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INTRODUCTION

Lepeophtheirus salmonis L. is one of the most in-
tensely studied parasitic sea lice due to its preference
for commercially managed fish species such as Atlantic
salmon Salmo salar L. and sea trout S. trutta L. In addi-
tion to impacts on fish welfare, operating costs, and
 logistical issues at fish farm sites (Costello 2006), inter-
actions with and consequent impacts on wild fish popu-
lations have also received much attention (Ford &
 Myers 2008, Costello 2009), with associated negative

publicity for the industry (BBC News 2012). Sea lice
control takes various forms, in particular chemical
treatments (either in feed or as a bath) and use of
cleaner fish such as wrasse, with spatially and tempo-
rally coordinated management of farms at local and re-
gional scales (Scotland-wide, for example; CoGP Man-
agement Group 2011). Despite these efforts, outbreaks
still occur (SSPO 2014). Understanding the dynamics of
outbreaks clearly has potential economic and ecological
benefits, such as reduced stock loss and medicinal use,
as well as reduced impact on wild fish populations.
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ABSTRACT: In studies of the population dynamics of parasitic sea lice and the implications of out-
breaks for salmon farms, several types of mathematical models have been implemented. Delay
differential equation models describe the temporal dynamics of average adult lice densities over
many farm sites. In contrast, larval transport models consider the relative densities of lice at farm
sites by modelling larval movements between them but do not account for temporal dynamics or
feedbacks created by reproduction. Finally, several recent studies have investigated spatiotempo-
ral variation in site lice abundances using statistical models and distance-based proxies for con-
nectivity. We developed a model which integrates connectivity estimates from larval transport
models into the delay differential equation framework. This allows representation of sea lice
developmental stages, dispersal between sites, and the impact of management actions. Even with
identical external infection rates, lice abundances differ dramatically between farms over a pro-
duction cycle (dependent on oceanographic conditions and resulting between-farm connectivity).
Once infected, lice dynamics are dominated by site reproduction and subsequent dispersal. Lice
control decreases actual lice abundances and also reduces variation in abundance between sites
(within each simulation) and between simulation runs. Control at sites with the highest magnitude
of incoming connections, computed directly from connectivity modelling, had the greatest impact
on lice abundances across all sites. Connectivity metrics may therefore be a reasonable approxi-
mation of the effectiveness of management practices at particular sites. However, the model also
provides new opportunities for investigation and prediction of lice abundances in interconnected
systems with spatially varying infection and management.

KEY WORDS:  Metapopulation · Spatial dynamics · Dispersal · Population connectivity · Sea lice
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The complexities of lice dynamics on farms result
from (among other factors) their environmental con-
text, the interactions between wild and farmed fish,
and the dispersal of pelagic lice larvae. Production
cycles are generally preceded by a period during
which all farms in a management area are left to
 fallow, meaning that initial infections at farms must
come from wild sources. Subsequently, reproduction
at farm sites leads to an additional infection pressure
via the pelagic dispersal of sea lice larvae (Johnson &
Albright 1991). Combined with difficulties in accu-
rate quantification of wild fish movements and lice
loadings, this means that the cause (or source) of out-
breaks at particular farms is often not clear.

Various mathematical approaches have been in -
vestigated in attempts to understand these dynamics,
including connectivity models, spatiotemporal sta -
tistical models, and delay differential equations. Sev-
eral studies have considered the potential spread
of larvae from farms (Amundrud & Murray 2009,
Stucchi et al. 2010, Asplin et al. 2014) and the result-
ant inter-farm connectivity (Adams et al. 2012). Such
studies combine hydrodynamic models of particular
study domains with biological particle tracking mod-
els incorporating larval development and mortality
(Salama & Rabe 2013). Such models are explicitly
spatial, but they omit temporal dynamics. Several
 authors have also investigated lice dynamics using
spatiotemporal statistical models, where site lice
abundances are explained by environmental condi-
tions, chemical treatment dates, farm biomass, and
distance-based proxies for connectivity. These studies
have underlined the importance of external infection
pressure (Kristoffersen et al. 2013, 2014) and self-in-
fection (Aldrin et al. 2013) in explaining juvenile lice
abundances at farm sites. The possibility for posi tive
feedback effects through high levels of self-infection
has also been investigated (Krkosek et al. 2010).

