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Long-wavelength, small-amplitude disturbances on the surface of a fluid layer subject
to a normal electric field are considered. In our model, a dielectric medium lies above
a layer of perfectly conducting fluid, and the electric field is produced by parallel
plate electrodes. The Reynolds number of the fluid flow is taken to be large, with
viscous effects restricted to a thin boundary layer on the lower plate. The effects
of surface tension and electric field enter the governing equation through an inverse
Bond number and an electrical Weber number, respectively. The thickness of the
lower fluid layer is assumed to be much smaller than the disturbance wavelength,
and a unified analysis is presented allowing for the full range of scalings for the
thickness of the upper dielectric medium. A variety of different forms of modified
Korteweg-de Vries equation are derived, involving Hilbert transforms, convolution
terms, higher order spatial derivatives, and fractional derivatives. Critical values
are identified for the inverse Bond number and electrical Weber number at which
the qualitative nature of the disturbances changes. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4862975]

I. INTRODUCTION

In this paper, we consider disturbances on the interface between a fluid film and a dielectric
medium lying between parallel plate electrodes. Our particular focus will be with the separation
of the electrodes relative to the wavelength of the disturbances. The effect of electric fields on a
thin fluid layer is important in a number of contexts,1 including, for example, processes such as the
electrostatic liquid film radiator.2

For an inviscid horizontal fluid layer in the absence of any electric field, a weakly nonlinear
analysis for small-amplitude, long-wavelength disturbances gives rise to the Korteweg-de Vries
(KdV) equation,3 which admits the familiar sech-squared solitary solutions. The relative importance
of surface tension forces compared to gravity enters through an inverse Bond number, which is
defined precisely below. However, when the value of this parameter is close to a particular critical
value the coefficient of the third derivative term in the KdV equation becomes small and wavelength
shortening means that a different scaling between amplitude and wavelength must be considered.
This gives rise to an additional fifth derivative term.3 In each case, the effect of surface tension enters
through a normal stress term at the fluid surface. The application of an electric field modifies these
governing equations by introducing an additional stress at the surface.

Previous investigations into the effect of electric fields, detailed below, have involved solving the
hydrodynamic flow alongside the calculation of the electric field for the specific physical problem.
More recently, an equation for the evolution of surface disturbances was presented for an arbitrary
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surface stress.4 This allows the investigation of the effect of electric field in a unified approach
including perturbation terms omitted from earlier results. This is the motivation for the present
paper.

We consider the case when the electric field is generated by parallel electrodes, so that in the
undisturbed state the electric field is normal to the interface. Two horizontal parallel plates are
separated by distance h + d with a layer of inviscid fluid, of undisturbed depth h, lying on the lower
impermeable plate. Between the fluid layer and the upper plate, lies a second fluid with different
electric properties and this fluid is taken to be hydrodynamically passive. A potential difference V0

is then applied between the two plates. Previous analyses of this problem have focused either on
the case when the lower fluid is a perfect conductor, or on the case when both fluids are perfect
dielectrics. In the first instance, the tangential component of electric field at the interface is zero,
while in the second situation the surface charge density at the interface is zero. In both cases,
the tangential force at the interface due to the electric field is zero, which simplifies the analysis
somewhat since there is no need to consider a hydrodynamic boundary layer at the fluid surface.4

Here, we examine the case when the lower fluid is assumed to be a perfect conductor, though
the analysis can be readily modified to the case of two perfect dielectrics. We demonstrate how the
magnitude of the imposed potential difference and the relative depth of the two layers affects the
evolution of surface disturbances, allowing comparison with previous studies which have largely
focused on the cases when the thickness of the upper medium is either much greater than,5, 6 or much
less than7–10 the disturbance wavelength.

When the separation distance of the electrodes is large compared with the disturbance wave-
length, corresponding to the normal electric field tending to a constant far from the surface, a
Korteweg-de Vries Benjamin-Ono type equation is obtained for an inviscid fluid.5, 6 The case when
the electrode separation distance is comparable to the disturbance wavelength was briefly considered
as part of a larger study on the existence of solitary waves subject to electric fields.11 Then the effect
of electric field enters through a convolution term and it was demonstrated that the results for large
electrode separation distance5, 6 emerge as a natural limit.

More attention has been focused on when the upper medium is of comparable thickness to
the depth of the fluid, and hence much less than the disturbance wavelength.7–10 A KdV equation
is obtained with coefficients involving the electric field parameters. However, the actual value of
these coefficients do not agree in these different treatments, and some inconsistencies in the results
are clear. One by-product of the present paper is the opportunity to revisit some of the results of
these earlier works, and thereby eliminate the inconsistencies in their results. We are then able to
demonstrate how the corrected results are consistent with more general theory.

