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The two-dimensional nonlinear evolution of the interface between two superposed layers of viscous
fluid moving in a channel in the presence of an insoluble surfactant is examined. A pair of coupled
weakly nonlinear equations is derived describing the interfacial and surfactant dynamics when one
of the two fluid layers is very thin in comparison to the other. In contrast to previous work, the
dynamics in the thin film are coupled to the dynamics in the thicker layer through a nonlocal integral
term. For asymptotically small Reynolds number, the flow in the thicker layer is governed by the
Stokes equations. A linearized analysis confirms the linear instability identified by previous workers
and it is proven that the film flow is linearly unstable if the undisturbed surfactant concentration
exceeds a threshold value. Numerical simulations of the weakly nonlinear equations reveal the
existence of finite amplitude traveling-wave solutions. For order one Reynolds number, the flow in
the thicker layer is governed by the linearized Navier—Stokes equations. In this case the weakly
nonlinear film dynamics are more complex and include the possibility of periodic traveling-waves

and chaotic flow. © 2010 American Institute of Physics. [doi:10.1063/1.3488226]

I. INTRODUCTION

Yih' demonstrated that two superposed fluid layers con-
fined in a channel and driven by the motion of one of the
walls and/or by an axial pressure gradient are susceptible to
an interfacial instability associated with the viscosity contrast
between the fluids. Using a perturbation analysis, Yih
showed that the flow may be linearly unstable to long wave-
length disturbances for arbitrarily small but nonzero values
of the Reynolds number depending on the viscosity ratio and
the thickness ratio of the two fluid layers. Interestingly, the
confining channel walls play a key role in determining the
nature of the instability. Hooper and Boyd2 pointed out that
for two semi-infinite fluid layers, the flow is unstable to short
wavelength perturbations in the absence of surface tension,
and that surface tension exerts a stabilizing influence. More-
over, Hooper3 showed that when the upper wall of the chan-
nel is removed, the growth rate of long wavelength perturba-
tions is larger than that calculated by Yih, suggesting that the
upper wall has a stabilizing influence on the flow. Hooper’s
results indicate that the flow is stable if the thin lower layer
contains the less viscous fluid. Hooper and Grimshaw” de-
veloped Yih’s analysis to include weak nonlinearity and de-
rived a Kuramoto—Sivashinsky evolution equation describing
the spatiotemporal development of interfacial perturbations
in the strong surface tension limit. Charru and Fabre® carried
out a similar analysis, but with a slightly weakened assump-
tion on the size of the surface tension and noted that in the
case of Couette flow, a stable flow can become unstable
when the Reynolds number is lowered, suggesting that iner-
tia has a stabilizing effect. In both sets of analyses, the
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results are consistent with Yih’s results for small-amplitude
perturbations.

Frenkel and Halpern6’7 and Halpern and Frenkel” dem-
onstrated for the first time that the flow studied by Yih is
unstable at zero Reynolds number when the interface is con-
taminated with an insoluble surfactant. The instability de-
pends crucially on the presence of surfactant on the interface
and on the basic shearing motion between the fluids. In the
absence of one or other of these factors, the instability does
not arise. Blyth and Pozrikidis® confirmed Frenkel and
Halpern’s predictions and performed nonlinear calculations
in the zero Reynolds number limit using the boundary inte-
gral method. They found evidence of saturated solutions cor-
responding to traveling-waves on restricted periodic domain
sizes. Wei’ provided a discussion of the underlying instabil-
ity mechanism taken from the viewpoint of vorticity. The
role of inertia on the interfacial instability was investigated
by Pozrikidis'® and Blyth and Pozrikidis'' for perturbations
of arbitrary wavelength at arbitrary Reynolds number and by
Frenkel and Halpern12 for long wavelength perturbations.
The results showed that inertia tends to widen the range of
unstable wavenumbers.

Frenkel and Halpern13 pointed out that the saturated
traveling-wave solutions predicted by Blyth and Pozrikidis®
would most likely disappear when the same calculations are
repeated on much wider domains, permitting the inclusion of
many fundamental wave periods. Making the simplifying as-
sumption of a semi-infinite upper fluid and working on the
basis of the lubrication approximation, Frenkel and Halpern
derived a set of coupled, nonlinear equations describing the
deformation of the interface and the interfacial surfactant
concentration. The evolution equations depend on the basic
flow quantities, including the basic shear rate at the interface

© 2010 American Institute of Physics


http://dx.doi.org/10.1063/1.3488226
http://dx.doi.org/10.1063/1.3488226
http://dx.doi.org/10.1063/1.3488226

102102-2 Bassom, Blyth, and Papageorgiou

and the longitudinal pressure gradient driving the basic flow,
but do not depend on the perturbations in the upper, semi-
infinite layer. The same authors derived a reduced set of
weakly nonlinear equations on the assumption of small-
amplitude disturbances. Numerical solutions of the fully
nonlinear evolution equations revealed that, as the domain
size is lengthened, shortwave saturated solutions become un-
stable to small wavenumber perturbations and ultimately
evolve into pulselike traveling-wave solutions of long wave-
length. Notably, they observed that in contrast to other insta-
bilities involving two fluid layers, the saturation of the lin-
early unstable waves cannot occur at small-amplitude, which
implies that the weakly nonlinear forms of the equations are
incapable of capturing the long-term dynamics. In related
work, Halpern and Frenkel'* derived a modified form of the
weakly nonlinear equations valid for perturbations with near-
marginal wavelength. They noted that the extra nonlinear
terms in the modified equations presented the possibility of
small-amplitude saturated waves and confirmed this predic-
tion through a Stuart-Landau type analysis. Finally, they
showed that the small-amplitude waves are unstable to long-
wave perturbations which invariably result in large ampli-
tude saturated solutions in numerical simulations.

In this paper, we revisit the problem of contaminated
two-layer flow in a channel when the lower layer is thin in
comparison to the upper layer. The novelty of our work lies
in the derivation of a weakly nonlinear equation for the in-
terfacial shape which accounts for a coupling between the
dynamics in the thin film and those in the upper layer.
The cornerstone of the analysis is the theory developed by
Papageorgiou et al.”® for core-annular flow in the limit of a
thin outer layer, and later extended by Kas-Danouche et al.'®
to include an insoluble surfactant. The dynamics of the an-
nular film were described by a nonlinear evolution equation
which is coupled to the motion in the core region through a
nonlocal integral term. Further discussion of fluid-core cou-
pling through a nonlocal term may be found in Joseph and
Renardy.l7 Kas-Danouche ef al.'® retained Marangoni effects
in the leading order dynamics by assuming a small base con-
centration of surfactant. Here we show that a similar analysis
may be carried out for the presently considered channel
problem, and a weakly nonlinear evolution equation may be
derived with a nonlocal term coupling the dynamics in the
thin lower layer to those in the overlying fluid. At zero
Reynolds number, a key difference between the two prob-
lems is the absence of a second spatial derivative of the thin
film thickness in the interfacial evolution equation. This dif-
ference may be traced to the destabilizing circumferential
curvature term present in axisymmetry. As a consequence,
the interfacial dynamics at zero Reynolds number is consid-
erably simpler for the channel problem than for its core-
annular counterpart. More complex dynamics, including pe-
riodic traveling-waves and chaotic solutions, arise in the case
of channel flow at nonzero Reynolds number when inertia is
present.