Another approach uses delay differential equations
to predict how the number of adult lice in a particular
population develops over time based on physiological
characteristics of the lice themselves (Tucker et al.
2002). Existing studies have fitted models to time se-
ries data aggregated over several sites (Revie et al.
2005, Gettinby et al. 2011), obtaining different para -
meter values for different subsets of sites by optimisa-
tion. This neglects the role of timing and location of
wild fish interactions or differential connectivity be-
tween sites in explaining spatiotemporal variation in
lice abundances. This article presents our first attempts
to integrate estimates of spatially varying infection
pressure and connectivity into a dynamic model, al-
lowing a fresh viewpoint on the implications of pre-

dicted temporal variability in  connection strength be-
tween aquaculture sites. We investi gate the difference
in dynamics between  population networks forced by
single-pulse external infection and those driven by
constant background external infection.

Previous studies have identified the role of wind
direction in the spread of pelagic larvae such as sea
lice (Amundrud & Murray 2009). A study by Proud
(2012) using a similar model suggested that sites
demonstrating low variation in population density
over randomly sampled wind conditions are impor-
tant for overall robustness of the louse metapopula-
tion. We made 2 key hypotheses. First, we predicted
that sites with high louse output (measured directly
from connectivity matrices; Adams et al. 2012) would
be most important in creating high-density lice meta -
populations in the dynamic model. Second, we pre-
dicted that connectivity outflux (sum of outward
 connection probabilities from each site estimated via
particle tracking) would be an important determi-
nant of the most important sites for management. We
investigated the generic behaviour of the model and
compared results with the simpler direct analysis of
connectivity matrices. This article demonstrates how
focussed management could potentially lead to dra-
matically reduced densities of lice at all sites.

METHODS

Model overview

We used the programming language Java to
encode an individual population of sea lice behaving
according to the SLiDESim model defined by Revie
et al. (2005). Four key developmental stages of at -
tached sea lice (chalimus, pre-adult, adult, and gravid
female) are represented by model compartments,
each with time-varying density defined by historical
recruitment and delay differential equations. The
model was extended to define a collection of lice sub-
populations (on different fish farms), each exhibiting
the same dynamic properties but operating sepa-
rately. The temporal domain of the model was 700 d,
covering a typical Atlantic salmon production cycle.

In previous studies, background external infection
pressure has been assumed to be constant, with a
time-dependent spike used to fit particular dynamics
(Gettinby et al. 2011). Our study defined infection
pressure instead by a summation of the predicted
reproductive output of the collection of subpopu -
lations, scaled by predicted connection strengths
between those populations (computed using the bio-
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physical model of Loch Fyne, Scotland, described by
Adams et al. 2012). The fundamental model is thus
a collection of n = 9 subpopulations interconnected
by the distribution of larvae between the sites via
connectivity matrices. A schematic overview of the
model is given in Fig. 1.

Subpopulation (single site) model

The SLiDESim model (Revie et al. 2005) employed
a series of coupled delay differential equations to
describe the 4 attached stages of sea lice (1: chali -
mus, 2: pre-adult, 3: adult, 4: gravid female).

                     (1)

where ρj is sea lice density per fish, τj is time spent in
a particular stage, μj is mortality rate (n representing
life cycle stages 1 to 4), and η is the proportion of lar-
vae that ultimately develop into females. β(t) is the
time-varying infection pressure (number of lice per
fish) and in our combined model represents the sum
of external infection from wild fish and from con-
nected fish farms (including self-infection; see ‘Com-
bined model’ below). In Revie’s (and subsequent
related, e.g. Gettinby et al. 2011) study, these para -
meters were estimated by fitting model output to
time series of lice densities averaged over many sites.

For simplicity, it is assumed that water temperature
(and/or its consequent effect on population rates)
does not vary over the course of a production cycle.
Sea lice larval development times are likely to be
fairly insensitive to the temperature range (8 to 14°C)
observed in Scottish waters (Stien et al. 2005).