The structure of the paper is as follows. In Sec. II, the setup of the problem is discussed in more
detail, key scalings are introduced, and the equation for an arbitrary normal stress is discussed. In
Sec. III, the normal stress at the surface due to the imposed electric field is evaluated as a function of
electrode separation, and compared with other work for different scalings of this separation distance.
The novelty of the present treatment lies in the concise derivations based on recent general theory4

which allows additional terms, such as higher order derivatives and viscous effects, to be included in
a rational manner. Numerical results are presented in Sec. IV for travelling waves and waves which
evolve in time. In Sec. V, results are summarised with key scalings of parameters identified, with
comparisons to experimental measurements made in Sec. VI. Finally, some minor corrections to the
results of earlier papers7, 8 are noted in the Appendix.

II. GOVERNING EQUATION

Suppose that an impermeable electrode is located at y∗ = −h with a fluid layer occupying the
region −h < y∗ < η∗(x∗, t∗) above the electrode, where we take x∗, y∗ to be the horizontal and vertical
dimensional coordinates and t∗ the dimensional time. The flow in the perturbed fluid layer is taken
to be irrotational and so the velocity field is given by u∗ = ∇*φ* where φ*(x∗, y∗) is the dimensional
velocity potential and satisfies Laplace’s equation. The electrode is maintained at potential V ∗ = 0
and we consider the case when the fluid is a perfect conductor and hence the electric field in the
fluid layer is zero. Above this layer we have a dielectric medium assumed to be hydrodynamically
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FIG. 1. Fluid layer occupying the region −h < y∗ < η∗(x∗) with upper electrode located at y* = d and maintained at
potential V0.

passive, but which supports an electric field E∗ = ∇V ∗. A second horizontal electrode is located
at y∗ = d and maintained at potential V ∗ = V0. In this case V ∗, the dimensional electric potential,
satisfies Laplace’s equation in the region η∗(x∗) < y∗ < d. The setup is illustrated in Figure 1.

At the interface the fluid velocity satisfies the kinematic condition, and since the lower fluid is
a perfect conductor the tangential component of the electric field is zero. The normal component of
the electric field at the interface gives rise to a normal stress on the surface, which together with the
effect of surface tension lead to additional terms in the Bernoulli condition at the interface.

The set of equations governing the fluid flow, the electric field, and the interface conditions is
non-dimensionalised using the undisturbed depth h, the gravitational acceleration g, and the potential
difference V0. The shallow water linear wave speed is

√
gh and so we change to a frame moving at

speed c
√

gh with c = O(1). Assuming that the amplitude of the perturbation of the surface is O(δh)
and that the wavelength is O(ε−1h), we write

η = 1

δh
η∗, x = ε

h

(
x∗ − c

√
ght∗

)
, y = 1

h
y∗, t = δε

√
g

h
t∗,

and in the small-amplitude long-wavelength limit we have δ, ε � 1. The scaling chosen for the time
is so that time derivative terms enter at the same order as the nonlinear terms. For an arbitrary stress
applied at the surface of the fluid, a governing equation derived in the large Reynolds number limit
is available.4 In the present case, the tangential stress is zero, as discussed earlier, and the governing
equation takes the form

2ηt + 3cηηx = cε2

δ

(
− 1

3ηxxx − 1

45
ε2η(v)

)
− 1 − c2

cδ
ηx + c

1
2 δb

δ
S[ηx ] + 1

cδ2

dTn

dx
. (1)

Previously, it was assumed that the effect of the normal stress is O(1) or smaller,4 in which case
c = 1. Here, we choose to retain greater generality, in order to allow for a greater range of scales for
the electrical forcing.

The first three terms on the right hand side of (1) are hydrodynamic terms and the reason why
the O(ε4) term is retained along with the O(ε2) terms, will become clear later in the exposition. The
fourth term is due to dissipation in the viscous boundary layer on the lower electrode, with

S[ f ] = 1

π

∫ ∞

0

f (x + s, t)√
s

ds, δb =
(

μ

ερh
√

gh

) 1
2

, (2)

where δbh is the thickness of the viscous boundary layer at the base of the fluid and S( f ) can be
considered to be a fractional derivative. In the final term, Tn is the non-dimensional normal stress
which here consists of contributions from the surface tension and the electric field. In dimensional
terms,

T ∗
n = σ∇∗.n + 1

2ε0(E∗
n )2 = ση∗

x∗x∗(
1 + η∗

x∗
2) 3

2

+ ε0(V ∗
y∗ − η∗

x∗ V ∗
x∗ )2

2
(
1 + η∗

x∗
2) ,
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where σ is the surface tension parameter and ε0 is the dielectric constant of the upper medium.
Non-dimensionalising and using the scaling defined above gives