In Sec. II the mathematical problem is formulated and
the pertinent asymptotic scalings are presented. In Sec. III a
system of two coupled weakly nonlinear equations for the
evolution of the film thickness and surfactant concentration
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Fluid 2

FIG. 1. Sketch of the flow configuration consisting of two superposed vis-
cous fluids in a channel. The motion is driven by a pressure gradient and/or
by the motion of the upper wall at speed U. In the analysis, the lower layer
is assumed to be very thin.

is derived on the assumption of Stokes flow and numerical
solutions are presented. The modified forms of the equations
for nonzero Reynolds number are derived in Sec. IV and
solved numerically. In Sec. V we summarize our findings.

Il. MATHEMATICAL MODEL

We consider the flow of two superposed viscous fluid
layers in a channel, when the flow is driven by a pressure
gradient or by the motion of the upper wall of the channel, or
by a combination of both. The two fluids have the same
density but generally different viscosities. Referring to the
sketch in Fig. 1, the lower fluid is labeled fluid 1 and the
upper fluid is labeled fluid 2. The lower wall of the channel
lies at y=0 and the upper wall lies at y=d. The interface
between the two fluids is populated by an insoluble surfac-
tant which is free to move along the interface, and whose
effect is to lower the surface tension by an amount depending
on the local concentration of surfactant. In the unperturbed
configuration the interface between the two fluids is flat and
is located at y=rd, where 0 <r<1. Our aim is to analyze the
flow when r is small and the lower fluid layer is thin in
comparison to the channel width. Equivalently, since gravi-
tational effects are neglected, our analysis applies for r close
to unity when the upper layer is thin in comparison to the
lower layer (this can be achieved by changing the frame of
reference).

We nondimensionalize using the channel width d for the
length scale, the velocity of the upper wall in the x direction,
U, as the velocity scale, pU2 as the pressure scale, and d/U
as the time scale. The surface tension is nondimensionalized
using the value prevailing for a clean interface in the absence
of surfactant, y,. The surfactant concentration is nondimen-
sionalized using the maximum packing concentration of sur-
factant, I',,. The flow in the two fluids is governed by the
Navier—Stokes equations, which in dimensionless variables
are written as

1
Mjl+ MijX+Uijy:—pjx+ E(ijx'i'ujyy), (]a)
J
1
vjt+ujvjx+vjvjy:—pjy+E(vjxx+vjyy), (1b)
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ujx+vjy:O, (10)

where t is the dimensionless time, uj, v; are the x and y
velocity components, respectively, and p; is the pressure in
fluid j=1,2. The Reynolds numbers in the two fluids are
given by
Ry=—", R2=&i=&’ (2)
M My m
where p is the common density of the fluids, u; is the vis-
cosity of fluid j=1,2, and m=pu,/ u; is the viscosity ratio.
In the basic, unperturbed flow, the fluid motion is unidi-
rectional in the x direction and the interface between the
fluids is flat and located at y=r. Using an overbar to indicate
the basic state, the unperturbed flow velocities and pressure
are given by

ﬁ1:—a1y2+b1y, 171:0, (33)
1/72 =—- a2y2 + bzy + Cp, 172 = 0, (3b)
pi=p2=-(GdlpU?)x = - 2a\/Ry)x, (3¢)

where G >0 is the constant imposed axial pressure gradient,
and the dimensionless coefficients

Gd* al[Pm-1)+1]+m
a1=_, b1= B
2u,U rim—1)+1
4)
( 1>a1r(1—r)+rm
=1 — |
rim=1)+1

and a,=a,;/m and by=b,/m.

Our interest lies in following the development of the
initially flat interface when the flow is disturbed from the
basic state so that its new position is given by y=S(x,7),
which, in general, is a function of time and space. In the
presence of such a disturbance, the surfactant concentration
at a point on the interface will be altered from its basic uni-
form reference value according to a convection-diffusion
equation (Wong et al.;"® Li and Pozrikidis'®), which in the
present context is most conveniently written in the form pro-
vided by Halpern and Frenkel,’

[T
2 2 —
[(1+8)"T]+[(1+5)"uT], = E[ (1+ Si)”zl’

(5)

where u,=u,(x,S)=u,(x,S) is the horizontal velocity com-
ponent at the interface and the Péclet number P,=Ud/D, for
surfactant diffusivity D,. Assuming that the surfactant is
present in only a dilute concentration, the interfacial surface
tension is modified locally according to the linear Gibbs’
isotherm which, written in the present nondimensional vari-
ables, is given by

y=1-8[, (6)

where the sensitivity of the interfacial tension to changes in
the surfactant concentration is encapsulated in the parameter
B=RTT../y,., where R is the universal gas constant and 7
is the absolute temperature. Note that linear law (6) is
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consistent with the perturbation scheme to be introduced be-
low and would arise in the ensuing analysis if a nonlinear
equation of state is used. For clarity, we proceed with the
linearized isotherm.

At the interface, y=S(x,r), the balance of normal and
tangential stress requires that

(01 ) -n=sem- 11, ™)

al
where n is the unit normal pointing into fluid 1 as shown in
Fig. 1, o, is the stress tensor in fluid j, and / measures in-
creasing arc length along the interface in the direction of the
unit tangent t. The curvature « is taken to be positive when
the interface is concave upward and is given by the formula

S)CX

The normal stress jump at the interface is obtained by taking
the dot product of (7) with the unit normal n and is given by

2 1
{Pj(l + szc) - ]?[“jxsjzc = () +0;)S, + Uj}’]}
J

J(l_ﬁr) Sxx
TR 1+ ©

2

where the notation [e ]2 means °;—¢,, and we have 1ntr0-
duced  the dlmenswnless parameter J=py.d/ ,u,
(Chandrasekhar” ) The tangential stress jump is obtained by
taking the dot product of (7) with the unit tangent t and is
given by

ﬁx

[4m]SxMJX+mJ(ij+U]x)(Sf— 1)];— 1 +Sz)1/2

(10)

where m;=1 and m,=m, and where the capillary number is
defined as Ca=u U/ y.=R/J.

In the ensuing analysis, we will assume that the lower
layer, henceforth termed the film, is thin in comparison to the
upper layer, and write r=¢€, where e<<1. Working under this
assumption, our specific goal is to derive at a weakly non-
linear evolution equation for the film thickness. We assume
that the interface undergoes a small perturbation so that

S(x,1) = en(x,t), m=1+6H(x,1), (11)

where &,=5;(€) is a small parameter depending on the size
of e. The surfactant concentration is perturbed so that
I'(x,n)=Tg+ &I, where 8,=5(€) is a parameter whose size
is to be determined. Our aim is to choose &) and &, to ensure
a nonlinear evolution equation for the film thickness pertur-
bation, H(x,t), coupled to the fluid dynamics of the upper
layer at leading order in the limit e—0. To this end, the
asymptotic size of J; is determined using a scaling analysis
which very closely follows that presented by Kas-Danouche
et al.' For this reason the specific details are omitted and we
present the final asymptotic expansions directly. As in Kas-
Danouche et al.'® we arrive at the following key scalings:
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m=0(1), m-1=0(1), 6 =0(¢), Ca=0(e),
(12)
Iy=0(8), B=0(€5"), Pe=0(e?).