Connectivity model

The model of Adams et al. (2012) tracked the tra-
jectories of passive sea lice larva particles driven by
modelled currents. An initial non-infective nauplii
stage of approximately 4 d and a maximum dispersal
duration of 14 d allowed us to compute the probabil-
ity of successful dispersal between each possible pair

of the n = 9 sites within Loch Fyne on the west coast
of Scotland (giving a total of 81 connection probabil-
ities, as connections are non-commutative). These
were arranged in a connectivity matrix, C (n × n
matrix with self-infection probability on the leading
diagonal; Fig. 2). We also computed the mean disper-
sal duration for all possible connections (another n ×
n matrix, τ; range = 4 to 12 d).

Connectivity matrices were summarised in various
ways. In particular, the average probability of suc-
cessful dispersal was given by summing all values in
the matrix and dividing by the number of sites, i.e.
Σ n

i=1 Σ n
j=1Cij/n, where i denotes source and j denotes

destination site. The outflux of each site (probability
of successful dispersal from that site to any site
including itself) was given by the row sums of the
matrix, that is Outfluxi = Σ n

j=1Cij. Similarly, the influx
of each site (relative number of arrivals at each site,
on the assumption of equal output) was given by the
matrix column sums, Influxj = Σ n

i =1Cij.
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Fig. 1. Model schematic. The basic model was a network of
9 subpopulations of sea lice, each obeying the dynamic
equations described by Revie et al. (2005) (see Eq. 1), con-
nected by matrices defining inter-site dispersal probabili-
ties. The locations of the sites are overlaid here on the
hydrodynamic model mesh used to compute dispersal prob-
abilities within Loch Fyne, Scotland (see Adams et al. 2012).
Connections between sites in this diagram are indicative ex -
amples; 81 different connections (including self-connections)

are possible in practice
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Adams et al. (2012) performed 12 separate 14 d dis-
persal simulations, forced using wind data collected
over 1 yr (April 2011 to March 2012), generating 12
matrices representing variation in connectivity dur-
ing the year. Throughout, we refer to outflux and
influx averaged over all 12 matrices as connectivity
outflux and connectivity influx. During this period,
the wind conditions were predominantly south -
westerly (directed towards the northeast, as is usu-
ally experienced in this region; up-loch or landward),
opposing the generally seaward transport of surface
water layers. In reality, salinity avoidance by dispers-
ing nauplii-stage lice could affect the extent to which
surface transport dominates lice dispersal patterns
and allow enhanced up-loch movement of lice larvae
(Costello 2009).

Combined model

A combination of the 2 models described above
was simulated over a full production cycle (22 mo). At
time t, the reproductive output of larvae from a par-
ticular site was defined as

Fi (t) = ρ4,i(t)Ni (t)f                          (2)

where Ni(t) is the number of fish at site i at time t, and
f is the number of larvae successfully produced per

unit time (1 d) by each female. The number of larvae
arriving (per fish) at site i at time t was a combination
of the sum over all such outputs and the background
infection pressure:

                                                                                    (3)

and I is the indicator function (1 for t = tExt, 0 other-
wise). α2 is the ongoing external infection pressure,
and H is the Heaviside step function (0 for t < tExt

and 1 otherwise; background infection only occurred
after a certain time at which infected wild salmon
were assumed to pass in the vicinity of the farms). We
assumed that a production cycle began in November
(i.e. using S½ smolts, i.e. produced in 6 mo from
hatching), and tExt was set to coincide with the spring
run of wild salmon. Sea lice levels are typically low
during this early part of the production cycle in Scot-
land. We considered spatially homo geneous (all
sites) and inhomogeneous (individual sites) external
infections (see ‘Scenarios and investigations’ below).

Cji is the probability of dispersal from site i to site j
(incorporating mortality during dispersal; see Adams
et al. 2012). τji is the mean dispersal time from site j
to site i. Our baseline simulations fixed inter-site
dispersal duration to τji = 14 d for all site pairs. To

represent temporal variation in site con-
nectivity, a new connectivity matrix C was
selected at random from the 12 available
matrices once every 30 d. We tested model
sen sitivity to variation in this re selection
interval, which essentially parameterises
persistence of particular current patterns.