Tn = (
ε2δτηxx + 1

2 We D3 Q2
) (

1 + O(δ2ε2)
)
, Q = Vy − ε2δηx Vx ,

where V is the electric potential, non-dimensionalised by V0, D = d/h and the non-dimensional
parameters characterising the effects of the electric field and the surface tension are

We = ε0V0
2

ρgd3
, τ = σ

ρgh2
, (3)

an electric Weber number and an inverse Bond number, respectively. The governing equation then
takes the form

2ηt + 3cηηx = ε2

cδ

(
(τ − 1

3 c2)ηxxx − 1

45
c2ε2η(v) − 1 − c2

ε2
ηx + E1

)
+ c

1
2 δB

δ
S[ηx ], (4)

where

E1 = We D3

2ε2δ

d(Q2)

dx
. (5)

We now see why the fifth derivative term was retained in the asymptotic series, since if τ is close
to its critical value of 1

3 c2, then the fifth derivative term becomes comparable in magnitude with the
third derivative term. At this stage it is more usual to set c = 1 to eliminate what appears to be the
largest term on the right hand side of (4). However, we choose to retain added generality, which
proves necessary when considering different forms of electric field. The exact form of E1 depends
on the imposed electric field and we now consider how the magnitude of the potential difference and
the relative thickness of the two layers affects the governing equation.

III. ELECTRIC FIELD

In considering the effect of the separation of the two electrodes, we focus on two main cases; first,
when the thickness of the upper (dielectric) medium is comparable to the disturbance wavelength
and, second, when the thickness of the dielectric medium is comparable to the thickness of the lower
layer (and hence much less than the wavelength of the disturbance). In terms of the dimensionless
parameters introduced, the two cases correspond to εD = O(1) and D = O(1), respectively. In each
case, the problem reduces to solving

ε2Vxx + Vyy = 0, V (x, D) = 1, V (x, δη) = 0,

in order to express the electric term E1, defined in Eq. (5), in terms of η.

A. Case εD = O(1)

In this case, we write � = εD, Y = εy, and V (x, Y ) then satisfies Laplace’s equation. The
boundary conditions on V are simplified if we write V = (Y + εδφ)/�. Linearising the boundary
condition at the interface Y = εδη to Y = 0 then gives

φxx + φY Y = 0, φ(x, 0) = −η, φ(x,�) = 0, (6)

with Q and E1 given by

Q = 1

D

(
1 + εδφY + o(ε2δ)

)
, E1 = We D

ε
φxY (x, 0).

The system (6) is readily solved by taking Fourier transforms with respect to x giving φ(x, Y) in the
form of a convolution

φ(x, Y ) = η ∗ f, f (x, Y ) = F−1(F(k, Y )), F(k, Y ) = − sinh (k(� − Y ))

sinh(k�)
,
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and hence

E1 = We�

ε2
G[ηx ], G[η] ≡ η ∗ g, g(x) = F−1 (kcoth(k�)) . (7)

Substituting into (4) we see that the wave speed is given by c = 1 and the governing equation
becomes

2ηt + 3ηηx = ε2

δ

(
(τ − 1

3 )ηxxx − 1

45
ε2η(v) + We�

ε2
G[ηx ]

)
+ δB

δ
S[ηx ], (8)

where η(v) denotes the fifth derivative of η with respect to x. In the inviscid limit, this agrees with
earlier travelling wave analysis.11

If � → ∞, corresponding to separation much greater than the disturbance wavelength, then
since φ satisfies Laplace’s equation with φ → 0 as Y → ∞ it can be readily shown that the first partial
derivatives throughout Y > 0 are related by φY = −H[φx ], and φx = H[φY ], where H denotes the
Hilbert transform with respect to x, defined as the Cauchy principal value of a convolution integral,12

H[ f ] = PV

(
1

π

∫ ∞

−∞

f (s, t)

x − s
ds

)
.

Hence, the electrical forcing term in the governing equation becomes E = ε−1 DWeH[ηxx ]. This can
also be derived by taking the limit of (7) as � → ∞ and noting that F[H( f )] = −i sgn(k)F ( f ), to
give

2ηt + 3ηηx = ε2

δ

(
(τ − 1

3 )ηxxx − 1

45
ε2η(v) + We�

ε2
H[ηxx ]

)
+ δB

δ
S[ηx ]. (9)

Setting δb = 0 this is in agreement with previous results6, 11 (observing that in their notation
Eb = DWe).

Considering instead the case � � 1, then

kcoth(k�) ∼ 1

�

(
1 + 1

3 k2�2 − 1
45 k4�4 + O(�6)

)
and F−1(kcoth(k�)) is written as a sum of generalised functions to give

E1 = We

ε2
ηx − 1

3 D2Weηxxx − 1
45ε2 D4Weη

(v) + O(ε4).

