YB is the local admittances; D~vB;�B

is the external influences on voltage; vB;0 is the local

voltages at time t ¼ 0; k is the local iteration counter from

1 to K; UB is local admissible controls; u
ðkÞ
B is the sample

local control path; u
ðKÞ
b is the approximation of optimal

control at b. Analysis of the presented algorithm reveals

that the complexity of the ADP training is independent of

total network size. To see this, consider the three most sig-

nificant steps: The minimization of (20), the next state cal-

culation of 2.5, and the sample calculations of 3.1. Assuming

a quadratic cost function gives complexity of gBð�Þ as

OðjBj2Þ, where jBj ¼ maxfjxj; jujg is the dimensionality of

the local network subset. Given k samples at iteration k we

assume that the complexity of the estimator is O(k|B|). Then

the complexity of each minimization step is OðjBj2Þþ
OðkjBjÞ, and the number of steps required is assumed to

depend only on |B|. The next state function fxð�Þ is assumed

linear and therefore has complexity O(|B|). Finally the sample

calculations depend only on gBð�Þ and therefore have com-

plexity OðjBj2Þ. The complexity of the algorithm therefore

depends on the horizon T, iteration limit K, and network

subset size |B| which depends on the choice of Cmax in (17),

and does not depend on the total network size.

Remark The independence of algorithm 1 from the total

network size allows the algorithm to be scaled to large

networks while computational requirements can be tuned

through parameters T, K, and Cmax.

Remark At Step 2.2, in algorithm 1, qðkÞ is close to 0 for

small values of k and close to 1 for large values of k. The

choice of q will determine the rate of convergence, that is,

how much the policy will explore the state-space before

exploiting knowledge from the previous sample paths.

Central cooradinator

Define control set UB

By random selection, or

Local controller

By minimum approx. CTG

Update cost-to-go
expectation approximation
from sample path

Choose sample path uB

ΛB, B

YB, B

ΔvB, ~B

vB, 0

k=K

k K

Calculate external influence
for each local controller

Y

N

New forecast 
period ? ε decomposition

~

(k)

(k)

Apply controls ub
(k)

ub

Logical f low; Information exchange

Fig. 2 Central iterations

Algorithm 1 ADP training and optimization for network
subset B

1. Initialize current state xB,0 and future cost estimators
Ṽ

(0)
B,t (·), ∀t ∈ [0, T ), set k := 1.

2. For t = 0, 1, ..., T − 1 calculate sample state trajectories
{xB,t|t ∈ [0, T )}:

2.1 Choose a random control ūB,t ∈ UB,t.
2.2 Choose an exploitation rate ρ

(k)
t ∈ [0, 1].

2.3 Find the approximate optimal control by solving

u
(k)
B,t =ρ(k)arg min

u∈U
(k)
B,t

(gB(x(k)
B,t, u) + Ṽ

(k−1)
B,t (xu(k)

B,t ))

+ (1 − ρ(k))ūB,t

2.4 Choose a random variation w
(k)
B,t.

2.5 Next state: x
(k)
B,t+1 = fx(x

(k)
B,t, u

(k)
B,t, w

(k)
B,t).

3. Update the expected future cost estimator Ṽ
(k−1)
B,t (·):

3.1 Sample costs-to-go: y
(k)
B,t = gB(x(k)

B,t) + γty
(k)
B,t+1

assuming y
(k)
B,t = 0 ∀t > T .

3.2 Update estimators: (x(k)
B,t, y

(k)
B,t), t ∈ [0, T ].

4. k := k + 1. If k ≤ K , for iteration limit K , go to Step 2.
5. Apply control u

(K)
b,0 , for controlled bus b ∈ B, at time

t = 0
6. Report {u

(K)
b,t |t ∈ [0, T )} to the central coordinator.

7. Go to Step 2.
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4.3 Refining distributed estimates through central

coordination

The solution from the algorithm of Sect. 4.2 relies on the

approximation of voltage, based on D~vB;�B. To improve

this estimate, updated values of D~vB;�B are sent to the local

controllers over a series of iterations by a central coordi-

nator. The central coordinator is responsible for improving

the local controllers’ state estimation in order to reduce the

likelihood of constraint breaches and to bring their solu-

tions closer to optimal.