Parameterisation

We used several parameter values fol-
lowing those obtained by previous stud-
ies (Revie et al. 2005, Stien et al. 2005, Get-
tinby et al. 2011), as these adequately
reflect expected development times under
local environmental conditions (Stien et
al. 2005). We did not attempt to model a
specific empirical population but instead
investigated scenarios highlighting generic
aspects of model behaviour. The time -
step of the model was 1 d. All model para -
meters (approximating L. salmonis; here-
after referred to as ‘lice’) are summarised
in Table 1.
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Fig. 2. Average connectivity matrix for 9 sites in Loch Fyne, from twelve 2
wk simulations using wind-forcing data from throughout the year. Darker
colour indicates higher connection probability (probability of successful
dispersal from one site to another). Connections indicate predominantly
northeasterly transport within the loch, due to prevailing southwest wind
forcing of surface layers. Column and row sums are the connectivity 

influx and outflux, respectively, of each model site
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Management treatments

The impact of simulated chemical treatments that
kill lice living on fish at farm sites was investigated.
Two forms of treatment in common use were simu-
lated here. First, a bath treatment known as Alpha -
max (active ingredient deltamethrin) may be used to
directly kill lice living on the skin of fish. A treatment
event was simulated by an instantaneous one-off
reduction in density of all stages of lice of 95% (fol-
lowing Gettinby et al. 2011), though this may be a
substantial overestimate of efficacy for certain con-
texts (Jimenez et al. 2013). We assumed that there
was no residual effect.

Second, an in-feed treatment known as SLICE (ac -
tive ingredient emamectin benzoate) may be used;
treatment takes effect immediately and causes a
decline in lice numbers for around 28 d, followed by
gradual recovery. This was simulated in the model by
a daily reduction in density of all stages of lice (at
farm sites) of 17.4%, for 28 d, matching the exponen-
tial decline implemented by Gettinby et al. (2011)
(reaching almost zero lice at 28 d, though again this
is an overestimate of efficacy in comparison with con-
trolled trials; MSD Animal Health 2012). After this
point, we allowed simulated lice numbers to recover
unhindered.

For simulations including management, all man-
aged sites followed an identical treatment pattern
based on that used at the real sites. SLICE treatments
took place on Days 180, 330, and 450, and Alphamax
treatment took place on Days 540 and 570.

Scenarios and investigations

Sensitivity of a single population model behaviour
to mortality and reproduction parameters has been
investigated previously (Revie et al. 2005). Our
model incorporated multiple sites and the additional
factor of inter-site dispersal. Simulations assumed
that all 9 sites in the loch network were stocked with
the same number of fish, that this number was fixed
for the duration of the production cycle, and that fish
did not grow (that is, carrying capacity is fixed over
time; an assumption implicit in Revie et al.’s study).
This simplification makes comprehension of model
results more straightforward, though precise stock-
ing data could easily be incorporated into the model
for specific predictive purposes. For each scenario/
parameter set, 100 repeat runs were performed.

A first suite of simulations investigated variation in
intensity of the pulse infection α1 [0, 0.01, 0.1, 1], con-
stant infection α2 [0, 0.01, 0.1, 1], and louse egg pro-
duction rate f [2, 5, 10], considering how external
infections (α1 ≠ 0 or α2 ≠ 0) at individual sites, subsets
of the sites, and all sites affected lice metapopulation
dynamics. These simulations did not include chemi-
cal treatments, and lice numbers at the sites were
allowed to develop unhindered. Comparison of these
results with connectivity influx and outflux of the
sites was made to determine the extent of insights
gained without recourse to the complete dynamic
population model.