The first term corresponds to a shift in the wavespeed c and the second term modifies the dispersive
term. Substituting into (4) we see that c = (1 − We)

1
2 and

2ηt + 3cηηx = ε2

cδ

[(
τ − 1

3 (c2 + D2We)
)
ηxxx − 1

45
ε2(c2 + D4We)η(v)

]
+ c

1
2 δB

δ
S[ηx ]. (10)

We now compare the limit εD → 0 with the D = O(1) case.

B. Case D = O(1)

We set z = y/D so the interface is located at z = γ η, where γ = δh/d. Writing V = z + γφ

gives

(εD)2φzz + φxx = 0, φ(x, γ η) = −η, φ(x, 1) = 0,

with solution

φ(x, z) = −(1 − z)r + 1

6
(εD)2(1 − z)

(
(1 − z)2 − (1 − γ η)2

)
rxx + (εD)4q(z, η)r (iv) + O(ε6),

where r = η/(1 − γ η) and q(z, η) can be readily calculated, but is not included here in the interests
of conciseness.
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Assuming that the disturbance amplitude is small compared with the depth of the dielectric
medium, γ � 1, and hence

φz(x, γ η) ∼ η + γ η2 − 1

3
ε2 D2ηxx − 1

45
ε4 D4η(iv) + O(γ 2, γ ε2, ε4),

E1 = We

ε2
(ηx + 3γ ηηx ) − We D2

3
ηxxx − Weε

2 D4

45
η(iv).

Finally, substituting into Eq. (4), we see that the wave speed is given by c = (1 − We)
1
2 and

2ηt +3c

(
1 − We

Dc2

)
ηηx = ε2

cδ

[(
τ − 1

3 (c2+D2We)
)
ηxxx − 1

45ε2(c2+D4We)η(v)
]+ c

1
2 δB

δ
S[ηx ].

(11)
This agrees with (10), the small εD limit of (8), in the matching region 1 � D � ε−1. Finally, (11)
can be re-written more compactly as

2ηt + 3Aηηx = Bηxxx + Cη(v) + c
1
2 δB

δ
S[ηx ],

A =
(

1 − We

(1 − We)D

)
c, B = ε2

cδ

(
τ − 1

3 − 1
3 We(D2 − 1)

)
, C = − ε4

cδ

1 + We(D4 − 1)

45
.

(12)
When the distinguished scaling δ = ε2 is taken and the viscous dissipation term is dropped this
agrees with the (corrected) results of Easwaran7 and Gonzalez and Castellanos,8 discussed in the
Appendix.

IV. NUMERICAL SOLUTIONS

Governing equations have been obtained for long-wavelength, small-amplitude disturbances
when the separation of the electrodes is comparable with the wavelength (8) and short compared
with the wavelength (11). In each case, the effect of viscous dissipation in the base boundary layer
was included. The analysis for when the electrode separation is very small was presented largely to
allow comparison with earlier work, and hence in this section we focus on numerical solutions of
(8) which we re-write as

2ηt + 3ηηx = aηxxx − bη(v) + p G[ηx ] + q S[ηx ], (13)

where a = sgn(τ − 1
3 ),

b = ε2

45|τ − 1
3 | , p = We�

ε2|τ − 1
3 | , q = δB

δ
,

and we have set ε2 = |τ − 1
3 |δ so that the third derivative term enters at the same order as the

quadratic nonlinearity. The transform terms G[ηx ] and S[ηx ] are defined in (2) and (7), respectively.
In the absence of viscous dissipation, travelling wave solutions may exist, so the numerical approach
we take is to search for such solutions when q = 0 and then look at how these solutions evolve when
q > 0.

Noting that G[eikx ] = ĝ(k)eikx and S[eikx ] = ŝ(k)eikx , where

ĝ(k) = kcosh(k�), ŝ(k) =

⎧⎪⎨⎪⎩
e

iπ
4√|k| , k > 0,

e− iπ
4√|k| , k < 0,

this suggests that for both travelling and evolving solutions, a numerical scheme should be used in
which spatial derivatives and transform terms are evaluated in spectral space.
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A. Travelling wave solutions

We consider solutions of (13) travelling at speed C in the form η = 2CN(Z), with Z = √
2|C |

(x − Ct), choosing the new variables so that in the case b = p = q = 0, the travelling wave solution
is given by N(Z) = sech2Z. Recalling that (13) is in a frame moving with non-dimensional velocity
c = 1, the non-dimensional speed of the travelling wave is 1 + Cδ, so the Froude number F is given
by F = 1 + Cδ, and the disturbance amplitude characterised by δ|C| = |F − 1|. We then write N(Z)
as a Fourier series on [−Mπ , Mπ ],