It is the scaling Ca=0(e) in Eq. (12) which is crucial in
producing weakly nonlinear dynamics. If the scale Ca
=0(€) is adopted instead, linear dynamics are obtained; this
corresponds to the scaling chosen by Wei and Rumschitzki®'
for the core-annular problem. The scaling Ca=0O(€), which
was identified by Papageorgiou et al.”® for the core-annular
problem, yields nonlinear dynamics by first removing the
linear convective term which appears in the interfacial evo-
lution equation using a Galilean transformation. When sur-
factant is present, the difficulty in reaching nonlinear dynam-
ics lies in simultaneously removing the linear convective
terms from both the interfacial evolution equation and the
surfactant evolution equation. This may be achieved under
the scaling Ca=0(e) through a Galilean transformation pro-
vided that the surfactant perturbation is assumed to be of the
same order of magnitude as the base level concentration
(Kas-Danouche ef al.'). It is important to note that the scal-
ing for the surfactant concentration does not require &, to be
small; rather the size of &, is arbitrary.

The dynamics in the upper fluid layer depend on the size
of the Reynolds number. If R,=0(e) inertia is absent and the
upper layer dynamics are governed by the linear equations of
Stokes flow. If R,=0(1), inertia is present and the upper
layer dynamics are controlled by the linearized Navier—
Stokes equations. We will consider these two Reynolds num-
ber scalings individually in the next two sections and we will
simulate the resulting dynamics.

lll. STOKES FLOW IN THE UPPER LAYER: R,=0(¢)

We assume a small Reynolds number in both the upper
layer and the film and write R,=e\, where A\=0(1), so that
R,=mR,=em\. Adopting scalings (12), we write

Ca=eCay, B=€6,'By Pe=e’Pe, (13)

where the subscripted parameters are of order unity. The in-
terface between the two fluids is located at

y=8(x,1) = e+ EH(x,1). (14)

In the film, fluid 1, we introduce the new independent vari-
able {=y/e and expand the flow variables about basic state

(3) as follows:
23] :I’_tl(y) + erl(-x3§’t) + o0y, v = €4V|()C,§,t) + o0y,

(15a)

p1=p1+Pi(x, 00+ -, (15b)

and we expand the surfactant concentration by writing
=6+, (16)

where we note that, as was mentioned above, it is not nec-
essary to specify the size of &,. The expansions in Eq. (15)
are motivated by the expected size of the film pressure per-
turbation suggested by normal stress balance (9) and by the
requirement for a leading order balance between the pressure
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gradient term and the viscous term in the momentum equa-
tion. In addition, in the upper layer, fluid 2, we expand the
flow variables as follows:

Uy = ity (y) + €Uy (x,y,1) + O(€),
(17a)

vy = EVy(x,y,1) + O(€),

P2=p2(y) + €Py(x,y,1) + o(é). (17b)

These expansions are motivated by the requirement of a con-
tinuous velocity field at the perturbed interface on noting that
the jump in basic velocity field (3) at a point on the linearly
perturbed interface is O(€?).

Substituting Eq. (15) into Navier-Stokes equations (1),
we obtain the standard lubrication equations at leading order,

0=—m)\P1X+ Ulé’{’ (183)

U1X+V1§=O, (lgb)

where P,=P,(x,r). Substituting expansions (15) into normal
stress balance (9), we find the leading order normal stress
balance at the interface,

1
Plz_—HX)C' (19)
mCag\
Substituting Eq. (15) into tangential stress balance (10), we
obtain the leading order tangential stress balance at the inter-
face,
_bBg
- Ul §|§=1 + m(UZy + V2x)y:0 - FX' (20)
Cao

Integrating Egs. (18a) and (18b) across the film and applying
Egs. (19) and (20), we obtain the following expression for
the vertical velocity component at the interface:
11 1 By ~

——H ot~ 20T
3C30

XXX xx ﬂT|V=0’ (21)
2Ca, & 27"

Vilger=-

where T(x,y)=Uy,+V,,, and is found by solving the prob-
lem in the upper layer.

The kinematic condition requires that v;=S,+u;S,, at in-
terface (14). Substituting expansions (15), we find

€'Vl = €H,+[it)(€) + €(a; + mH + €U)| | 1€H,
o (22)

where we have used the fact that i, (S)=it,(€) + € (a; +m)H
+0(€). Introducing the Galilean transformation,

z=x—i(e)t, 7=¢€4, (23)
in order to remove the term proportional to H,,
order (22) reduces to

HT+(a1+m)HHZ= V1|{=l' (24)

at leading

Substituting expansions (14), (15a), (15b), and (16) into sur-
factant transport equation (5), making Galilean transforma-
tion (23) and retaining terms at leading order, we obtain

~ ~ 1 ~
I'.+(a;+m)(HI), = EFZ
0

(25)

z*
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In the upper layer, substituting Eq. (17) into Navier—
Stokes equations (1), we obtain at leading order

Oz—)\P2x+ U2xx+ UZyy’ (263.)
O = - )\sz + VZxx + szy, (26b)
sz + sz = O (26C)

Introducing a streamfunction ¢, defined so that U,=4,
and V,=-4,, Eq. (26) reduces to the biharmonic equation
V44=0. We take a Fourier transform in x and integrate to
obtain the general solution,

" =A, sinh ky + A, cosh ky + Asky sinh ky
+ Aky cosh ky, (27)
where the A;, i=1,...,4 are functions of k and time and an

asterisk superscript here and in the sequel indicates a Fourier
transform. At the upper wall, we require that

W =1;=0, (28)

at y=1. Continuity of velocity at the interface demands that
u,=u, and v;=v, at y=S(x,). Substituting expansions (15)
and (17) and then taking the Fourier transform, we obtain at
leading order

J=0, ﬁ:i(m— 1)(a, + m)H", (29)

at y=0. The four conditions in Egs. (28) and (29) fix the
constants A; and determine the upper layer solution on com-
pleting the inverse Fourier transform. In particular, we find
that

T|,—0 = #(1 —m)(a, +m) f N(k)H*(k)e*dk,  (30)

where

k — cosh k sinh k)

N(k =k2<
) 1 + k% —cosh? k

(31)

The expression for 7 in Eq. (30) may now be substituted into
Eq. (21), and the result into Eq. (24) to produce the desired
weakly nonlinear evolution equation for the film thickness,
H(x,t). On making the transformation,

1

H— ———H
3(a, + m)Ca,

, 17— 3CagyT,

(32)
- 2 -

r- ———T,
9((11 + m)Ca(),BO

the evolution equation reduces to its canonical form given by
H,+HH_+H, . +iA f N(k) f H(z,7)e*Ddzdk

-T,.=0, (33)

and surfactant transport equation (25) reduces to its canoni-
cal form,

Phys. Fluids 22, 102102 (2010)
[+ (HT), = 7l,, (34)
where

3Ca
Peo '

3
A=—Cay(1-m)(a; +m), n= (35)

2

Note that A is positive if the upper fluid is less viscous than
the film, and negative otherwise. We note that, on making the
transformation H — —H and z— —z, the sign on the surfactant
term in Eq. (33) switches, while all of the terms in Eq. (34)
remain the same. This establishes consistency with the evo-
lution equations derived by Kas-Danouche et al.'® for core-
annular flow wherein a plus sign precedes the surfactant term
in the interface evolution equation [see Eq. (4.2) of their
paper].