Such information exchange must be done with great care

since it introduces a feedback loop in the global system.

Specifically, oscillations may result from adjacent local

controllers adjusting their controls in response to each other.

To mitigate against this problem the controls are aggregated

to form ut ¼ fub;tj8bg, for all controlled busses b, and are

dampened by the introduction of a control step size a 2 ð0; 1�
in the following iterative stochastic approximation:

û
ðjÞ
t ¼ aut þ ð1� aÞûðj�1Þ

t ð21Þ

where a is referred to as the step size since it dictates how

far we update our jth approximation of the optimal control,

ûðjÞ, in the direction of the new control policy, u
ðjÞ
t .

Algorithm 2 describes the process for exchanging

updated external voltage approximations with the local

controllers, utilizing the dampened control values specified

by (21) (the central coordinator of Fig. 2 provides a sim-

plified view of the process). The algorithm can handle

delayed information exchange by simply assigning

½PðjÞ
t Q

ðjÞ
t �B :¼ ½Pðj�1Þ

t Q
ðj�1Þ
t �B, at Step 4, when new infor-

mation is not available at central iteration (j) from subset

B. This will have the effect of slowing down convergence,

but so long as new information is received regularly the

convergence argument of Sect. 4.4 holds.

At each iteration of Algorithm 2 the network state is

assessed (refer to Step 2) and if required the local approx-

imations KB;B are updated (see Sect. 3.3 for a discussion of

the error due to the constant K approximation). This update

to the sensitivity matrix is performed according to the

aggregated network controls defined by (22) for the present

time. The relevant portions of the sensitivity matrix, KB;B,

are then distributed to the local controllers who use the

updated matrix for subsequent calculations. In this way the

linear approximation of power flow through time invariant

K can be adapted to the state and model drifting.

Remark The control variables of algorithm 1 are contin-

uous with respect to time, as such the algorithm approxi-

mates optimal control as constant for any given time step.

However, each central iteration of Algorithm 2 will trigger

optimal values to be updated by the local controller and so

the control update rate is dependent only on the central

coordinator’s update rate. This brief period allows for

regular corrections to the optimal control in response to

system state changes which are assumed minimal within

the update period.

Remark At Step 5.3, in Algorithm 2, DvB;�B summarizes

the state of the loosely coupled network busses with respect

to local controller B and is therefore able to reduce the

required information exchange between the central coor-

dinator and local controllers.

Algorithm 2 Central Coordination of Information Updates

1. Initialize admittances Y , sensitivities, Λ, optimal control
estimates û

(0)
t = 0, ∀t ∈ [t0, T ), and set j := 1.

2. If [ΔPmax ΔQmax]T has changed (Ref. [16]):
2.1 Define tolerant subsets according to (17).
2.2 Send updated information to each local controller, B:

ΛB,B and YB .
3. Aggregate controls for all n locally controlled busses:

ut = {u
(j)
b,t |∀b ∈ [1, n]}.

4. Update optimal control estimates according to (21).
5. Update local controller voltage information:

5.1 Obtain power changes: [ΔP
(j)
t ΔQ

(j)
t ]T ⊂ û(j).

5.2 Calculate the external voltage changes for each local
controller, B:

ΔṽB,∼B := ΛB,∼B[ΔP
(j)
t ΔQ

(j)
t ]T∼B.

5.3 Send updates to local controllers: vB,0, ΔṽB,∼B .
6. Let j := j + 1. Go to Step 2.

4.4 Convergence of dampened information

exchange

Here we provide an heuristic explanation of the con-

vergence resulting from the appropriate selection of the

step size a. Consider a network under steady state operation
that experiences a change in controls by local controller B.