N (Z ) =
n∑

r=−n

cr ei RZ , R = r

M
,

to give the set of nonlinear equations

cr − 3

2

∑
s

cr−scs = γ
(
a R2 − B R4 + P Rcosh(β R)

)
cr , r = −n . . . n, (14)

with unknowns cr. Here, the parameters a, B, P, β are given in terms of the Froude number F, the
inverse Bond number τ , the electric Weber number We, and the relative separation of the electrodes
D = d/h by, a = sgn(τ − 1

3 ), γ = sgn(F − 1) and

B = 2|F − 1|
45|τ − 1

3 |2 , P = We D

|2(F − 1)(τ − 1
3 )|1/2

, β =
∣∣∣∣∣2(F − 1)

τ − 1
3

∣∣∣∣∣
1
2

D. (15)

Note that from the definition of the electric Weber number (3), keeping P constant and varying D
corresponds to varying the depth, d, of the upper dielectric medium while keeping the average electric
field in this region V0/d constant. The set of equations (14) is then solved using Newton’s method.
In the large-β limit, this formulation agrees with earlier analysis11 where the (B, P) parameter space
was investigated and conditions for the existence of travelling waves determined.

We now illustrate the travelling wave solutions for a range of parameter values. We stress that
at this stage the parameters are chosen to illustrate the changes in behaviour as parameters vary,
rather than modelling a specific physical situation. Physical values of the parameters are discussed
in Sec. VI.

In the large-D limit, the case τ > 1
3 has the richest mathematical behaviour with the existence

of travelling waves depending on the set of parameters F, τ , and We and for this reason we present
results for the case when F < 1 and τ > 1

3 , so γ = −1 and a = 1, and then set B = 0.5 to allow
comparison with earlier results11 valid when β 
 1. Choosing β = 5.0 gives results very similar
to those of the β → ∞ limit. In Figure 2(a), it is seen that as the magnitude of the electric field
increases (i.e., P increases), the maximum disturbance amplitude decreases, but oscillations in the
decaying tail appear and grow in amplitude. For P above a critical value Pc ≈ 2.29, the numerical
method does not converge to a solution, and it is reasonable to conclude that travelling wave solutions
do not exist for P > Pc. Choosing a smaller separation distance, so β = 2.5, similar behaviour is
seen with no solutions for P > Pc ≈ 2.1. Decreasing β to 2.0, quite different behaviour occurs. In
Figure 2(b), it is seen that the maximum disturbance amplitude decreases as P increases, but in this
case no oscillations appear in the decaying tail. Numerically, no solutions are found for P > Pc

≈ 1.8 which coincides with the maximum amplitude going to zero.

B. Effect of viscosity on evolving wave

Pseudospectral schemes are well established for solving Burgers equation and the KdV equation
(see, for example, Fornberg13). In a pseudospectral formulation, all derivatives and spatial transforms
linear in the dependent variable are evaluated in spectral space, as described above, but due to the
presence of nonlinear terms the solution is most easily advanced forward in time in physical space.
We take this approach to investigate the effect of viscous dissipation due to the lower boundary
and also to validate the travelling wave solutions obtained above. Writing η = 2CN(X, T) with
X = √

2|C |x and T = √
2|C |t , we take as a sample case, a = 1, γ = −1, B = 0.5, β = 2.5,
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FIG. 2. Travelling wave form when a = 1, γ = −1, B = 0.5, with (a) β = 5.0 and P = 1.0, 2.0, 2.25; and (b) β = 2.0 and
P = 0.5, 1.0, 1.5, 1.75.

P = 1.0. Since γ = −1, the Froude number is less than one and so the perturbation wave propagation
speed is negative. For the numerical solutions, we choose C = − 1

2 . As the initial condition, we take
the travelling wave solution illustrated in Figure 2(b) and then solve

2NT + 3N NX = R[N ],

where R[N ], written in terms of Fourier components, is given by

R[N ] = −γ (i R)
(

a R2 − B R4 + Pcosh(β R)R + Qie± iπ
4

√
|R|

)
cr , r = −n . . . n.

Setting Q = 0, the numerical solution propagates to the left at speed 1
2 , unchanged in form, which

demonstrates the validity of the travelling wave form obtained earlier. Results are not illustrated
for this case. Setting Q = 0.05 it is seen in Figure 3 that the solution propagates to the left, with
speed close to 1

2 , but decays in amplitude, as is to be expected since wave energy is dissipated by
the viscous boundary layer. For these parameter values, the disturbance is a depression wave which
follows from the fact that the inverse Bond number exceeds 1

3 . We return to discuss the physical
relevance of this case and in particular the effect of viscosity at the end of this paper.
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FIG. 3. Effect of viscous dissipation on the wave form η = −N(X, T) when a = 1, γ = −1, B = 0.5, β = 2.0, P = 1.0,
C = −0.5, with Q = 0.05 for times T = 0, 10, 20.