We also investigated the impact of management
events on system dynamics, with the goal of assess-
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Parameter                                 Description                                               Value                Unit           Source

t1 Chalimus stage duration                                                               15                     d             Revie et al. (2005)
t2 Pre-adult stage duration                                                                10                     d             Revie et al. (2005)
t3 Adult stage duration                                                                      20                     d             Revie et al. (2005)
t4 Gravid female stage duration                                                       37                     d             Johnson & Albright (1991), 

                                                                                                                                                 Heuch et al. (2000)
tExt Time range of initial pulse infection                                       154−174                d             Revie et al. (2005)
τji Larval duration                                                                               14                     d             Amundrud & Murray (2009)
μ1 Chalimus mortality rate                                                             0.0255                 d−1            Revie et al. (2005)
μ2 Pre-adult mortality rate                                                                  0                     d−1            Revie et al. (2005)
μ3 Adult mortality rate                                                                        0                     d−1            Revie et al. (2005)
μ4 Gravid female mortality rate                                                     0.0269                 d−1            1/ t4

f Number of eggs per day per gravid female that reach          2, 5, 10             lice d−1             Johnson & Albright (1991), 
chalimus stage                                                                                                                      Heuch et al. (2000)

α1 Background infection of chalimus per fish (initial pulse)    0, 0.01, 0.1, 1   lice fish−1 d−1    Revie et al. (2005)
α2 Background infection of chalimus per fish (constant)         0, 0.01, 0.1, 1   lice fish−1 d−1    Gettinby et al. (2011)

Table 1. Model parameters. Life stage duration parameters of salmon louse Lepeophtheirus salmonis follow those of Revie et 
al. (2005) and approximate values estimated by Stien et al. (2005) at 10 to 11°C
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ing the relative importance (or indeed necessity) of
chemical treatment at particular sites. For these sce-
narios, we applied the full cycle treatment schedule
outlined above to each site in turn, subsets of 3, and
all sites together over the full range of α1, α2, and f.
For these management runs, we assumed that exter-
nal infection pressures α1 and α2 were identical at all
sites.

Finally, we investigated the effects of altering the
connectivity matrix reselection interval noted in
‘Combined model’ (from 1 d up to full cycle, altering
the level of environmental variation in each simula-
tion run) and the impact of using estimated pairwise
dispersal times (matrix τ) in place of the fixed 14 d
dispersal duration.

RESULTS

Basic model behaviour—external infection 
scenarios

The initial condition was zero lice at each site. In all
cases, lice first arrived from the date of first external
infection (as defined by the parameters α1 and α2 in
Eq. 3). Following this, lice numbers increased due to
both external and between-site infections. Fig. 3
shows total lice numbers at all 9 model sites forced by
constant background external infection at all sites.

In spite of the evenly spread external infection,
some sites had much higher densities than others.
Some sites also experienced much greater variation
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Fig. 3. Mean lice density (thick black line) and standard deviation over 100 runs (grey lines) of lice at each site (1 to 9), plotted
over the duration of a production cycle, assuming a constant external infection of 0.01 lice fish−1 d−1, reproduction of 5 lice
adult female−1 d−1 at all sites, and no lice reduction management events. Numbers do not increase exponentially at all sites.
Rather, they may reach a plateau where mortality and infection (which, due to connectivity, is different for each site) are in bal-
ance. At approximately realistic parameter values, dynamics are governed by on-farm reproduction, meaning that dynamics 

are essentially identical in the pulse infection scenario
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in lice density between runs than others. Differences
in model site lice densities are due to uneven connec-
tivity between locations, caused by spatial variation
in water movements. When external infection oc -
curred equally at all sites (and when taking mean site
densities over all scenarios where only single sites
were infected externally; Fig. 4a), connectivity influx
was a very strong predictor of each site’s mean louse
density in the combined model, regardless of whether
external infection was a short pulse or constant.
 Relative density between sites was not affected by
whether external infection was a pulse or constant.

In cases where a single site (or a subset of sites)
received external infection, this relationship broke
down; connectivity influx no longer predicted indi-
vidual site lice density. In these cases, the site which
received external infection always had higher louse
densities in the combined model than all other sites.
If these sites were omitted from analysis, there was
a weak correspondence between connectivity influx
and combined model site louse density (not shown),
most notably when sites close to the mouth of the loch
were the sole infection point. In general, external in -
fection at particular sites resulted in higher predicted
lice densities at downstream sites (those with strong
incoming connections from the externally in fected
sites; Fig. 4b).