Let us define the change in controls at B at iteration j as

DuðjÞB ¼ u
ðjÞ
B � u

ðj�1Þ
B

ð24Þ

and the impact of this change on the voltage of the

remaining busses in the network as

DvðjÞ�B;B ¼ K�B;B
DPðjÞ

DQðjÞ

" #

B

ð25Þ

where ½DPðjÞ DQðjÞ�TB 2 u
ðjÞ
B . From (25) we can see that the

changes in voltage at external busses has a linear

relationship with the change in power resulting from the

change in control at B. As such we assume
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Dvðj�1Þ
�B;B

���
���\h Duðj�1Þ

B

���
��� 8 j[ 1 ð26Þ

for constant h 2 ð0;1Þ. We further assume, based on (13),

that the change in controls DuðjÞ�B;B in response to the

change in voltage, Dvðj�1Þ
�B;B, is also linearly constrained. As

such we assume

DuðjÞ�B;B

���
���\/ Dvðj�1Þ

�B;B

���
��� 8 j[ 1 ð27Þ

for constant / 2 ð0;1Þ. Finally we assume that corre-

sponding constraints exist for changes in control external to

B influencing the voltage and control at B such that

DvðjÞB;�B

���
���\h DuðjÞ�B;B

���
��� 8 j[ 0 ð28Þ

and

Duðjþ1Þ
B;�B

���
���\/ DvðjÞB;�B

���
��� 8 j[ 0 ð29Þ

The constant h represents the limit of the network’s

response to a local change in control, and / the limit of the

local control adjustment to a local change in voltage. As

such, for assumptions (26) to (29) to hold we must assume

that the variation of K is bounded for all j[ 0 since

constants h and / are dependant on K which is in fact a

function of voltage according to the partial derivatives of

the power flow equations. This assumption is reasonable

while the network operates within voltage constraints

according to (12).

Given that the true changes in control are aDu, and

given assumptions (26) to (29), then

Duðjþ1Þ
B;�B

���
���\/ DvðjÞB;�B

���
���

\a/h DuðjÞ�B;B

���
���

\a/2h Dvðj�1Þ
�B;B

���
���

\a2/2h2 Duðj�1Þ
B

���
���

ð30Þ

Given that Du is in fact a random variable further

assumptions must be placed on a. We assume that a is non-

negative,
P1

t¼0 a ¼ 1 and
P1

t¼0 a
2\1. Then, given a

choice of a that satisfies a2/2h2\1, it follows that as

j ! 1, uðjþ1Þ � uðjÞ ! 0 and the network will again return

to steady state operation.

5 Case study

We consider the case of an operator controlling DG and

storage in a distribution network with the aim of minimizing

power import into the network from third party suppliers.

Tests were conducted on networks with a range of sizes, and

optimization was achieved through control of both DG and

storage, and for the sake of a simpler presentation only the

constraints of (8)–(10) and the voltage magnitude constraints

of (11) were applied. Formally, we aimed to approximately

solve (2) with Jð�Þ approximated by (19), and

gðxt; utÞ ¼ jS0;tjsgnðRefS0;tgÞ; ð31Þ

where S0;t is the complex power at time t and at bus 0, with

the slack bus assumed to be at index 0 with respect to

voltage and power vectors vt and St, and admittance matrix

Y. The future cost-to-go approximation defined as ~VtðxtÞ in
(19) was implemented through Kernel Regression applied

with a Gaussian Kernel [50].

5.1 Scenarios

Coordinated, distributed optimization was applied to both

a small scale network and a series of randomly generated

networks of varying sizes. Experiments on the small scale

networkwere aimed at verifying the coordinated, distributed

algorithm’s ability to perform comparably with centralized

approaches in terms of optimality and state estimation, and to

assess the algorithm’s convergence with information

exchange delays. The larger network experiments aimed to

assess the coordinated, distributed algorithm’s scalability in

terms of convergence and processing time.

The small scale tests were performed on a network

based on the IEEE 13 node test feeder network [51] fea-

turing both DG and storage. Distributed generators were

connected to busses 611, 645, 646, 675, 680 and 684, with

total maximum output potential greater than the network’s

total peak load. Storage was connected to Busses 632, 645,

671 and 684 each with a 1 MWh capacity.

The large scale tests used randomly generated networks,

featuring similar operating conditions to the IEEE 13 node

test feeder network, featuring DG, storage and stochastic

loads at similar densities and capacities.

Forecast DG output and demand curves used by all

scenarios are presented in Fig. 3.

5.2 Localization

Applying the � decomposition of Sect. 4.1 resulted in the

local controller �-tolerant subsets as described in Table 1.

