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Abstract. The Subantarctic and Polar Frontal zones (SAZ

and PFZ) represent a large portion of the total area of the

Southern Ocean and serve as a strong sink for atmospheric

CO2. These regions are central to hypotheses linking par-

ticle fluxes and climate change, yet multi-year records of

modern flux and the organisms that control it are, for obvi-

ous reasons, rare. In this study, we examine two sediment

trap records of the flux of diatoms and bulk components

collected by two bottom-tethered sediment traps deployed

at mesopelagic depths (∼ 1 km) in the SAZ (2-year record;

July 1999–October 2001) and in the PFZ (6-year record;

September 1997–February 1998, July 1999–August 2000,

November 2002–October 2004 and December 2005–October

2007) along the 140◦ E meridian. These traps provide a direct

measure of transfer below winter mixed layer depths, i.e. at

depths where effective sequestration from the atmosphere oc-

curs, in contrast to study of processes in the surface ocean.

Total mass fluxes were about twofold higher in the PFZ

(24± 13 g m−2 yr−1) than in the SAZ (14± 2 g m−2 yr−1).

Bulk chemical composition of the particle fluxes mirrored

the composition of the distinct plankton communities of the

surface layer, being dominated by carbonate in the SAZ and

by biogenic silica in the PFZ. Particulate organic carbon

(POC) export was similar for the annual average at both sites

(1.0± 0.1 and 0.8± 0.4 g m−2 yr−1 for the PFZ and SAZ, re-

spectively), indicating that the particles in the SAZ were rel-

atively POC rich. Seasonality in the particle export was more

pronounced in the PFZ. Peak fluxes occurred during summer

in the PFZ and during spring in the SAZ. The strong summer

pulses in the PFZ are responsible for a large fraction of the

variability in carbon sequestration from the atmosphere in

this region. The latitudinal variation of the total diatom flux

was found to be in line with the biogenic silica export with

an annual flux of 31± 5.5× 108 valves m−2 yr−1 at the PFZ

compared to 0.5± 0.4× 108 m−2 yr−1 at the SAZ. Fragilar-

iopsis kerguelensis dominated the annual diatom export at

both sites (43 % at the SAZ and 59 % in the PFZ). POC fluxes

displayed a strong positive correlation with the relative con-

tribution of a group of weakly silicified and bloom-forming

species in the PFZ. Several lines of evidence suggests that the

development of these species during the growth season fa-

cilitates the formation of aggregates and carbon export. Our

results confirm previous work suggesting that F. kerguelensis

plays a major role in the decoupling of the carbon and sili-

con cycles in the high-nutrient low-chlorophyll waters of the

Southern Ocean.

1 Introduction

The Southern Ocean is a critical component of the Earth’s

ocean–climate system and plays a pivotal role in the global

biogeochemical cycles of nutrients and carbon. Due to its

unique meridional overturning circulation, deep waters are

upwelled south of the polar front supplying the surface wa-

ters with nutrients and allowing the ventilation of carbon
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dioxide accumulated during centuries of deep-sea respira-

tion (Anderson et al., 2002; Pollard et al., 2006). Strong in-

teractions with the atmosphere transform the upwelled deep

waters into bottom, intermediate, and mode waters, which

spread to lower latitudes renewing the intermediate and

abyssal depths of the world ocean (Sarmiento et al., 2004;

Sigman et al., 2010). Dissolution of carbon dioxide in these

newly formed waters (i.e. the solubility pump) and the trans-

port of photosynthetically fixed carbon to depth in settling

particles (i.e. the biological pump) modulate the extent to

which the carbon dioxide is transferred to the atmosphere.

The balance between these processes determines the role of

the Southern Ocean either as a source or sink of atmospheric

CO2 over glacial–interglacial climate cycles (Kohfeld et al.,

2005; Anderson et al., 2009; Sigman et al., 2010).

At present, the Southern Ocean biological pump is not

operating at its full capacity (De La Rocha, 2010). Low

sun angles, deep wind-mixed surface waters and lack of the

micronutrient iron restrict phytoplankton growth (Boyd et

al., 2007; Venables and Moore, 2010) making the Southern

Ocean the largest high-nutrient low-chlorophyll (HNLC) re-

gion in the world ocean (Martin, 1990). However, there are

exceptions to this situation with areas of higher phytoplank-

ton abundance occurring along oceanographic fronts (Laub-

scher et al., 1993; Moore and Abbott, 2000), downstream of

some islands (Blain et al., 2001; Park et al., 2010), in the

wake of the retreating seasonal sea ice (Smith Jr. et al., 1988;

Brzezinski et al., 2001), in coastal polynyas (Arrigo and van

Dijken, 2003) and in coastal systems of Antarctica (Sedwick

et al., 2000; Brzezinski et al., 2001). In these areas iron fer-

tilises the surface layer triggering phytoplankton blooms in

spring and summer.