V. OVERVIEW OF GOVERNING EQUATIONS AND KEY SCALINGS

In Sec. III, governing equations have been obtained for the propagation of disturbances on the
surface of a fluid layer subject to surface tension and a normal electric field due to parallel plate
electrodes. When the thickness of the upper dielectric medium is comparable to the disturbance
wavelength, (� = εD = O(1)), the disturbances are governed by (8). Unless the inverse Bond
number τ is close to the critical value of 1

3 , the effect of the electric field is comparable to that of
surface tension when the disturbance wavelength is such that δ = ε2 and the Weber number is O(ε2).
Writing We = ε2Ŵe gives

2ηt + 3ηηx = (τ − 1
3 )ηxxx + �Ŵe G[ηx ] + δB

δ
S[ηx ], (16)

with wave speed c = 1. However, if τ is close to 1
3 , such that τ = 1

3 + ε2τ1, then the wavelength
adjusts such that δ = ε4 and electric effects are comparable to the diffusive terms when We = ε4W̃e,
in which case

2ηt + 3ηηx = τ1ηxxx − 1
45η(v) + �W̃e G[ηx ] + δB

δ
S[ηx ], (17)

again with c = 1. In the inviscid case and taking the limit � 
 1, all these conclusions agree with
earlier results.6, 11

When D = O(1), we have wave speed c = (1 − We)
1
2 and hence the analysis is only valid

when We < 1. When We is close to one, the wave speed approaches zero and a new set of scalings is
required. Other special cases arise when τ and We are close to critical values, making the coefficients
of the nonlinear term or the third derivative term close to zero. These critical values are given by

Wec = D

D + 1
, τc = 1

3 (1 + We(D2 − 1)),

and it is seen that the effect of the electric field can either increase or decrease the critical value of
τ from 1

3 . All of these particular special cases can be considered in a unified way by defining a new
timescale, T = |A|t, where A is defined in (12). The governing equation then becomes

2ηT + 3ηηx = B̂ηxxx + Ĉη(v) + P̂ S[ηx ],
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where

B̂ =
(

ε2(τ − τc)

δ|We − Wec|
)

D

D + 1
, Ĉ = −

(
ε4

δ|We − Wec|
)

D
(
1 + We(D4 − 1)

)
45(D + 1)

,

and the coefficient of the viscous damping term is

P̂ = (1 − We)
3
4 δb

|We − Wec|δ
D

D + 1
.

Unless τ is close to τ c, we have the distinguished scaling ε2 = δ|We − Wec| and hence

2ηT + 3ηηx = D(τ − τc)

D + 1
ηxxx + P̂ S[ηx ], (18)

whereas if τ = τ c + ε2τ 2 then the amplitude and wavelength are related by ε4 = δ|We − Wec| and
the governing equation becomes

2ηT + 3ηηx =
(

Dτ2

D + 1

)
ηxxx −

(
D

(
1 + We(D4 − 1)

)
45(D + 1)

)
η(v) + P̂ S[ηx ]. (19)

Taken together, Eqs. (16)–(19), together with the scalings defined, provide a set of model equations
for the weakly nonlinear evolution of small-amplitude, long-wavelength disturbances influenced by
an electric field produced by a pair of parallel electrodes.

VI. SUMMARY

Governing equations have been obtained for the propagation of disturbances on the surface of a
fluid layer subject to surface tension and a normal electric field due to parallel plate electrodes. Three
non-dimensional parameters, τ, We, D enter the analysis, together with a parameter characterising
viscous dissipation due to the thin boundary layer at the base of the fluid layer. The key parameter
ranges have been identified and the corresponding equations (16)–(19) summarised in Sec. V.

In Sec. IV, numerical solutions were presented illustrating the forms of travelling waves possible
in the regime where the disturbance length scale is comparable to the thickness of the dielectric
layer. Those results illustrate the modification of the waveform due to the higher derivative term and
the electric field via the hyperbolic cotangent transform term. The key qualitative observation is that
as the electrodes are moved closer, oscillations in the tail of the soliton appear to be suppressed. In
addition, the parameter ranges over which travelling wave solutions exist in the inviscid limit are
modified by the exact form of the electric field imposed.