Working on the basis of the lubrication approximation,
Frenkel and Halpern13 and Halpern and Frenkel'* derived a
set of nonlinear evolution equations for the film thickness
and the surfactant concentration [see Egs. (11) and (12) of
Ref. 13 or, equivalently, (2.14) and (2.15) of Ref. 14]. Their
equations are valid for interfacial disturbances and surfactant
concentration disturbances both of which are not small in
comparison to their basic state values. If we assume that the
interfacial disturbance is indeed small (but the surfactant
concentration disturbance is not), one can show that Egs.
(11) and (12) of Ref. 13 reduce to our Egs. (33) and (34) for
the uncoupled case A=0 and for =0 when C is small.?2
However, it is worth emphasizing the differences between
the present set of weakly nonlinear evolution equations (33)
and (34) and those given as Eqgs. (13) and (14) of Frenkel and
Halpern.13 The latter set of equations assume that both the
interfacial and the surfactant concentration perturbations are
small. In contrast, our weakly nonlinear equations are predi-
cated on the assumption that only the interfacial perturbation
is small but the surfactant perturbation is of the same order
of magnitude as the base level concentration.

Following Smyrlis and Papageorgiou,23 we consider a
localization of evolution equation (33) obtained by replacing
N(k) by the first few terms of its Maclaurin expansion for
small k. Specifically, we use the approximation

N(k) = 2k + k. (36)

Substituting Eq. (36) into Eq. (33), we obtain the localized
form,

H,+HH,+H

2332

+ 2A(Hz - %szz) - fzz =0. (37)

which is to be solved in conjunction with Eq. (34). It was
shown numerically by Smyrlis and Papageorgiou23 that solu-
tions of the localized and nonlocal systems are almost iden-
tical for a wide range of parameters and dynamical behaviors
(e.g., traveling-waves, time-periodic solutions).
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A. Linear stability analysis

To investigate the linear stability of the flow, we perturb
about the basic state with H=0 and f:fo, say, and write

H=Ae"*"ycc., T=Ty+Be+cc., (38)
where the wavenumber k is real, o is the complex growth
rate, c.c. denotes complex conjugate, and the complex con-
stants A and B are both small. Substituting Eq. (38) into Eq.
(33) we derive the dispersion relation

o+ [k* + IAN(k) + 7k*]o + [ 7k® + ipAK>N(k) — ik°T ]
=0. (39)

Since this is a quadratic equation for o, there are two normal
modes, whose growth rates are given by s=Re(o), where Re
denotes the real part. Yih! showed that, for a clean interface
with no surfactant, the flow is linearly stable at zero Rey-
nolds number. Frenkel and Halpern6 demonstrated that the
flow becomes unstable in the presence of surfactant with
zero diffusivity provided that the interfacial shear associated
with the basic flow is nonzero. Naturally, both of these ob-
servations should hold in the presently considered thin film
limit. To discuss the stability properties, we consider first the
case with no coupling between the film and upper layer cor-
responding to A=0. For small wavenumber k we find

~ \ 12
)
S1o= i<7°) k3/2—§k2+---, (40)

where the plus sign applies for s; and the minus sign for s,.
In the absence of surfactant diffusivity, =0, Eq. (40) coin-
cides with Frenkel and Halpern’s6 result for the case n=

(their notation) in their Table I. When fo=0 and there is no
surfactant in the flow, Eq. (40) indicates that the flow is
stable. This underscores a key difference between the present
two-dimensional analysis and the axisymmetric work carried
out by Kas-Danouche et al.'® for core-annular flow. In the
latter case, the effect of surface tension combined with
the azimuthal curvature of the flow configuration contributes
an unstable mode which persists even in the absence of
surfactant.

In Fig. 2(a) we show a stability graph for the case
A=0, f0=1, and »=1. The graph confirms the instability
predicted by small wavenumber expansion (40) and shows
that perturbation waves are stabilized above a cutoff value.
For the case considered in the figure, the maximum growth
rate 5,=0.103 occurs at k=0.51 and the cutoff wavenumber
at which s;=0 occurs at k=0.79. For completeness, we note
that a large k expansion of the solutions to Eq. (39) predicts
stability if >0 but instability if »=0. However, the work of
Frenkel and Halpern13 indicates that a fourth-spatial deriva-
tive of H will appear in the next order correction to the
surfactant transport equation, which will stabilize short
waves; we have confirmed this to be the case by continuing
our expansions to next order. In the present work, however,
our concern is with solutions of model systems (33) and (34),
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Growth rates

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
(b) K
FIG. 2. (a) Growth rates s, (solid line) and s, (broken line) corresponding to

solutions of Eq. (39) A=0, [y=1, 7=1. (b) The dominant growth rate s, for
nonlocal equation (33) (solid line) and localized equation (37) (circles) for

the case A=0.25,f0=1, n=1.

and we do not claim that this accurately represents the short-
wave behavior which would be identified from a short-wave
expansion of the full problem.

When A >0, so that m<1 and the film is more viscous
than the upper layer, we find for small k,

I'y-27n9A
5= %1& +O(K), s=- 2F—Xk2 +O(5), (41)
for the two growth rates. It would appear, therefore, that the
second normal mode with growth rate s, is stable and that
the first normal mode with growth rate s, is stable to short
wavelength perturbations, but unstable to long wavelength
perturbations provided that

Ty>27A. (42)
In the absence of coupling between the film and the upper
layer, corresponding to the case A=0, the flow would appear

to be stable if f0=0 and unstable otherwise. A stability graph

for the unstable case A=0.25, fozl, and 7=1 is qualita-
tively the same as that shown in Fig. 2(a), but with the maxi-
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102102-7 Nonlinear development

mum growth rate s;=0.061 occurring at k=0.48 and with the
cutoff wavenumber k=0.72. In fact, it can be proven that Eq.
(42) provides both a sufficient and a necessary condition for
instability at small wavenumber with a cutoff wavenumber
beyond which both modes are linearly stable. The proof,
which may be found in the Appendix, makes use of the ar-
gument principle (e.g., Ablowitz and Fokas>*) to show that
when Eq. (42) is satisfied, one of the zeros of Eq. (39) lies in
the left-hand complex plane and one of the zeros lies in the
right-hand complex plane leading to instability. When Eq.
(42) is violated, both zeros lie in the left-hand plane and the
flow is linearly stable. We note that Blyth and Pozrikidis®
briefly considered the effect of surfactant diffusivity on the
linear flow stability and found that it has a stabilizing effect,
in agreement with what is found here.

When A <0, so that m>1 and the upper layer is more
viscous than the film, the formulas for the small k£ expansion
are the same as Eq. (41). Accordingly, for small enough «, s,
is positive for any nonzero value of the base surfactant level

fo and the flow is unstable. Typical stability graphs look
qualitatively similar to that shown in Fig. 2(a). By way of
comparison with the previous results, we note that for the

case A=-0.25, fozl, and n=1, the maximum growth rate
is §;=0.050 which occurs at k=0.46 and the cutoff wave-
number is k=0.65.

It is instructive to compare the previous results with the
stability properties of the localized form of evolution equa-
tion (37) together with surfactant transport equation (34). For
A # 0 the small k expansions are exactly the same as Eq. (41)
to the order shown and, in fact, agree to a higher order than
that shown. Figure 2 displays the growth rate s, for the un-

stable case A=0.25, 1:0: 1, »=1 obtained for the full nonlo-
cal evolution equation with Eq. (31) used in Eq. (39), shown
as a solid line, and for the localized equation with Eq. (36)
used in Eq. (39), shown with circles. The difference between
the two is imperceptible.