Diatoms are one of the most abundant primary produc-

ers in the Southern Ocean and make a major contribution to

the biogenic silica (BSi) content of deep-sea sediments. Ex-

tensive diatom blooms occasionally develop in the Antarc-

tic Circumpolar Current (ACC; e.g. Kopczynska et al., 2001;

Green and Sambrotto, 2006; Alvain et al., 2008; Grigorov

et al., 2014) which results in the formation of a band of

siliceous ooze that encircles Antarctica (DeMaster, 1981;

Buesseler et al., 2001; DeMaster, 2002). This “diatom ooze

belt” constitutes the world’s largest sedimentary sink for BSi

accounting for about one-third of the global BSi accumula-

tion (Tréguer and De La Rocha, 2013; Tréguer, 2014). There-

fore, the production and export of diatoms in the Southern

Ocean are critical components of the global cycling of silica,

and potentially the biological carbon pump. Indeed there is

evidence from silicon isotopes and other palaeo-proxies that

silica export in the Southern Ocean has varied, in concert

with other biogeochemical changes and atmospheric CO2

variations, over a range of timescales (Brzezinski et al., 2002;

Matsumoto et al., 2002; Sarmiento et al., 2004).

Most of our current knowledge about the temporal and

spatial dynamics of phytoplankton in the Southern Ocean

waters derives from satellite observations and biogeochemi-

cal models (e.g. Moore et al., 1999; Moore and Abbott, 2000;

Arrigo et al., 2008; Gregg and Rousseaux, 2014). Recently,

advances in the interpretation of optical signals have allowed

the determination of the specific contribution of major phyto-

plankton groups (e.g. coccolithophores, phaeocystis-like, di-

atoms) to phytoplankton abundance on a global and regional

scale (e.g. Alvain et al., 2005; Raitsos et al., 2008; Rousseaux

and Gregg, 2012; Alvain et al., 2013). However, as a more

complete picture of the structure of the planktonic commu-

nities emerges, it becomes evident that in order to determine

the role of phytoplankton in the biological pump and biogeo-

chemical cycles, it is of critical importance to distinguish not

just among major taxonomic groups but also within them. In

particular, recent studies have shown how variations in the

composition of diatom communities, which exhibit a wide

range of competitive strategies, contribute to the regulation

of the stoichiometric relationship between elements such as

carbon and silicon in the global ocean (Boyd et al., 2010;

Assmy et al., 2013; Boyd, 2013; Quéguiner, 2013).

Bottom-tethered sediment traps have contributed signif-

icantly to the characterisation of the spatial and temporal

variability of biochemical and microorganism fluxes in the

Southern Ocean (Romero and Armand, 2010). For exam-

ple, sediment trap experiments have revealed that the par-

ticle export in this region is highly seasonal and that max-

imum fluxes of particulate matter occur in areas under the

influence of seasonal sea ice where diatoms are most abun-

dant (e.g. Fischer et al., 2002; Pilskaln et al., 2004; Grig-

orov et al., 2014). Other studies have revealed the crucial role

of particular diatom species in driving the biological pump

in naturally iron-fertilised waters, such as Chaetoceros and

Thalassiosira resting spores around the Kerguelen Plateau

(Rembauville et al., 2015) or the resting stages of Eucampia

antarctica in the Crozet Islands system (Salter et al., 2012).

Most of these studies have been carried out in areas of rela-

tively high primary production such as coastal systems and

areas under the influence of seasonal sea ice. However, very

few sediment trap experiments have been conducted in the

pelagic province that, despite its relatively low phytoplank-

ton abundance, is responsible for approximately 90 % of the

annual primary production in the Southern Ocean due to its

large size (Arrigo et al., 2008).

In this work we document the seasonal and inter-annual

variability of the chemical (total mass, BSi, carbonate and

particulate organic carbon – POC) and biological (diatom

assemblages) composition of the material captured at two

mooring sites along the 140◦ E meridian, representative of

a large proportion of the Subantarctic Zone (SAZ) and Polar

Frontal Zone (PFZ). The main objectives of this study are

1. to document the latitudinal and seasonal variations in

the composition of the particle fluxes and diatom com-

munities across sites;
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2. to assess the role of the seasonal variability of diatom

communities on the biological pump and cycling of sil-

ica;

3. to provide annual estimates of biogenic silica, carbon-

ate, POC and diatom-valve fluxes to the deep ocean for

the SAZ and PFZ.