Finally, we consider how relevant these model equations are to physical situations of interest.
We consider the case of a horizontal layer of either mercury or water with air of dielectric constant

εA = 8.8 × 10−12 F m−1,

above this layer and below the upper electrode. Mercury and water are considered as they have been
the subject of experimental investigation of solitary wave propagation,14, 15 though in the absence
of any electric field. It is reasonable to approximate both impure water and mercury as perfect
conductors and the relevant material parameters are then

ρW = 1 × 103 kg m−3, μW = 1 × 10−3 N s m−2, σW = 72 × 10−3 N m−1

ρM = 13.5 × 103 kg m−3, μM = 1.5 × 10−3 N s m−2, σM = 484 × 10−3 N m−1,

where the subscripts W and M refer to water and mercury, respectively. For these material parameters,
the critical value of the inverse Bond number, τ = 1

3 , corresponds to fluid depths hW ≈ 4.7 mm and
hM ≈ 3.3 mm for water and mercury, respectively. Experiments on water14 focused on layer depths
of 5 cm, appreciably larger than hW in which case τ < 1

3 and elevation waves exist. For mercury,
experiments were conducted15 on layers of depth ranging from 2.12 mm to 8.5 mm and so covering
the cases τ < 1

3 (when elevation solitary waves were measured) and τ > 1
3 (when depression waves

were observed). The experiments on both water and mercury were conducted in the absence of
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TABLE I. Key parameter values for water with air above.

h Ec λ*
(m) δ ε τ b q (V m−1) (m)

0.5 0.1 0.55 2.9 × 10−5 0.020 0.013 1.0 × 107 0.91
0.2 0.1 0.55 1.8 × 10−4 0.020 0.025 6.4 × 106 0.36
0.05 0.1 0.55 0.0029 0.020 0.071 3.2 × 106 0.091
0.01 0.1 0.62 0.073 0.033 0.23 1.3 × 106 0.016
0.01 0.01 0.19 0.073 0.0031 4.1 7.5 × 105 0.053
0.005 0.1 1.6 0.29 1.4 0.23 5.9 × 105 0.0031
0.002 0.1 0.26 1.8 0.0010 1.2 9.4 × 105 0.0077

electric fields and the wave amplitude was approximately 10% of the fluid depth (corresponding to
δ = 0.1 in the notation of the present paper). We now consider how the effect of electric field is
relevant to these parameter ranges.

When the depth of the air layer is comparable to the disturbance wavelength, the evolution of the
wave is given by (13). Once the material parameters are fixed, the non-dimensional coefficients a,
b, q are functions of h, the depth of the lower layer, and δ the relative amplitude of the disturbances.
The parameter characterising effect of the electric field can be re-written as

p = εA

ρgh

√
1

δ|τ − 1
3 | E2,

where E = V0/d, the average electric field across the air layer. In order to assess the importance
of the electric field to the evolution of the solitary wave, we define Ec to be the value of E such
that p = 1 and the effect of the electric field is comparable to the hydrodynamic dispersion term. In
Tables I and II, we illustrate the values of ε, τ , b, q, Ec and the dimensional wavelength λ* = h/ε,
as a function of h and δ for water and mercury, respectively.

From these tables a number of conclusions can be drawn. First, the viscous dissipation is
smaller in the case of mercury due to the smaller kinematic viscosity. For water the viscous terms are
significant for water depths close to the critical depth of 4.5 mm and hence depression solitary waves
are unlikely to be observable on water due to rapid damping, whereas for mercury the amplitude
decay rate is much lower, allowing depression waves to be observed. Indeed, this was the primary
reason for experimentalists using mercury when seeking depression solitary waves. Looking now at
the magnitude of electric fields at which electric effects significantly modify the form of the solitary
wave, we see that strong fields are required in both cases, though slightly lower for the case of
air above water rather than mercury. For air, electric breakdown occurs when the field strength is
approximately 3 × 106 V/m, while the breakdown for water is approximately 70 × 106 V/m. Thus,
we see that when the thickness of the air layer is comparable with the disturbance wavelength, the

TABLE II. Key parameter values for mercury with air above.

h Ec λ*
(m) δ ε τ b q (V m−1) (m)

0.5 0.1 0.55 1.4 × 10−5 0.020 0.0041 3.9 × 107 0.91
0.2 0.1 0.55 8.8 × 10−5 0.020 0.0082 2.4 × 107 0.36
0.05 0.1 0.55 0.0014 0.020 0.023 1.2 × 107 0.091
0.01 0.1 0.57 0.035 0.024 0.078 5.2 × 106 0.018
0.01 0.01 0.18 0.035 0.0024 1.4 2.9 × 106 0.056
0.005 0.1 0.73 0.14 0.062 0.12 3.3 × 106 0.0068
0.002 0.1 0.42 0.88 0.0073 0.30 2.7 × 106 0.0048
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electric fields of strength less than the air breakdown threshold do have a significant effect on the
form of solitary waves for thinner layers.

