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An investigation is made of the three-dimensional linear stability of the Stokes

layer generated within a fluid contained inside a long oscillating cylinder. Both

longitudinal and torsional vibrations are examined and the system of disturbance

equations derived using Floquet theory are solved using pseudospectral methods.

Critical parameters for instability are obtained for an extensive range of pipe radii

and longitudinal and azimuthal wavenumbers. For sufficiently small pipe

diameters, three-dimensional perturbations are sometimes found to be more

unstable than their two-dimensional counterparts. In contrast, at larger radii, the

three-dimensional disturbance modes are less important and the two-dimensional

versions are expected to be observed in practice. These results imply constraints on

experiments that are designed to exhibit shear modes in oscillatory flow. VC 2012
American Institute of Physics. [doi:10.1063/1.3675899]

I. INTRODUCTION

The archetype for many oscillatory flows is the planar Stokes layer, which develops in a

semi-infinite layer of incompressible fluid when the bounding flat surface is driven back and forth

in a sinusoidal manner. This time-periodic flow is one of the few exact solutions to the Navier-

Stokes equations, making it an ideal choice for studying the disturbance characteristics of many

unsteady flows.1 Determining the stability of Stokes layers is not just a purely theoretical exercise

for such motions can appear along the bounding surfaces of many high-frequency oscillating

flows. As a simple example, at sufficiently large frequencies the oscillatory motion in channel and

circular pipe flows may be divided into a uniform inner inviscid core plus Stokes layers at the

wall(s).

Early theoretical investigators into the linear stability of the Stokes layer were based on

Floquet theory analysis. Unfortunately these studies failed to locate any linearly unstable modes

due to limitations imposed by the computational resources available. The investigation of Hall2

revealed no evidence of instability for Reynolds numbers R (defined in Eq. (4) below) up to 160

and similarly, the results of von Kerczek and Davis3 did not indicate the presence of growing dis-

turbances for R � 400 in their study of the flow contained between an oscillating plate and a sta-

tionary wall. Only much later did Blennerhassett and Bassom4 map out a portion of the linear

stability neutral curve and predict a critical R of approximately 708 for the semi-infinite Stokes

layer. Although this calculation of a neutral curve provided definitive evidence of a linear instabil-

ity mode in Stokes layers, the associated critical conditions did not align with a large number of

experimental studies.

There are various ways of setting up oscillatory layers in the laboratory. Depending on the

precise configuration used, values of R between 140 and 270 have been suggested as the critical

point when the laminar oscillatory flow becomes unstable.5 It is noted these predictions are less

than half of those calculated by Blennerhassett and Bassom4 and various reasons for this discrep-

ancy have been proposed. First, while the theoretical studies were conducted for a semi-infinite

fluid, experimental investigations necessarily concern bounded flows and these are normally
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contained within circular pipes. Clamen and Minton6 generated Stokes layers by longitudinally

oscillating a tube at a high frequency; other workers have used a stationary pipe with a piston that

drives oscillatory motion in the fluid.5,7–10 In order to account for these confined geometries Blen-

nerhassett and Bassom11 extended their investigation of oscillatory flow in a semi-infinite layer to

the stability of shear modes within channels and axisymmetric shear modes in circular pipes. The

critical value of R was lowered to about 570 for a pipe of radius roughly 10 Stokes layer thick-

nesses and so, although the introduction of curvature brings the theoretical work nearer the practi-

cal findings, a rather large discrepancy remains.

Wall imperfections or other external forces have also been proposed as explanations for the

disagreements between theory and experiment,12–16 as external noise may trigger premature insta-

bility and turbulence in oscillatory flow experiments. Alternatively, it has been suggested that in

the presence of moderate to relatively high level disturbances transition may not be associated

with linear Floquet instability at all but is either a strictly nonlinear phenomenon or arises after a

linear instantaneous growth followed by nonlinear development.16,17 While not the focus of the

present work, there has also been extensive investigation into the relevance of Floquet instability

modes in time periodic flows in those cases where there is an underlying non-zero mean

forcing.18–20 For slowly varying forcing it was shown that external noise coupled with weakly

nonlinear effects could lead to a flow which was not periodic in time.19,20

Blennerhassett and Bassom21 suggested that the external noise due to an oscillating piston