B. Weakly nonlinear calculations

We calculate nonlinear solutions on the periodic domain
ze€[-L,L], where L is a bifurcation parameter measuring the
length of the system. To prepare the ground for the numerical
scheme, we first rescale evolution equations (33) and (34)
onto the canonical spatial domain [—7,7r] by making the
transformations

L L\% .~ A
z="%, z=<—) i, H=—h T=-2r, (43)
i L

™
T L
and defining the new domain parameter v=7>/L>. The trans-
formed equations are

[’

A

I:Il + 1:11:12 + iAV_l 2 N(l’l\”,I_/)ITIneinf + VI:IZAZA::ZA - FZA: =0,

(44)

where
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H,= E f ! H(E e médg (45)
2w)_,

are the coefficients in the Fourier expansion of H on the
domain [—, 7). Rescaled localized equation (37) is

7222 22z 7z

PPN A 1 . 1 a4 A
H,+ HH:+ vH A+2A<—FHZA— —\vH: ) -T':=0.
=~ Vv 15
(46)
The surfactant transport equation becomes
f[ + (I:If‘)zﬂ = 7711\‘55 (47)

The equations are solved numerically using a pseudospectral
method. We take the Fourier transform of Eq. (44) or Egs.
(46) and (47) and solve the resulting ODEs in Fourier space
using the exponential time differencing scheme with Runge—
Kutta ETD2RK of Cox and Matthews® (see Kassam and
Trefethen,26 for similar example calculations for PDEs). The
scheme is spectral in space and second-order accurate in
time. On implementing the scheme, the spatial domain
[—ar, ] is discretized using M equally spaced points and the
solution is advanced in time using a time step o&t. Unless
otherwise stated, all results to be presented in this paper were
computed taking M =128 and 6t=5X 107>

Considering first solutions when there is no coupling be-
tween the film and the upper layer, A=0, we perform calcu-
lations starting from the initial condition,

H(2,0)=0.1v"2sinnz, T1'(2,0)=Cyr "2, (48)

for integer n. Keeping in mind transformation (43), we ob-
serve that by adopting initial conditions (48) for a series of
simulations performed for different v and for fixed values of
all of the other parameters, we are effectively following the
evolution of perturbations with the same physical amplitude
to a film with the same base surfactant concentration over
computational domains of different lengths. First we exam-

ine the case v=0.1, A=0, f(): 1.0, and ©=1.0. A perturbation
of wavelength 27/n on the canonical domain [—7, 7] corre-

sponds to a perturbation of wavenumber k=n\e"; in the physi-
cal domain. The linear stability analysis presented in Sec.
IIT A reveals Lhat, in the present case, the flow is linearly
unstable if nvVv<<0.79 [see Fig. 2(a)]. We take n= 1, in which
case the flow is therefore linearly unstable since \y»=0.32. In
Fig. 3(a) we plot the energy signal E(f) against time, where

E() = J " PG, (49)

As time increases, the energy signal approaches a plateau via
a stretch of decaying oscillations, and the interfacial and sur-
factant waves saturate to the steady state traveling-wave pro-
files shown in Fig. 3(b). On increasing the diffusivity up to
1n=2.0, while keeping the other parameters the same, we find
that the energy signal approaches a plateau monotonically
and the saturated wave profiles are rather similar to those
shown in Fig. 3(b). Increasing the diffusivity further and be-
yond a critical value produces a stable flow in accord with
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) ° 2

FIG. 3. Uncoupled flow with A=0, v=0.1, [,=1.0, and 5=1.0. (a) The
energy signal E(t) plotted against time and (b) the saturated wave profiles

for H (solid line) and I'(7) (dashed line) shown at 1=40.0.

the results of Sec. III A. Instead, increasing the base surfac-
tant level beyond the value in Fig. 3, we find that modes with
higher frequency n become linearly unstable according to the
analysis in Sec. IIl A. Figure 4 displays saturated profiles for
the case A=0, fO:IO.O, v=0.1, and »=1.0. The initial con-
dition was taken to be Eq. (48) with n=1 and n=3 in Figs.
4(a) and 4(b), respectively. The initial perturbations, with
n=1 and n=3, are both linearly unstable, and as can be seen
lead to ultimately different saturated wave profiles.

As mentioned in Sec. I, it is possible that saturation such
as that identified in Fig. 2(a) vanishes on reducing the value
of v. Lowering v has the effect of widening the physical
domain of computation, thereby admitting a larger number of
linearly unstable modes. According to transformation (43) a
wave of wavelength 27/n, for integer n, in the computa-
tional domain [—,77] has wavelength 27/(n\v) in the
physical domain. To investigate the effect of extending the
computational domain size, we lower v and increase n so
that n’v remains fixed and the physical wavelength of the
computed wave does not change. In Fig. 5 we show the

physical saturated wave profiles Hand T resulting from a set

Phys. Fluids 22, 102102 (2010)

FIG. 4. Uncoupled flow with A=0, v=0.1, f(): 10.0, and ©=1.0. The satu-

rated wave profiles of H (solid lines) and I' (broken lines) for initial condi-
tion (48) with (a) n=1 and (b) n=3. In both (a) and (b) the profiles are
shown at 7=10.0.

of calculations performed for uncoupled flow with A=0,

[y=1, »=1.0 subject to initial conditions (48) for the se-
quence of values v=(0.05)/4™", n=2" for m=0,1,2,3, so
that n’v is fixed at 0.05. According to the analysis in Sec.
IIT A, the flow is linearly unstable to modes in the physical
domain with frequency n, such that n\r<0.79, so the initial
perturbations for m=0,1,2,3 are all linearly unstable. The
individual curves in the figure are virtually indistinguishable
confirming that the same saturated solution is computed even
as the physical domain size is repeatedly doubled.

We have also confirmed that saturated solutions are com-
puted for increasingly small values of v on taking a “white-
noise” initial condition consisting of a random mixture of
Fourier modes. We performed calculations for the same pa-
rameter values as in Fig. 3, namely, r=1.0, n=1.0, and

A=0.0, but for smaller values of v and subject to the initial
condition
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102102-9 Nonlinear development

FIG. 5. Saturated wave profiles H(z) and ['(z) for initial condition (48)
for A=0, 1:0:1.0, and 7=1.0, with (n,v)=(1,0.05) (solid line),
(n,v)=(2,0.0125) (dashed line), (n,v)=(4,0.003 125) (dot-dashed line),
(n,v)=(8,0.000 781 25) (dotted line). The solution for n=8 was computed
by taking M=1024 and &f=5X 107,

N

H(2,0)=0.10""2> h, sin n,
n=0

['(2,0)=Tyr 2,  (50)

for some integer N, where the 0=#h,=1 are random num-
bers drawn from a uniform distribution. We carried out nu-
merical simulations for »=0.1, 0.01, and 0.001. In each case,
initial profiles (50) evolve toward fixed-form traveling-wave
solutions. The saturated wave profiles for the case »=0.001
are shown in Fig. 6. These were computed using &f=107>
and M=1024.