For the problem specified by (31) to be solved by each

subset, the local version of the cost function must first be

defined according to the distributed OPF problem of (12)

and the distributed ADP problem of (20). The local cost

contribution is derived by calculating the changes in power

imported into the distribution network due to changes in

the busses of subset B. The total power import can be given

as
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S	0;t ¼ v	0;tY0vt;

¼ v	0;tY0ðv0 þ DvtÞ
ð32Þ

where Y0 is the admittance matrix row corresponding to the

slack bus, and Dvt is derived from K½DPt DQt�T with

½Pt Qt� � ðut [ wtÞ. Given that many terms in (32) are

constant and assuming the slack voltage is 1 p.u., the

minimization can be given as

min
ut

jS0;tj ¼ min
ut

jY0Dvtj ð33Þ

This can then be applied to the local changes in subset B to

give the local cost function:

gBðxt; utÞ ¼ jY0Dv�;B;tjsgnðRefY0Dv�;B;tgÞ ð34Þ

where Dv�;B;t are the changes in complex voltage due only

to changes in control in subset B.

5.3 Results

Here we present the results of the simulations. The

following demonstrations illustrate the coordinated, dis-

tributed optimization algorithm’s ability to maintain costs

compared to a centralized approach, to maintain voltages

without full network state information, to be stable under

delayed information exchange, and to maintain perfor-

mance with increasing numbers of local controllers.

Numerous executions of the simulation were performed to

ensure that the results presented here are a representative

set for the average case.

Centralized, distributed and coordinated cost compar-

ison the scenario was deliberately selected such that a

centralized comparison could be made. Here we present

the minimized costs according to four optimization

approaches:

1) A deterministic dynamic program using expected

values for random variables,

2) The ADP algorithm of Sect. 4.2 applied in a central-

ized manner to the entire network,

3) The coordinated, distributed algorithm,

4) The average from a series of random control

sequences used for relative comparison.

The coordinated, distributed results have been taken after a

number of iterations once the algorithm has stabilized. The

results depicted in Fig. 4 show that although there has been

a drastic reduction in state information (refer to Table 1),

the coordinated, distributed algorithm is able to provide a

good approximation of the optimal solution.

Voltages as discussed in Sect. 3.3, due to local con-

trollers possessing only a subset of the full network’s state,

voltage calculations are approximate only. This raises the

possibility of underestimating voltages and subsequently

approximating optimal controls that lead to voltage brea-

ches according to Gðxt; utÞ in Sect. 3.3. Here we demon-

strate the ability of the central coordination to reduce the

chance of such breaches. Fig. 5 shows the maximum net-

work voltages at each iteration for times t ¼ 0; 1; 2; 3; 4

(other times did not exhibit voltages breaches for any

iteration). At iteration 1, when local controllers have no

global state information, locally optimal controls results in

voltage breaches. At iteration 2, after dampened informa-

tion has been shared, each local controller overreacts,

drastically reducing the voltage. Subsequent iterations

result in a stabilization of the voltages within the voltage

magnitude constraints of (11).

Information exchange delays we simulate the case of

delayed data transfer between local controllers and the

central coordinator by associating a probability, pu, with

each local controller which determines if the updated local

state information is made available. For example a proba-

bility of pu ¼ 0:5 represents the case where, on average,

each local controller has updated data available only every

second central iteration. The coordinated, distributed

1

load; DG

3
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w
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Fig. 3 12 Hour forecast

Table 1 Network � decomposition

Controlled device �-Tolerant subsets (B)

DG 611 611, 634, 645, 684

DG 645 634, 645, 646

DG 646 634, 645, 646

DG 675 634, 645, 675, 680

DG 680 634, 645, 675, 680

DG 684 611, 634, 645, 684

Storage 632 632, 634, 645, 675

Storage 645 634, 645

Storage 671 634, 645, 671, 675

Storage 684 634, 645, 684
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optimization was performed for varying values for the data

transfer probability and is presented in Fig. 6. The infor-

mation delay behaves as a type of dampening. For minor

delays, such as where there is only a 20% chance of

information delay (pu ¼ 0:8), the controls and therefore

cost converges quickly. As the value of pu decreases the

system takes longer to converge. However, it is clear that

even when updates are received from local controllers only

20 % of the time, the algorithm is still able to converge.