within a long pipe may be reduced, or even completely eliminated, by instead considering the

flow contained within a cylinder oscillating about its longitudinal axis. It would be expected that

as the radius of the cylinder grows so the basic flow asymptotes towards the flat Stokes layer as

curvature effects become negligible. However, this curvature now makes the flow prone to axially

periodic vortices, generated by centripetal effects.22 Thus the suggested basic flow now admits

two distinct modes of instability: shear modes associated with the planar Stokes layer and vortex

modes associated with the curved geometry. Further, both of these disturbance modes could be

fully three-dimensional, making it potentially difficult to design experimental apparatus to detect

the planar Stokes shear mode. Initially, both axisymmetric vortices and two-dimensional shear

modes were considered21 in an attempt to predict the range of cylinder radii for which the domi-

nant type of instability is the Stokes layer shear mode. This calculation was motivated by the

desire to know whether the observation of shear modes in a fluid within a torsionally oscillating

cylinder would require apparatus of an impractical size. Based on some arbitrary assumptions for

experimental conditions the results suggested that a cylinder of radius in the order of 40 cm could

be used.21 However, it should be noted that it was not the cross-over from centripetal to shear

mode instabilities that determined the size of the needed apparatus, but rather the requirement to

attain Reynolds numbers around the critical value of approximately 708.

As yet a laboratory experiment of the type envisaged in Ref. 21 has not been performed, and

before such a task is contemplated the possible role of three-dimensional disturbances needs to be

determined. The computational methods employed for the longitudinally vibrating cylinder11 and

for the torsional problem21 meant that only two-dimensional perturbations were investigated in these

papers. Such a simplification can be justified rigorously for the linear stability of the flat Stokes layer

or of the oscillatory flow in a channel because in these geometries Squire’s theorem can be shown to

hold.3,23 However, an equivalent result can not be deduced for the case of a cylindrical pipe. A com-

plete investigation of the linear stability of this problem must therefore allow for a fully three-

dimensional disturbance and this is the objective of the remainder of this paper. There is the real

possibility that three-dimensionality may significantly modify the conclusions of Refs. 11 and 21.

Our study is organised as follows. In Sec. II, we develop in parallel the governing equations

for both basic flows and describe the pseudospectral methods implemented for the computations.

Critical parameters for instability are presented in Sec. III for both longitudinal and torsional flows

and some discussion is given in Sec. IV.

II. FORMULATION

Our concern is with an incompressible viscous fluid contained within a long circular pipe which

oscillates with angular frequency x. In due course we shall be interested in the two separate
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problems of longitudinal oscillations, when the vibration is parallel to the axis of the cylinder, and

with torsional oscillations, when the motion is about the axis. Rather than develop these two cases

separately it is convenient to consider a composite in which the cylinder is permitted to move both

parallel to its axis with velocity U0 cos xt and about it with velocity W0 cos xt; it is obvious that

purely longitudinal or torsional oscillations are obtained by setting W0 ¼ 0 or U0 ¼ 0, respectively.

The motion then induced in the fluid is best described relative to standard cylindrical co-

ordinates ðx; r; hÞ in which all lengths have been made dimensionless by scaling on the Stokes

layer thickness
ffiffiffiffiffiffiffiffiffiffiffi
2�=x

p
where � denotes the kinematic viscosity of the fluid. It is supposed that in

these units the cylinder is of radius r ¼ H and if the velocities are scaled on either U0 or W0 as

appropriate and time is scaled according to s ¼ xt, then the undisturbed basic flow is given by

UBðr; sÞ ¼ fU; 0;Wg; (1a)

where

U ¼ < J0ðð1� iÞrÞ
J0ðð1� iÞHÞ expfisg
� �

¼ u1eis þ u�1e�is; W ¼ 0; (1b)

for longitudinal flow, while

U ¼ 0; W ¼ < J1ðð1� iÞrÞ
J1ðð1� iÞHÞ expfisg
� �

¼ w1eis þ w�1e�is; (1c)

for torsional flow. In these expressions J0 and J1 denote the usual zeroth and first order Bessel

functions, and < denotes the real part.