Next we study an example of coupled flow and set
A=0.5, v=0.1, and »=1.0. According to the analysis in Sec.
IIT A, for these parameter values a perturbation on the ca-
nonical domain [-, 7] of wavelength 27 is linearly un-

stable when I'y>3.22. In Fig. 7(a) we show the result of a

calculation for '=3.5 using initial condition (48). After an
initial transient, the energy FE(f) rises monotonically and

Phys. Fluids 22, 102102 (2010)
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FIG. 6. Saturated wave profiles for uncoupled flow with A=0, »=0.001,
[,=1.0, and 5=1.0 and N=20 Fourier modes in initial condition (50). (a) H
and (b) I'. In both (a) and (b) the profiles are shown at =6.0.

reaches a plateau at 7= 80 by which time the film thickness
and surfactant concentration profiles have settled into the
fixed-form traveling-waves shown in the figure. For a larger
base surfactant concentration, the rise of the energy during
the simulation is nonmonotonic and E(f) tends to a constant
in an oscillatory manner similar to that shown in Fig. 3(a).
For a sufficiently large value of fo, the oscillations in the

energy signal do not decay and E(f) locks onto a periodic
orbit. An example of this behavior is provided in Fig. 7(b)

for the case T 0=4.0. The energy signal is displayed once it
has settled into a periodic cycle after a long period of evo-
lution. The corresponding long-term film thickness and sur-
factant concentration profiles are periodic traveling-waves,
namely, waves which change their shape periodically within
their traveling-wave frame. The period of the cycle shown in
Fig. 7(b) is 8.41. Snapshots of the film thickness and surfac-

tant concentration profiles, Hand T, respectively, taken at
four time instants in one time cycle are displayed in Fig. 8.
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FIG. 7. The case A=0.5, v=0.1, and 5=1.0. (a) The saturated profiles for
f‘0=3.5 (f0=1.107). H(f) and I'(}) are shown as solid and broken lines,
respectively. (b) The energy E(7) shown against time when [=4.0
(Fy=1.265).

IV. FINITE REYNOLDS NUMBER FLOW
IN THE UPPER LAYER: R,=0(1)

In this section, we assume that the Reynolds numbers in
the upper layer and the film are both of order unity. In this
case, same scalings (13) apply, but the film expansions are
now written as

v =V, (L) +
(51a)

uy =ﬁl()’) + 6301(x7£7t) +

pL=p1+ €, LD+ - (51b)

where {=y/€, and the expansions in the upper layer are
written as

Uy = 52‘72()@)7’1‘) + 0y,
(52a)

Uy = ﬁz(y) + Ezﬁz(x,y,t) + 00y,

Phys. Fluids 22, 102102 (2010)
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FIG. 8. Profiles for the case shown in Fig. 7(b) for equally spaced times
during one period, which is of duration 8.41 time 7 units. The film thickness

profiles, fI, and the surfactant concentration profiles, f, are shown as solid
and broken lines, respectively.

Pr=Dy+ EPYx,y. )+ -+ (52b)

At leading order, the normal and tangential stress balances
are identical to Eqgs. (19) and (20), respectively, but with hat
superscripts placed over the variables and with \ replaced by
R, in Eq. (19). The solution in the film proceeds as in Sec.
IIL, despite slightly different expansions (51), and once again
we derive the equation for H given in Eq. (24). As before, the
right-hand side is determined by the solution in the upper
layer.

In the upper layer, substituting expansions (52) into Eq.
(1) and retaining terms at leading order, we obtain the linear-
ized Navier—Stokes equations,

_ _ 1
UU2x+ U,V2=—P2x+ R_(szx+ U2yy)’ (533)
2
— 1
UVy=— Py, + ;(Vm + V), (53b)
2
U+ V2, =0, (53¢)

where U=-a,y>+(1+a,)y and a prime denotes differentia-
tion with respect to y. Next, we introduce the streamfunction

zAﬁ defined so that (AJZ=¢), and \72=—1Aﬂx, and take the Fourier
transform of Eq. (53a). Eliminating the pressure we find

KR U, = K24 + 20,07 = s = 20205, + k7
(54)

The boundary conditions are Egs. (28) and (29) with hat
superscripts placed over the streamfunctions. Writing
1,7/*:(1 /m)(1—=m)(a,+m)H"F(y), we find that F satisfies the
system
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102102-11 Nonlinear development

F' _[2k2 + kR, UJF" + [ik°R,U — 2ikRya, + k*]F =0,
(55a)

F0)=0, F'(0)=1, F(1)=F'(1)=0, (55b)

which we may solve numerically using MATLAB, for ex-
ample. Referring to Eq. (21) in Sec. III, in the present
case we have T|>,=0=(IA]2xy+ \A/ZXX)y:O, and in Fourier space

T*|y=0=ikfﬁ;y. Accordingly we derive a canonical evolution
equation identical to Eq. (33) but with Eq. (31) replaced by

N(k) =— (k/2)F"(0), (56)

where the right-hand side is found by solving system (55).

To obtain the localized form of the evolution equation, it
is a straightforward calculation to obtain a series solution to
Eq. (55) for small k in the form

F(y) = Fo(y) + kF (y) + K*Fy(y) + . (57)

We find that Fy=y-2y>+y> together with increasingly
lengthy polynomial expressions for the higher order terms. In
particular, we have

30 7

4 11 3
—< [ +a2+&}R§>k2+0(k3).

1
F'(0)=—4— —(1 + @)iRzk

15721020 T90 " 693
(58)

Disregarding terms of O(k?) in Eq. (58) and substituting into
Eq. (56), we obtain the localized evolution equation for the
film thickness,

H.+HH +H__ —T_+2A(H,+ aR,H, - BH_.) =0,
(59)
where
1 a\ . 1 1l e @ |,
a=—\1+—=), B=—Z+—"| -+ _—+—=|R;,
120 7 15 840020 90 693
(60)

and A is given in Eq. (35). The surfactant transport equation
is given by Eq. (47).

A. Linear stability analysis

We follow the same procedure as in Sec. IIl A and
perturb about the base flow as in Eq. (38). The dispersion
relation for the complex growth rate is Eq. (39) with
N(k)=—F"(0)/2, where F"(0) is given by Eq. (58). We find
the small k expansions for the growth rates,

Phys. Fluids 22, 102102 (2010)
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FIG. 9. Dominant growth rate for the case A=0.5, f0=2.0, n=1, a,=0, and
R,=0 (solid line), R,=25 (dashed line), and R,=50 (dotted line).