Another side effect of the dampening effect of the delay is

that optimization with delayed information may be less

prone to overshoot. For example, if the case of no delay is

compared with the case of pu ¼ 0:8, then it can be seen that

the delayed case has less overshoot and in fact converges

more quickly.

Dampened updates to illustrate the importance of

dampening the selected controls between central itera-

tions in (21), the centrally calculated costs are compared

over iterations with no dampening and dampened with a

step size of a ¼ 0:8. Results can be seen in Fig. 7. The

issues discussed in Sect. 4.4 can clearly be seen, with the

undampened case exhibiting oscillations. In addition to

the oscillation in control and cost in the undampened

case, the voltage estimates are unable to stabilize and so

they switch between over- and under-estimating. This

results in breaches on every second central iteration. On

the other hand, the dampened control case stabilizes

quickly.

Scalability in order to test the scalability of the coordi-

nated, distributed algorithm, it was applied to a range of

randomly generated networks of varying sizes. The simu-

lations were performed on a quad core Pentium i5 with

16 GB of RAM running Windows 7. Table 2 lists the

algorithm’s processes and average execution times. The �

decomposition has the longest processing time, however it

is not performed frequently.

Figure 8 presents the processing time required for ADP

training and optimization by the local controller, and for

voltage change updates made by the central coordinator.

The timing samples were taken across 20 central iterations

and give the average time taken for each task per iteration.

Voltage change updates show that there is a quadratic

increase in processing time as the number of local

controllers increases. This is due to the calculation of

(23). However, the time taken for these updates is

significantly shorter than the time taken for ADP training

and optimization.

ADP training and optimization results in Fig. 8 show

that the local optimizations exhibit constant time process-

ing regardless of the number of local controllers. These

results are consistent with the complexity analysis per-

formed in Sect. 4.2, which showed that, since there is a

bound on the number of controllable devices within each

local controller’s network subset, network size does not

impact the processing requirements of the ADP training
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and optimization algorithm as it would in the centralized

case.

The series of test cases presented in Fig. 8 were also

assessed for convergence. A subset of results were selected

for time t ¼ 0 and are presented in Fig. 9. The cost-to-go

curves show good convergence after fewer than 20 central

iterations for the range of number of local controllers

tested, and the presented cases are representative of all

experimental results.

These results suggest that the coordinated, distributed

algorithm can easily handle many local controllers. This is

an important feature of the algorithm when considering the

case of a more powerful coordinating server and numerous

low powered local controllers.

6 Conclusions

We have presented a coordinated, distributed, con-

strained optimization algorithm for regulating smart grid

technologies that utilizes the well established methods of

approximate dynamic programming and optimal power

flow. Our algorithm carefully summarizes global state

information through � decomposition such that local con-

trollers can improve their approximation of optimal control

without being overburdened by the high-dimensional state

of the entire distribution network. Additionally, the

reduced state information is updated over a series of iter-

ations controlled by a central coordinator, providing local

controllers with continually improved estimations and

allowing for asynchronous global information exchange.

The proposed coordinated, distributed algorithm fea-

tures reduced dimensionality reducing calculation com-

plexity and as such can be applied to on-line optimization,

even in the case of low powered distributed controllers.

Complexity analysis of the local optimization algorithm

has shown that it is independent of total network size, and

as such the proposed distributed optimization approach is

scalable to large networks. The centralized nature of the

algorithm’s coordination allows it to operate in an asyn-

chronous manner making it robust to communication

delays, and the flexibility of the algorithm allows it to be

adapted to the costs and constraints specific to the needs of

the smart grid operator.

Through our case study simulation we have demon-

strated how the use of a subset of network information can

lead to an approximately optimal solution. We have also

demonstrated the coordinated, distributed algorithm’s

ability to improve local state estimation of voltages and to

perform well with respect to cost minimisation when

compared to centralized solutions. Also, we have shown

that even in the presence of asynchronous information

exchange, the coordinated, distributed approach can con-

verge to a near optimal solution. Finally, we have

demonstrated the algorithm’s ability to scale well with

respect to the number of local controllers.
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