The basic flow is disturbed so that the velocity components are UB þ eff ; g; hg and the

corresponding pressure field is perturbed by ep. If these expressions are substituted into the three-

dimensional Navier-Stokes and continuity equations and linearised in e then the resulting govern-

ing equations are
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@h2
: (3)

In these equations the Reynolds numbers for the respective longitudinal and torsional motions are

given by

RL ¼
U0ffiffiffiffiffiffiffiffiffi
2�x
p and RT ¼

W0ffiffiffiffiffiffiffiffiffi
2�x
p : (4)

In order to investigate the stability of the flow to three-dimensional perturbations, the velocity

components f, g, and h and the pressure p were expressed in the forms,

ff ; g; h; pgðx; r; h; sÞ ¼ f~f ; ~g; ~h; ~pgðr; sÞexpflsþ iaxþ iqhg þ complex conjugate; (5)

where a is the real wavenumber in the x-direction, q is the integer-valued azimuthal wavenumber

and functions designated � are all 2p-periodic in s. Here any temporal growth or decay in the dis-

turbance is contained within the complex Floquet exponent l. This decomposition does not define
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l uniquely but symmetry arguments show that its imaginary part li can be taken to lie within the

range ½0; 0:5� without loss of generality.

These expressions now yield an eigenvalue computational problem for l given specified val-

ues of a, q, and the Reynolds number. Rather than tackling the system written in terms of primitive

variables, we take advantage of the observation of Burridge and Drazin24 that it is convenient to

define the new quantities,

/ ¼ �ir~g and X ¼ ar ~h� q~f

l2
where l2 ¼ a2r2 þ q2: (6)

If differential operators S and T are given by

S ¼ @2

@r2
þ ð3a2r2 þ q2Þ

rl2

@

@r
� l2

r2
and T ¼ @2

@r2
þ ðq

2 � a2r2Þ
rl2

@

@r
� l2

r2
; (7)

then the governing system (2) may be cast as

T lþ @sð Þ 0

0 lþ @s

� �
/

X

� �
þ iaRL

UT � l2=rð Þ rU0=l2ð Þ0 0

�qU0=ðal2rÞ U

" #
/

X

� �

þ iqRT

r

WT � l2=rð Þ rW0=l2ð Þ0�W 1=rl2ð Þ � 1=l2ð Þ0
	 
n o

�2aWl2=q

aðrWÞ0=ql2 W

24 35 /

X

� �

¼ 1

2

T2 �2aqT

ð2aq=l4ÞT S

� �
/

X

� �
;

(8)

where a prime denotes differentiation with respect to r. This system needs to be solved subject to

suitable regularity conditions on the axis of the pipe r ¼ 0 together with the requirement that the

three perturbation quantities f, g, and h all vanish on the pipe wall r ¼ H. Expressed in terms of

the computational variables this necessitates that

/ ¼ /0 ¼ X ¼ 0 on r ¼ H: (9)

In view of the decomposition (Eq. (5)) the unknowns / and X are 2p-periodic in time s and so

have the Fourier decompositions,

f/;Xg ¼
Xn¼1

n¼�1
f/nðrÞ;XnðrÞgexpðinsÞ: (10)

The comparison of harmonics in Eq. (8) then leads to the infinite system of coupled ordinary dif-

ferential equations,

ðT=2� l� inÞT/n � aqTXn ¼ iaRL½ðu1T � u1;LÞ/n�1 þ ðu�1T � u�1;LÞ/nþ1�

þ iqRT

r
½ðw1T � w1;LÞ/n�1 þ ðw�1T � w�1;LÞ/nþ1�

� 2ial2RT

r
½w1Xn�1 þ w�1Xnþ1�; (11a)

aq

l4
T/n þ ðS=2� l� inÞXn ¼ �

iqRL

rl2
½u01/n�1 þ u0�1/nþ1�

þ iaRT

rl2
½ðrw1Þ0/n�1 þ ðrw�1Þ0/nþ1�

þ iaRL½u1Xn�1 þ u�1Xnþ1�

þ iqRT

r
½w1Xn�1 þ w�1Xnþ1�; (11b)