Ty -29A)
;= OTk2+ ..
(61)
[R2A2(7+a2)—210f0] 2
5y = R
420A

and it is found that both s, and s, are negative for large k.
When A>0 and the film is more viscous than the upper
layer, small k expansions (61) suggest that instability will
occur for long waves if either of the following two condi-
tions hold:

To>29A, To<55(7 +a)RyA%. (62)

The first condition is the same as that identified for Stokes
flow in Sec. III. When A <0 so that the upper layer is more
viscous than the film, the condition for long-wave instability
is simply

To > 515(7 + ay) RyA2. (63)

In Fig. 9 we display the growth rates as a function of wave-
number for the three different Reynolds numbers R,=0, =25,
and R,=50 when a,=0, A=0.5, = 1.0, and ©=1.0. The cut-
off wavenumbers are k=0.94, 1.00, and 1.04 for R,=0, 25,
and 50, respectively. The second stability criterion in
Eq. (62) confirms that inertia is able to destabilize a flow
which is stable at zero Reynolds number, as predicted by
Yih' for a clean interface. When surfactant is not present and
the lower layer is more viscous than the upper layer, corre-
sponding to A >0, the second condition in Eq. (62) indicates
that the flow is unstable when R,>0 in agreement with the
observation of Hooper;3 conversely, when A <0 and the up-
per layer is more viscous than the lower layer, condition (63)
shows that the flow is stable. Furthermore, it is interesting to
note that according to Eq. (62), it is possible to have a stable
flow with both inertia and surfactant present, provided that
29A>(7+a,)R,A?/210.
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B. Weakly nonlinear calculations

The localized equation for film thickness (59) has the
same basic form as that derived by Kas-Danouche et al. 1 for
core-annular flow with a thin outer layer and with Stokes
flow in the upper layer. In that axisymmetric problem, the
H,, term appearing in the equation arises from the azimuthal
curvature contribution. In the present case, the H_, term has
arisen due to the inclusion of inertia in the upper layer flow.
The H___, term in Eq. (59) stabilizes short waves while the
H._, term destabilizes long waves if A is positive and stabi-
lizes them otherwise. At the same time, the nonlinear term in
Eq. (59) channels energy from long waves to short waves.
This feedback of energy from waves being stabilized to those
being destabilized raises the possibility of a richer set of
dynamics than that encountered in Sec. III. For example,
Kas-Danouche et al.'® computed a host of different phenom-
ena including traveling-waves, periodic traveling-waves, and
chaotic attractors.

We computed solutions of weakly nonlinear equations
(59) and (47) rescaled onto the canonical domain [—7r, 7] via
transformation (43) using the pseudospectral method de-
scribed in Sec. III B and subject to initial conditions (48)
with n=1. This means that as v is varied, with all other
parameters held fixed, we are effectively considering the
same physical film thickness and the same base surfactant
concentration level, but over different length computational
domains. Preliminary numerical experimentation indicated
that solutions for the parameter values R,=25, a,=0,

A=0.5, f0:2.0, and 7=1.0 cover the range of characteristic
dynamical behavior for the system. Therefore, to illustrate
the typical behavior of solutions to weakly nonlinear systems
(59) and (47), we examine solutions for this parameter set in
detail. According to the analysis in Sec. IV A, the flow is
linearly unstable since the first of conditions (62) is satisfied
for these parameter values. Referring to the dashed line in
Fig. 9, a perturbation corresponding to initial condition (48)
will grow in amplitude provided that V»<<1.00. In Tables I
and II we summarize the results of an extensive series of
calculations carried out for different values of the domain
length parameter v. Table I shows the types of flow solution
obtained for a range of values of v between 0.01 and 1.1.
A key to the shorthand for the flow types is included in
the caption. For v=1.1 the flow is stable, the initial pertur-
bation decays and the system returns to the basic state
with a uniform film thickness. To help in characterizing the
dynamical behavior for a general value of v, we constructed
return maps of the solutions by plotting on a graph the points
(m;,m;,,), where m; is the ith maximum of the signal E(7). If
the return map contains just one point, the flow is time-
periodic with one distinct maximum in the E(f) signal, cor-
responding to a periodic traveling-wave PTW[1] in the nota-
tion of Table L. If the return map contains two points, the
flow is time-periodic with two distinct maxima in the E(f)
signal, corresponding to a periodic traveling-wave PTW[2].
Quasiperiodic solutions are indicated in the return maps by
continuous-looking curves, which are densely populated with
points. Chaotic dynamics are suggested by intricate struc-
tures in the return maps that include folds and self-similarity.

Phys. Fluids 22, 102102 (2010)

TABLE 1. Flow characteristics for solutions to Egs. (59) and (47) subject to
Eq. (48) with n=1 for R,=25, a,=0, A=0.5, T,=2.0, and 7=1.0. ST: stable
flow, TW: traveling-wave, PTW[m]: periodic traveling-wave with m
maxima in each time period, QP: quasiperiodic, and C: chaotic.

v Flow type
1.1 ST
0.9 ™
0.8 ™
0.7 ™
0.6 ™
0.5 ™
0.4 ™
0.3 ™
0.2 ™
0.1 ™
0.09 ™
0.08 PTW[1]
0.07 PTW[1]
0.06 ™
0.05 ™
0.04 PTW[1]
0.03 PTW[2]
0.02 PTW[1]
0.01 C

Traveling-wave solutions become apparent after only very
short computational run times. For example, when v=0.1, a
simulation with M=256 and &f=10"* locks on to the
traveling-wave solution at = 10. Very long run times are
required to elucidate the more intricate structures in the re-
turn maps. Calculations for the chaotic and quasiperiodic so-
lutions were performed using MATLAB with M =256 and
8f=107 and, for the longest simulations, required consider-
able CPU time (on the order of days) on a Mac Pro Desktop
computer with a 3GHz Intel processor.

TABLE II. See the caption for Table I.

v Flow type
0.068 75 PTW([1]
0.067 187 5 PTW[2]
0.065 625 PTW[3]
0.064 062 5 PTW[2]
0.062 5 ™
0.019 PTW[1]
0.018 ™
0.017 ™
0.016 ™
0.015 QP
0.014 QP
0.013 QP
0.01275 C
0.0125 PTW[1]
0.012 C
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FIG. 10. Return map of the maxima of the energy signal for »=0.014 when
R,=25, a,=0, A=0.5, [,=2.0, and 5=1.

From the results shown in Table I it appears that for
0.1=v=1.00, the film thickness profile settles down to a
traveling-wave. More complex behavior for »<<0.1 is sug-
gested by the appearance of periodic traveling-wave solu-
tions and chaos. More detailed investigation of the solution
characteristics for these smaller values of v are provided in
Table II. The return map of the maxima of E(f) for the qua-
siperiodic solution at v=0.014 is displayed in Fig. 10. The
map forms a closed loop of densely packed individual points.
The maxima of E(f) and the return map of the maxima for
the solution when »=0.012 are shown in Fig. 11. The chaotic
nature of the solution is suggested by the intricate structures
in the return map. Finer structure is found by zooming in on
the individual strands seen in the figure to reveal foldings
and self-similarity which are the hallmarks of chaotic dy-
namics (e.g., Ref. 27).

V. DISCUSSION

We have demonstrated that the weakly nonlinear ap-
proach devised by Papageorgiou et al.”® for core-annular
flow in the thin annulus limit, and later developed by
Kas-Danouche et al.'® to include the effect of an insoluble
surfactant, may be applied to the problem of two-layer chan-
nel flow. Working on the assumption of a thin lower layer in
comparison to the thickness of the overlying fluid, we de-
rived a pair of weakly nonlinear equations describing the
evolution of the thin film thickness and the concentration of
surfactant. The film dynamics are coupled to the dynamics in
the thicker layer through a nonlocal integral term. When the
Reynolds number is asymptotically small and on the order of
the film thickness, the dynamics in the thicker layer are con-
trolled by the linear equations of Stokes flow. We performed
a linear stability analysis and proved that when the film is
less viscous than the overlying fluid, the flow is unstable if
the base surfactant concentration level exceeds a threshold
value. When the film is more viscous than the overlying
fluid, the flow is linearly unstable for any nonzero value of
the base surfactant concentration. The weakly nonlinear evo-

Phys. Fluids 22, 102102 (2010)

194f ..
192
190
188
Y 186
[<)
£
E 184
©
g .
182 .. .
180f -
178fF -
176}
174 . L
8500 9000 9500 10000
(a) t
194}
192}
190}
188}
186}
184} Sl
182} /Y ;
180} Fi
178} 2
176} B
174 , , , ,
(b) 175 180 185 190 195

FIG. 11. Chaotic dynamics for »=0.012 when R,=25, a,=0, A=0.5,

[,=2.0, and 7=1. (a) Maxima of the energy signal E(7) and (b) return map
of the maxima.

lution equation for the film thickness H differs from that
derived by Kas-Danouche et al.'® for the axisymmetric prob-
lem at asymptotically small Reynolds number in that the
destabilizing term proportional to H_, is absent in the channel
equation. As a consequence, the film dynamics are consider-
ably simpler in the latter case. Our numerical simulations
revealed the existence of saturated traveling-wave solutions.