The site of external infection affects mean louse
density over the whole network. Average density
over all sites in the loch decreased when the exter-
nally infected site was more northerly (from Sites 1

to 9; Fig. 5a). Mean model lice density over all sites
and the full cycle was almost exactly linearly related
to the connectivity outflux of the externally infected
site(s), whether this was a single site or a combina-
tion (Fig. 5b). This relationship held for pulse and
constant infection scenarios. Fig. 5 also demonstrates
that at this (approximately realistic) reproduction
level, mean lice density was not increased by ongo-
ing external infection versus pulse infection; system
dynamics were dominated by reproduction in louse
subpopulations on the farms and subsequent inter-
site dispersal.

Altering the balance between pulse infection, con-
tinuous infection, and reproduction rate did not affect
the magnitude of individual site lice densities rela-
tive to one another (assuming that the externally
infected sites do not change; not shown). Reselecting
the connectivity matrix more frequently reduces vari-
ation between simulation runs; runs became more
average. If connectivity was fixed for the duration
of the production cycle, individual site dynamics
became more directly predictable from the connec-
tivity matrices. For sites with the highest connectivity
influx, variation between runs increased exponen-
tially over time (contrasting with the matrix reselec-
tion case, where variable connectivity had a mediat-
ing effect on variation in louse abundance; not
shown). Replacing the fixed dispersal duration with
estimated mean pairwise inter-site dispersal times
increased lice abundances slightly but did not funda-
mentally alter behaviour (not shown).
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Fig. 4. Individual site densities. (a) Average site connectivity influx (over all 12 connectivity matrices) versus model mean site
lice density for the pulse infection scenario, with external infection of 0.01 lice fish−1 d−1 and reproduction of 5 lice adult fe-
male−1 d−1. The mean of all individual site pulse infection scenarios (that is, external infection at different sites) is shown by ‘+’,
while the case where all sites receive external infection is indicated by ‘O’. (b) Mean lice density at each site (over a whole
model run) for runs where only particular sites receive external infection. Each row corresponds to an infection scenario, with
the externally infected site outlined for clarity. In this case, connectivity influx is a weaker predictor of combined model 

density. Note the tendency for northward spread of lice between the sites
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Fig. 6. Lice density at each model site over the duration of the production cycle, when all sites were managed according to the
schedule presented in ‘Methods: Management treatments’ (each site receives constant external lice infection of 0.01 lice fish−1

d−1 and reproduction of 5 lice adult female−1 d−1; same parameters as Fig. 3)

Fig. 5. Mean loch densities. (a) Changing source site. Mean lice density across all 9 sites when particular sites receive external
infection. (b) Connectivity outflux versus model mean site density over time. Unlabelled points represent external infection at
individual sites, while combinations of sites are labelled. Values for the pulse scenarios (20 d at 0.1 lice fish−1 d−1) are deno-

ted by ’O’, and constant scenarios (0.1 lice fish−1 d−1 throughout) are denoted by ’O×’
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Effect of chemical treatment

Chemical treatments were simulated in the model
via the direct removal of lice from the subpopulation
sites, reducing the density of lice present at the sites
(Fig. 6) by between 4 and 67%, depending on which
sites were treated (Fig. 7). Management also homo -
genised simulation runs; each management event
brought lice density to a similar low level in each run,
reducing the variation in lice density.

A common goal of management may be to achieve
maximum effect with minimum cost or effort. We
therefore assessed the relationship between site con-
nectivity metrics with the impact of focussing man-
agement on those particular sites (individual sites
and groups of sites [1, 2, 3], [4, 5, 6], [7, 8, 9]). Connec-
tivity influx of the managed site(s) correlated strongly
and positively with the resulting reduction in mean
(whole system, whole cycle) population model den-
sity (binomial generalised linear model proportion of
deviance explained, Dp = 0.70, at default parameter
values; Fig. 7a). The correlation between site connec-
tivity outflux and mean density reduction was poor
(Dp = 0.08), and the sign of the relationship changed
depending on whether groups of sites were included
in the regression. This is surprising, as intuitively,
highly outwardly connected sites might be expected
to be the most important in producing high louse
numbers across the system. Unmanaged density of a
site was also a good predictor of the impact of man-
aging it (Dp = 0.63), but we observed no link with
inter-run variability in lice densities at a particular

site. These patterns held for all pulse and constant
infection scenarios considered.