014106-4 Thomas, Bassom, and Blennerhassett Phys. Fluids 24, 014106 (2012)

jhofman
Sticky Note
None set by jhofman

jhofman
Sticky Note
MigrationNone set by jhofman

jhofman
Sticky Note
Unmarked set by jhofman



in which the quantities,

u1;L ¼ i
J0ðð1� iÞrÞ
J0ðð1� iÞHÞ þ

ð1� iÞa2r

l2
J1ðð1� iÞrÞ
J0ðð1� iÞHÞ (12a)

and w1;L ¼ i
J1ðð1� iÞrÞ
J1ðð1� iÞHÞ �

ð1� iÞa2r

l2

J0ðð1� iÞrÞ
J1ðð1� iÞHÞ : (12b)

Note that u1;L in Eq. (12a) can be reformulated, using the properties of Bessel functions, to bring it

to a form analogous to that given in Ref. 11.

A. Numerical methods

The system (11) was solved numerically using the pseudospectral techniques described by

Fornberg25 and Trefethen.26 The differential operators appearing in Eq. (11) were replaced by

appropriate pseudospectral matrix approximations and each f/nðrÞ;XnðrÞg represented as a vector

f/n;Xng of function values on a Chebyshev mesh over the interval 0 � r � H. If the matrix

operators

ML ¼ T�1ðu1T� u1;LIÞ; MT ¼ T�1r�1ðw1T� w1;LIÞ; KT ¼ T�1r�1l2w1I;

PL ¼ ðrl2Þ�1u01I; PT ¼ ðrl2Þ�1ðrw1Þ0I; QL ¼ u1I; QT ¼ r�1w1I; (13)

are introduced, where I is the identity matrix, and if the differential operators S and T are replaced

by the matrices S and T, respectively, then Eq. (11) becomes

� iðaRL
eML þ qRT

eMTÞ/nþ1 þ ðT�1T2=2� inIÞ/n � iðaRLML þ qRTMTÞ/n�1

þ 2iaRT
eKTXnþ1 � aqIXn þ 2iaRTKTXn�1 ¼ l/n;

(14a)

� iðaRL
eQL þ qRT

eQTÞXnþ1 þ ðS=2� inIÞXn � iðaRLQL þ qRTQTÞXn�1

iðqRL
ePL � aRT

ePTÞ/nþ1 þ
aq

l4
T/n þ iðqRLPL � aRTPTÞ/n�1 ¼ lXn:

(14b)

In this definition a � represents the complex conjugate of the corresponding matrix.

A finite system of equations was obtained by truncating the Fourier series Eq. (10) for f/;Xg
and then setting /n ¼ Xn ¼ 0 for all jnj > N. The system of equations (14) could then be cast as

the algebraic eigenvalue problem,

AU ¼ lU; (15)

in which A is a sparse matrix and the vector U is given by

UT ¼ ð/T
N/T

N�1…/T
0 … /T

�N XT
NXT

N�1 … XT
0 … XT

�NÞ: (16)

The eigenvalues l and eigenvectors U were obtained using the sparse matrix eigenvalue routines

available in MATLAB. Checks on the consistency and accuracy of l and U were conducted, similar

to those outlined in the studies of Refs. 11 and 21. Empirically it was found that eigenvalues were

accurately determined provided that the Chebyshev domain 0 � r � H was divided into at least

100 intervals and the number of harmonics N was at least 0:8aRL or 0:8qRT=H for the longitudinal

and torsional flow problems, respectively.

III. RESULTS

A. Longitudinal flow

The first set of calculations relate to the case when the pipe oscillates longitudinally with the

basic velocity profile given by Eq. (1b). For a prescribed pipe radius H and azimuthal disturbance

wavenumber q, the Reynolds number RL for instability was found as a function of the streamwise

wavenumber a; its critical value RL;c could then be estimated. One view of the results appears in

Fig. 1(a) which shows how RL;c varies as a function of H for various fixed q. It is noted that as H
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increases all the modes approach the common limiting value of approximately 708, the critical