When the Reynolds number is of order unity, the flow in
the thicker fluid layer is governed by the linearized Navier—
Stokes equations. A linear stability analysis showed that the
film is unstable if the base surfactant concentration either
exceeds the same threshold as found previously for Stokes
flow in the upper layer, or else lies below a critical value
dependent on the Reynolds number. The weakly nonlinear
equation for the film thickness includes a term proportional
to R,H . suggesting a richer set of possible dynamical behav-
ior than that found in the Stokes flow case. A case study
carried out on one representative set of parameter values
found the existence of traveling-waves, periodic traveling-
waves, and quasiperiodic and chaotic solutions.
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FIG. 12. Sketches of the images of sections of the con-
tour C in the complex g plane. The image of the semi-
circular arc is shown in (a). The image of the straight
segment is shown in the remaining panels for (b)
¢;>0, (¢) ¢;<0 and ¢;+b,8<0, and (d) ¢;<0 and
¢;+b,>0. The arrows indicate the direction of travel
as we move anticlockwise around the semicircular con-
tour C. For (b)—(d) the sketches show only the qualita-
tive behavior of the image contours.
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APPENDIX: PROOF OF LINEAR STABILITY

With reference to the linear stability analysis presented
in Sec. III A, we establish that small perturbations are lin-

early unstable if and only if Ty>27A when A >0. We begin
by writing dispersion relation (39) in the form
f) =22 +b(k)z+c(k)=0,

where b=b,+ib; and c=c,+ic; are complex functions of k
with real and imaginary parts given by

b,=k*+ nk*, b;=AN(k),

(A1)

(A2)
c,=k®  ¢;= pAK’N(k) - KT,

with N(k) given by Eq. (31). Since N(k)>0 for k>0 and
A >0, we have that

b(k)>0, bik)>0, c, k) >0. (A3)

Proceeding we consider a semicircular contour C of ra-
dius R with straight edge occupying x=0, —-R=y=R in the
complex z=x+iy plane, where the arc of the semicircle re-
sides in the left-hand plane, x<0. Invoking the argument
principle (e.g., Ablowitz and Fokas®), we have

R AY)

1
——dz=n-p= ;[arg f@]e,

27 ) ¢ f(2) (a4)

where n and p are, respectively, the number of zeros and
poles of f(z) inside C, and (1/27r)[arg f(z)], is the winding
number of f(z). Since f(z) clearly does not have any poles

M SN
NI

inside C, we may set p=0. Following a standard methodol-
ogy, we aim to determine # in the limit R — oo,
Writing z=Re!? on the curved part of C, we find that

f~ g for large R, where g= R%e”’. Traversing the semicircu-

lar part of C in the anticlockwise direction corresponds to
following the path circular image contour in the complex g
plane in the directions of the arrows shown in Fig. 12(a).
Since the image contour winds once around the origin, giv-
ing a winding number of 1 for the semicircular part of the
contour. On the straight segment of C, where z=iy, the com-
plex function f(z) may be expressed in the form f=-g,
where

gE(y_a)(y_B)_i(ci_i_bry)’ (AS)

and where the real numbers « and S are given by
a=3(=b;—\b?+4c,), B=3(=b+\b +4c,). (A6)

From Egs. (A3) and (A5) we see that a<—b;<0 and 8>0.
Consequently, since b,>0 from Eq. (A3), we may establish
that c;+b,a<c;—b,b,. Since c¢;—bb;=—kTy—k*AN(k)<0
from Eq. (A2), it follows that

c;+b.a<0. (A7)

According to Eq. (A5), the image of the straight segment
of C in the complex g plane will cross the imaginary g axis
when y=«a and y=g at the points Im(g)=—(c;+b,a) and
Im(g)=—(c;+b,B). The former value is always negative ac-
cording to Eq. (A7), but the latter value may be either posi-
tive or negative. There are three subcases to consider.

(1) ¢;>0. Since we have already established that 8>0
and b,>0, if ¢;>0 we have that ¢;+b,8>0. Moving
from y=—o up to y= along the straight segment of
C corresponds to following the image contour in the g
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plane, which is sketched in Fig. 12(b), in the direction
shown by the arrows. Since the image contour en-
circles the origin once, the winding number for the
straight segment in this case is 1.

(i)  ¢;<0 and ¢;+b,8>0. In this case we know that c;
+b,a<0. The image of the straight segment is
sketched in Fig. 12(c). The image contour encircles
the origin once, and so the winding number for the
straight segment is 1.

(iii)  ¢;<0 and ¢;+b,8<0. As for case (ii) we know that
c¢;+b,a<0. The image of the straight segment is
sketched in Fig. 12(d). Since the image contour does
not encircle the origin, the winding number for the
straight segment is zero.

In conclusion, in case (i) the total winding number for
the contour C is 2, which implies that n=2. Accordingly,
both of the zeros of f(z) lie in the left-hand plane and the
flow is linearly stable. In case (ii) the total winding number
for C is 2, so that the flow is linearly stable. In case (iii) the
total winding number for C is 1 and so n=1. One of the poles
lies in the right-hand plane, and the flow is linearly unstable.

To investigate the conditions under which case (iii) ob-
tains, we begin by noting that N(k) >2k for k>0. To dem-
onstrate this we consider the difference N(k)—2k
=kP(k)/Q(k), say, where P(k)=k>+k cosh k sinh k+2
—2cosh’k and Q(k)=cosh> k—1-k*>. We have Q'(k)
=2(sinh k cosh k—k) >0 for all k and so, since Q(0)=0, we
have that Q is non-negative for all k>0. It, therefore, re-
mains to show that P is also non-negative. Through straight-
forward calculation we find that P(0)=P’'(0)=P"(0)
=P"(0)=0 and that P (k)=16k sinh k cosh k>0. Hence
P" is an increasing function of k and so P” >0 for k>0.
Arguing along similar lines, we conclude that P=0 for
k>0 and hence N(k)>2k for k> 0. Following this, we may
write

ci(k) = K[ pAN(k) - kTy] > K>(2pA - T). (A8)

If [y <27A then Eq. (A8) implies that ¢;>0 for all k>0 and
so the flow is linearly stable according to case (i) above. If

f0>27;A then instability occurs for sufficiently small k. To

see this, we first note that c;,~c;+b,B~k*(2nA-T,) as
k— 0. Therefore, both ¢;<0 and c;+b,8<0 for sufficiently
small k, fulfilling the conditions of case (iii) above and guar-
anteeing linear instability.
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