As noted previously, connectivity influx was also cor-
related with population model lice density. It is there-
fore possible that the reduction in lice abundances was
due to management focussed on high influx sites. With
this in mind, we performed a similar analysis using
mean abundances, omitting the sites at which manage-
ment was focussed. In this case, site connectivity influx
remained a better predictor of management impact,
but both were only weakly  correlated (Dp explained by
connectivity influx and outflux were 0.14 and 0.09,
 respectively), while un managed site density became
almost completely uncorrelated (Dp = 0.0008).

DISCUSSION

By combining 2 established approaches (connec-
tivity modelling and dynamic life cycle population
modelling), we have gained several insights into the
contribution of different processes affecting the pop-
ulation dynamics of sea lice at individual aquaculture
sites. At realistic parameter values, model behaviour
was dominated by reproduction on (and connectivity
between) sites, meaning that there was no substan-
tial difference in lice densities between pulse and
constant external infection cases. If this translates to
reality, this adds support to the idea that inappropri-
ately managed farms pose a significant threat by
increasing the densities of lice both at farm sites and
moving freely in the water column.
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Fig. 7. Impact of applying management protocol to model sites, measured by proportional mean lice abundance over all model
sites over the whole production cycle, relative to the unmanaged case. Again, parameters applied were a constant external in-
fection of 0.01 lice fish−1 d−1 and reproduction of 5 lice adult female−1 d−1. Impact of managing particular sites is plotted versus
(a) connectivity influx, (b) connectivity outflux, and (c) unmanaged density of those sites. Individual sites are indicated by ’O’, 

groups of 3 sites by ‘+’, and all sites managed together by ‘×’
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Variation in connectivity led to rather different lice
abundances between sites, even in the case of equal
external infection rate, and spatial directionality in
the connectivity matrix was evident in the combined
model results. Lice control measures were effective
at reducing lice abundances, achieving 4 to 67%
reduction in mean lice abundance over a production
cycle. Lice abundance at sites was generally propor-
tional to the weight of incoming connections, as was
the impact of managing (treating to remove lice) at
particular sites in isolation. In this system, dispersal
patterns were predominantly northward, despite the
tendency for surface freshwater layers to flow in a
seaward direction. In reality, juvenile lice may expe-
rience enhanced inshore transport by moving more
deeply during early stages of development (Costello
2009). Our model used a single near-surface vertical
position, but stage-dependent and salinity-driven
lar val migration, mortality, or settlement success
(Brick nell et al. 2006) could easily be incorporated
into the underlying connectivity model.

We found that management was most effective (in
terms of reducing average lice densities over the
whole loch and production cycle) when focussed on
model sites with high connectivity influx or sites with
high unmanaged density (under the assumption that
external infection at all sites is equal). This contrasts
with the more intuitive assumption that lice control at
high connectivity outflux sites would be most impor-
tant. Interestingly (and in contrast to the previous
study by Proud 2012), variability in combined model
density at a specific site over randomly selected wind
scenarios was not a useful indicator of the impact of
managing those specific sites in isolation. Disentan-
gling mean loch lice reductions from the density
reduction at the focal managed site was not straight-
forward, as correlations were greatly reduced when
omitting this from full loch averages. Using the cur-
rent system as an example, it is therefore difficult to
deduce the extent to which management treatment
affects spread through the loch, though this does not
alter the main result: that management at high den-
sity (or high connectivity influx) sites is likely to offer
the most cost-effective reduction in lice numbers.