Reynolds number for instability of a planar Stokes layer. In passing we note that the numerical

results suggest that RL;c � 708 � OðH�1Þ, in keeping with expectations for the transition from a

cylindrical geometry to a planar one as H !1. A more complicated version of this OðH�1Þ
decay to planar results is seen in the results for shear instability modes in a torsionally oscillating

cylinder, described in Sec. III B. The figure also demonstrates that RL;c for axisymmetric (q¼ 0)

disturbances is smallest (approximately 564) when the pipe radius H � 11, in agreement with pre-

vious conclusions.11 Apart from quite small H it appears that RL;c increases monotonically with q
and it is only when H � 8:5 that a more complicated behaviour occurs. Then, for these smaller

values of H and the range of RL considered here, the most dangerous mode is that with q ¼ 1. It

can be concluded that in a longitudinally oscillating pipe of sufficiently large radius it is the two-

dimensional disturbance modes of Ref. 11 that are likely to be the most prominent. Fig. 1(b) con-

firms this supposition; here the critical RL;c is shown as a function of the azimuthal wave number

for several pipe radii in the range 20 � H � 50. (We remark that the necessarily discrete data

points in this graph have been joined by straight lines to aid the identification of results at fixed

values of H.) We see that the points ðq;RL;cÞ, for a given H, appear to lie on a roughly parabolic

concave-up shaped curve, and for this range of H, the curve containing the smallest value of RL;c

corresponds to the two-dimensional disturbances with q ¼ 0.

B. Torsional flow

The results obtained here for the linear stability of the torsional base flow given by Eq. (1c)

are an extension of those presented in Ref. 21. Of interest is the value of RT for neutrally stable

disturbances as a function of the parameters q, a, and H, which is here denoted RT;Nðq; a;HÞ. The

results of Ref. 21 thus correspond to our results for RT;Nðq; 0;HÞ, and these are represented by the

solid lines in Fig. 2. The agreement between the current results with a ¼ 0 and previous results21

is extremely good, with neutral conditions consistent to five or more significant figures. More

precisely, what is plotted in Fig. 2 are the critical Reynolds numbers for instability for even integer

(labelled by �) and odd integer (labelled by *) wavenumbers q, defined as

RT;c ¼ min
k2Z

RT;Nð2k; a;HÞ;

for even values of q with a similar definition holding for odd values of q.

The structure of the curves for a ¼ 0 in Fig. 2 is rather complicated, and the interested reader

is referred to Ref. 21 for a full discussion, but some of the key ideas can at least be summarised

here. Complete neutral stability curves RT;Nðq; 0;HÞ can be constructed for each fixed integer q;

as q increases so the characteristic parabolic-like shape of the curve shifts to the right of the figure

FIG. 1. (a): Critical Reynolds number RL;c as a function of dimensionless pipe radius H for azimuthal wavenumbers q ¼ 0

(solid line), q ¼ 1 (dashed lines), q ¼ 2 (chain line), q ¼ 3 (dotted line), q ¼ 4 (solid-crossed line) and q ¼ 5 (solid-circle

line). (b) RL;c against q for H ¼ 20 (solid line), H ¼ 25 (dashed line), H ¼ 30 (chain line), H ¼ 35 (dotted line), H ¼ 40

(solid-crossed line) and H ¼ 50 (solid-circle line).
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towards higher values of H and the corresponding Reynolds numbers slightly drops. What is

shown in Fig. 2 for a ¼ 0 are the lowermost parts of the neutral curves for the integer values of

q 2 ½6; 10�. The interpretation of these results is that when a ¼ 0 and H ¼ 15 the preferred azi-

muthal wavenumber is q¼ 6 and as the pipe widens so this most dangerous mode shifts progres-

sively to larger q. This is to be expected when it is remembered that as H !1 curvature effects

become weaker and the flow increasingly mimics a flat Stokes layer. Then it is of no surprise that

the ratio q=H approaches 0.38, the critical wavenumber for linear instability in the planar Stokes

layer4 and hence the critical azimuthal wavenumber q � 0:38H. It is this phenomenon that leads

to an overlapping of the curves RT;Nðq; a;HÞ for fixed q and a as the pipe radius H increases which

in turn is responsible for the “sawtooth” curve profiles seen in Fig. 2.