Turning now to the case when the thickness of the air layer is comparable to the thickness of
the lower fluid layer, we see that when D = 1, the critical electrical Weber number is 1

2 . For a 1 cm
layer of water, this requires an electric field of 2.4 × 106 V/m, while a layer of mercury of equal
thickness requires a slightly higher field strength due to the higher density.

In conclusion, it has been demonstrated that the model governing equations summarised in
Sec. V are relevant to physical problems involving thin fluid layers. It should be noted at this point
that the derivation of the model equations is rigorous, but based on assumptions of the length scales
present in the problem. However, this is not to say that these equations are uniformly valid as leading
order approximations of the full nonlinear equations. For the simpler case when no electric field is
present and the fluid layer is taken to be inviscid, analysis of the fully nonlinear case was undertaken
using a numerical scheme based on an integrodifferential-equation formulation.3 The numerical
results show that in this case the Korteweg-de Vries equation does not provide a wholly accurate
description of periodic gravity-capillary waves for τ < 1

3 due to the presence of short wavelength
ripples in the tail of solitary-type waves, which invalidates the scaling argument used in the derivation
of the KdV equation. The present treatment suggests an alternative critical value for the inverse Bond
number, which may be less, or greater, than 1

3 and a fully nonlinear numerical study is necessary in
order to determine when Eqs. (16)–(19) are valid approximations of the full system. However, such
an investigation using boundary integral methods is beyond the scope of the current paper. Despite
this proviso, a significant result of the present work is that the key scalings of the full problem have
been identified for further study.

APPENDIX: COMPARISON WITH EARLIER RESULTS

Here, we focus on the results of Easwaran7 and Gonzalez and Castellanos.8 Written in our
notation, Easwaran7 considered the inviscid case with δ = ε2 and electric Weber number We = O(1),
to obtain

2ηt + 3AηηX = BηX X X ,

where X is the coordinate in the frame moving at speed c
√

gh, c = √
1 − We and A, B are coefficients

involving We and the relative depth of the two layers, D = d/h. Gonzalez and Castellanos8 obtained
a similar equation but with different expressions for the coefficients A and B.

In Easwaran,7 calculations are carried out in dimensional form, but non-dimensionalising and
using the scalings described in Sec. II, gives

A =
(

1 − We

3(1 − We)D

(
3 + 2d + d2

))
c, B = 1

c

(
τ − 1 − 1

2 We(3D2 − 2)
)
.

Two inconsistencies are immediately apparent. First, the coefficient A is not dimensionless due to
the 3 + 2d + d2 multiplier. Second, in the absence of an electric field (i.e., We = 0), the equation
becomes

2ηt + 3ηηX = (τ − 1)ηX X X

and the coefficient of the third spatial derivative term does not agree with the well established result
for disturbances on a thin fluid layer3 which has (τ − 1

3 ) as the coefficient of the diffusive term.
In Gonzalez and Castellanos,8 the effects of viscosity are also included and the governing

equation for the surface elevation obtained using the Fredholm alternative. However, taking the
inviscid limit gives (in the notation of Sec. II),

A =
(

1 − We

(1 − We)D

)
c, B = −1

c

(
2τ + 1

3 + 1
3 We(D2 − 1)

)
.

While this is dimensionally correct, it suffers the same problem as the Easwaran7 result in that setting
We = 0 the standard (τ − 1

3 ) multiplier of the third derivative is not recovered.
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Attempting to identify the source of the inconsistency using the Fredholm alternative8 is con-
siderably more involved than reworking the perturbation analysis of Easwaran.7 It should be noted
that the latter approach is subtly different from that taken in Sec. II of the present paper, in that
all quantities are written as perturbation series, including the position of the interface. While this
method7 is equally valid, errors appear in the solution of the electric potential. Solving the system

ε�μμ + �yy = 0, �(μ, η) = 0, �(μ, H ) = φ0,

where H = h + b and η = h + εη1 + ε2η2, as a perturbation series gives

� = φ0(y − h)

b
+ ε�1 + ε2�2 + O(ε3),

where

�1 = φ0η1(y − H )

b2
, �2 = −φ0η

′′
1(y − H )3

6b2
+ φ0

b

(
η′′

1b

6
+ η2

1

b2
+ η2

b

)
(y − H ),

rather than the results given as Eqs. (10)–(12) in Easwaran.7 Using these results for the electric
potential, and correcting a minor error in the solution in the fluid layer, eventually yields

2ηt + 3AηηX = BηX X X , c =
√

1 − We,

with

A =
(

1 − We

(1 − We)D

)
c, B = 1

c

(
τ − 1

3 − 1
3 We(D2 − 1)

)
.

This is clearly dimensionally correct and gives the expected result in the limit as We → 0. Moreover,
we see that the error in the results of Gonzalez and Castellanos8 is solely in the coefficient of the
inverse Bond number τ .
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