The present study builds on the previous work of
other authors (Revie et al. 2005, Gettinby et al. 2011),
adding an explicit representation of spatially varying
transmission and external infection. This allowed us
to investigate how spatially varying dispersal and
infection create differential lice abundances at farm
sites within the same loch and to investigate the
impact of spatially varying management schemes,
rather than considering only average behaviour over

many farms. In certain scenarios, metrics computed
directly from the connectivity matrices are likely to
provide a good surrogate for dynamic population
modelling (equality of sites, equality of infection, or
when considering the average behaviour of many
different site groups or time periods). Indeed, in the
cases where all sites receive equal levels of external
infection and at accepted levels of sea louse repro-
duction, between-site dispersal and consequent cross-
infection rapidly dominate dynamics over external
in fection. In such cases, studies of baseline connec-
tivity between sites (Adams et al. 2012, Salama &
Rabe 2013) may be sufficient.

In reality, external infection may be less homoge-
neous. Not all river catchments in Loch Fyne are
home to salmonids (Argyll Fisheries Trust 2010), and
proximity to those that are (and relevant migration
routes or particular hydrodynamic conditions in their
localities) may alter the level of external infection
pressure that sites face. Middlemas et al. (2013)
found a link between sea lice abundances on wild
Scottish sea trout and habitat proximity to farms, and
we see no reason that the reverse (that external
infection pressure at farm sites should increase with
proximity to wild fish populations) should not be true.
In conjunction with the inhomogeneity (and asym-
metry) of inter-site connections, inhomogeneous ex -
ternal infection may mean that in reality some sites
have dynamics governed by external infection, while
others are governed by between-site dispersal. Em -
pirical information is therefore likely to be invaluable
in the configuration of the combined model, should
one wish to predict spatiotemporal variation in lice
numbers in a real system. Given such infor mation,
our combined model would allow a more considered
(and more efficient and lower impact) approach to
lice management to be applied.

The combined model presented here is based on a
foundation composed of hydrodynamic modelling and
biological particle tracking and necessarily assumes
the inherent strengths, weaknesses, and assumptions
of these approaches, in addition to the assumptions
that are made directly in its formulation (though
these do not affect our basic results). For prediction of
sea lice abundances over time, simpler statistical
approaches directly dealing with empirical data may
be more effective (e.g. Aldrin et al. 2013, Rogers et
al. 2013, Kristoffersen et al. 2014) and allow for the
 integration of a broad range of influencing factors.
However, by building up from the physiological
properties of sea lice, our approach allows a more
fundamental look at how external infections, on-site
reproduction, inter-site connectivity, and manage-
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ment activities affect lice abundances in connected
networks. In common with statistical studies, our
study underlines the importance of accounting for
connectivity when considering variation in lice abun-
dances in a spatial context. But we are also able to
provide insights on management: coordinated man-
agement at many sites is clearly ideal, but focussing
on the highest receiving sites (calculated from the
connectivity matrix) is a good second choice.

Our study did not investigate the potential impacts
of cleaner fish on lice densities. Co-stocking of sal -
mon with wrasse species has been found in the cor-
rect conditions to be a highly effective approach to
reducing lice numbers, particularly mature stages
(Skiftesvik et al. 2013). However, finely tuned rela-
tive stocking densities are essential to ensure the
welfare of both wrasse and salmon. Furthermore,
ensuring that lice remain the preferred food choice of
the wrasse depends on maintaining minimal biofoul-
ing of infrastructure and the amount of additional
food provided for them. If such issues (and others
relating to supply; MCS 2013) are dealt with, wrasse
have the potential to almost completely prevent the
development of reproducing sea lice in salmon cages.
Applied at sites where high levels of external infec-
tion exist, or sites with high connectivity influx, this
could be more effective than chemical treatments.

Other generic questions may be investigated using
the modelling approach presented here. For exam-
ple, given accurate data on treatment efficacy and
effect duration, the model provides an opportunity to
design and optimise treatment regimes (potentially
over both time and sites), reducing costs and envi-
ronmental impacts of farm management. The impact
of abundance thresholds and targets for adaptive
management schemes could be assessed. Finally, the
emergence of chemical-resistant lice (Jones et al.
2013), which has important implications for manage-
ment protocol, is a pressing topic for investigation.
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