Superimposed on the a ¼ 0 results in Fig. 2 are curves for RT;N corresponding to the two

wavenumbers a ¼ 0:05 and a ¼ 0:1. It is clear that for these wave numbers three-dimensional dis-

turbances are more stable than their two-dimensional counterparts. Thus it appears that the previ-

ous calculations21 did delineate the most important shear modes in the torsionally oscillating

cylinder geometry. However, as mentioned in Sec. I, one important consideration explored in Ref.

21 was the competition between shear and centripetal disturbance modes. With the current, more

general formulation of the linear stability problem, the previous results21 for two-dimensional

(axisymmetric) vortex modes can now be extended to fully three-dimensional centripetal instabil-

ities. The governing equations for centripetal disturbance modes are automatically contained

within Eqs. (8) and (14) with the basic flow taken to be Eq. (1c). Here the critical Reynolds num-

ber for instability, RT;c as a function of q and H, is defined as

RT;c ¼ min
a2R

RT;Nðq; a;HÞ

and values of RT;c for various non-axisymmetric centripetal instabilities are plotted in Fig. 3 for H
in the range 8 � H � 144. Disturbances with azimuthal wavenumber q � 5 were investigated and,

at least for the range of H considered, some of the non-axisymmetric disturbances appear at lower

Reynolds numbers than the axisymmetric q¼ 0 disturbances (solid line). Rounding the values of H
to integers we find that for radius 8 � H � 16, the q¼ 1 instability appears first and then as H
increases the preferred azimuthal wavenumber grows in concert so that q¼ 2 is the dominant mode

for H 2 ½16; 44�, q¼ 3 for H 2 ½44; 86�, and q¼ 4 when H 2 ½86; 144�. Further calculations indicate

that this behaviour persists for larger values of H. We note in passing that the axial wavenumber a
at critical conditions is only weakly dependent on H, tending to a constant dependent on q as H
becomes large. When q¼ 0 the wavenumber at critical conditions tends to 1:915… (Ref. 21) as H
increases, while for q¼ 4 the corresponding critical wavenumber is approximately 1.6 for H& 65.

For q > 4, the axial wavenumber at critical conditions increases slowly with increasing q.

FIG. 2. Even (�) and odd (*) integer wavenumber critical conditions RT;c as a function of H, for wavenumbers a ¼ 0

(solid lines), a ¼ 0:05 (dashed lines) and a ¼ 0:1 (chain lines).

014106-7 The linear stability of oscillating pipe flow Phys. Fluids 24, 014106 (2012)

jhofman
Sticky Note
None set by jhofman

jhofman
Sticky Note
MigrationNone set by jhofman

jhofman
Sticky Note
Unmarked set by jhofman



Although some of the three-dimensional centripetal modes are more unstable than their two-

dimensional counterparts, their respective critical Reynolds numbers increase with H. It has al-

ready been noted that the shear instability, a ¼ 0, appears at a value of RT;c which tends to the flat

Stokes layer value of 708 as H !1. Thus there must be a cross-over value of H at which the

three-dimensional centripetal modes and the shear instability are equally unstable. In Fig. 4 is

shown the critical Reynolds numbers for the centripetal modes (crosses) plotted as functions of q
for pipe radii H ¼ 88, 96, 104, and 112. The necessarily discrete results for these critical condi-

tions have been linked by a dotted line in this figure to accentuate the behaviour of these critical

conditions as a function of the discrete azimuthal wavenumber q. The dashed lines in Fig. 4 delin-

eate the Reynolds number values at which the two-dimensional shear mode first becomes unstable.

For all the values of H taken, it is the q¼ 4 centripetal mode which is the first to become unstable

and for the smaller two values of H shown it appears before the shear mode. On the other hand,

FIG. 3. Critical Reynolds number RT;c for non-axisymmetric centripetal disturbances as a function of dimensionless pipe

radius H for azimuthal wavenumbers q ¼ 0 (solid line), q ¼ 1 (dashed lines), q ¼ 2 (chain line), q ¼ 3 (solid-square line),

q ¼ 4 (solid-diamond line) and q ¼ 5 (dotted line).

FIG. 4. Critical Reynolds number RT;c for instability to centripetal modes (crosses) as a function of the azimuthal wave-

number q, for (a) H ¼ 88, (b) H ¼ 96, (c) H ¼ 104 and (d) H ¼ 112. The horizontal dashed line indicates the critical RT

for the Stokes layer shear mode instability at the given value of H. This shear mode has a ¼ 0 and q � 0:38H.
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once H ¼ 104 the centripetal and shear instabilities have almost identical neutral conditions

ðRT;c � 716Þ. Thus, this value of H corresponds to the location where the two disturbances swap

over and for all greater pipe radii it is the shear mode which is the more unstable. This is further

emphasised by the critical conditions at H ¼ 112 (Fig. 4(d)) where the centripetal neutral curve

has shifted up the RT;c axis.

IV. DISCUSSION

Here the focus has been on assessing how three-dimensionality affects the stability of longitu-

dinally and torsionally oscillating cylinder flows. For the case of the longitudinal oscillations it

has been found that the most unstable modes are actually two-dimensional, at least for cylinder

radii greater than H � 8:5. Non-axisymmetric disturbances are technically the favoured mode of

instability for smaller radii, but such radii are not particularly relevant to experimental simulations

of planar Stokes layers, as in such investigations the pipe radius is chosen to minimise the curva-

ture effects which are obviously absent in the planar Stokes layer. Thus, for linear instability,

three-dimensionality is an unlikely explanation of the discrepancy between theoretical predictions

and experimental determinations of the critical Reynolds number for instability of the Stokes

layer.

The effects of three-dimensionality on the Stokes shear mode in the torsionally oscillating

problem were also found to be insignificant, as the two-dimensional disturbance remains the most

unstable. This result is entirely consistent with the conclusions in the previously discussed case of

longitudinal oscillations, as the shear modes in the torsionally oscillating flow are the analogues of

the shear modes discussed above. However, as the centripetal modes are destabilized by three-

dimensional effects, we must revisit the proposal21 that a torsionally vibrating cylinder could pro-

vide a practical apparatus capable of locating critical conditions for the instability of essentially

planar Stokes layers.

The results presented here indicate that a cylinder of radius at least 104 Stokes layer thick-

nesses would be required in order to ensure that shear mode instabilities appear before any centrip-

etal disturbances. This condition is slightly stronger than that given in Ref. 21, but this new result

does not imply that experimental apparatus physically larger than previously predicted21 is

required. For a given working fluid, frequency and amplitude of oscillation, it was shown21 that it

was the achievement of Reynolds numbers around critical, say approximately 710, that controlled

the physical properties of any experimental equipment. If H is used to denote the angular ampli-

tude of oscillation of the cylinder, then the Reynolds number RT can be rewritten as RT ¼ HH. To

guarantee that Stokes layer shear modes are the first instability to occur, we can now safely

assume a value of H of say 120 and then vary the value of H to obtain values of RT needed for

instability. Using water as the working fluid, with a frequency of oscillation of 1 Hz,21 this value

of H leads to a cylinder with a dimensional radius of 120� 5:6� 10�1 � 70 mm. This estimate of

the physical size of the experimental equipment is much smaller than the very conservative esti-

mates made previously.21

Finally, we point out that the linear stability equations (8) cover more problems than those

reported on here and in particular we are not restricted to separate longitudinal or torsional oscilla-

tions. By using a velocity scaling of
ffiffiffiffiffiffiffiffiffi
2�x
p

, rather than U0 or W0 as done originally, the undis-

turbed velocity field can be written,

UBðr; sÞ ¼ fRLU; 0;RTWg;

with U given by Eq. (1b) and W given by Eq. (1c). For non-zero values of both RL and RT , the

base flow is now two-dimensional with its linear stability still governed by Eq. (8). It is also

possible to consider a more general motion for the bounding cylinder. As an example, changing

the azimuthal wall velocity from W0 cos xt to W0 sin xt produces a basic flow which is the cy-

lindrical geometry analogue of the orbital plate problem.27 This example also demonstrates the

need for a third parameter to define the phase relationship between the longitudinal and torsional

oscillations, hence pointing to a much larger parameter space for any stability investigations.

However, as the results in Ref. 27 indicated that the planar two-dimensional basic flow was
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more unstable than its three-dimensional counterpart, similar results in the cylindrical geometry

could be anticipated.
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