2 Oceanographic and biological setting

The Southern Ocean is divided into concentric zones sur-

rounding Antarctica by a series of frontal systems (Fig. 1),

which are characterized by large geostrophic surface veloc-

ities (Orsi et al., 1995) and are linked to contours of sea

surface height (SSH; Sokolov and Rintoul, 2002, 2009b, a).

Between these fronts lie zones of weak flow that tend to

have relatively uniform water mass properties (Zentara and

Kamykowski, 1981; Rintoul and Bullister, 1999) and bio-

logical characteristics (Boyd, 2002; Thomalla et al., 2011).

The SAZ extends from the subtropical front (STF) to the

Subantarctic Front (SAF) and represents a transition zone

between the subtropical gyres to the north and the ACC to

the south (Rintoul and Bullister, 1999). SAZ surface wa-

ters along ∼ 140◦ E have summer sea surface temperatures

(SSTs) ranging between 11 and 12 ◦C (Fig. 2), whilst the

mixed layer depth during winter can exceed 600 m (Rintoul

and Trull, 2001). The SAF is characterised by a marked lat-

itudinal surface gradient in temperature and salinity and, in

the Australian sector, is split into two branches or filaments

at mean latitudes of 50.5 and 52◦ S (Sokolov and Rintoul,

2002). The PFZ lies just south of the SAZ and represents

the northernmost extent of the Antarctic waters. PFZ surface

waters have summer SSTs typically between 5 and 6 ◦C in

summer (Fig. 3), but the winter mixed layer is shallower (less

than 200 m) than at the SAZ (Rintoul and Trull, 2001).

Together the SAZ and PFZ make up the sub-Antarctic re-

gion (Fig. 1), which is the site of the formation of the sub-

antarctic mode and Antarctic Intermediate waters (SAMW

and AAIW, respectively; McCartney, 1977). Both SAMW

and AAIW are subducted northward beneath the subtropical

gyres ventilating their lower thermocline (Sallée et al., 2006;

Downes et al., 2009) and eventually supplying with nutrients

the surface waters across the oceans of the Southern Hemi-

sphere and North Atlantic (Sarmiento et al., 2004).

In terms of biogeochemical distributions, the SAZ and

PFZ can be defined as HNLC regimes but with a remark-

able difference between them. While PFZ surface waters are

replete with phosphate, nitrate and silicate until at least mid-

summer, in the SAZ silicate remains at low levels through-

out the year (Rintoul and Trull, 2001; Wang et al., 2001).

Dissolved iron concentrations in the mixed layer along the

140◦ E longitude transect are low and exhibit a decreasing

trend with increasing latitude, with 0.27 in the SAZ and

0.22± 0.02 nmol L−1 in the PFZ (Lannuzel et al., 2011). Pri-

mary production is thought to be co-limited by iron supply

Figure 1. Southern Ocean chlorophyll a composite map (Septem-

ber 1997 to September 2007) from Sea-viewing Wide Field-of-View

Sensor (SeaWiFS) with the location of the sediment trap moorings

of the SAZ (47, 51, 54 and 61◦ S) and AESOPS (MS-1, MS-2,

MS-3, MS-4 and MS-5) experiments. Abbreviations: STF – sub-

tropical front, SAZ – Subantarctic Zone, SAF – Subantarctic Front,

PFZ – Polar Frontal Zone, PF – polar front, AZ – Antarctic zone,

SACC – Southern extent of the Antarctic Circumpolar Current, Max

WSI – maximum winter sea ice extent. Oceanic fronts from Orsi et

al. (1995). Sea ice extent from Fetterer et al. (2002, updated 2009).

and light in the PFZ, and by iron supply and low silicic acid

concentration in the case of the SAZ (Boyd et al., 1999; Boyd

et al., 2001; Lannuzel et al., 2011).

As a consequence of these different physical and biochem-

ical properties, the SAZ and PFZ exhibit two distinct phy-

toplankton communities. SAZ surface waters are dominated

by coccolithophores, other flagellates and cyanobacteria with

lower abundances of diatoms. PFZ waters are also rich in

coccolithophores and flagellates, but contain few cyanobac-

teria, whereas diatoms are more abundant and of larger size

(Popp et al., 1999; Kopczynska et al., 2001; de Salas et al.,

2011). Finally, it is worthy to note a feature present in the

PFZ but not in the SAZ; a subsurface chlorophyll maximum

(SCM) dominated by large diatom species (Kopczynska et

al., 2001) has been consistently reported during summer in

the PFZ within or beneath the seasonal pycnocline. The for-

mation and maintenance of this SCM is most likely due to the

settling of phytoplankton cells as a response to iron and sil-

icate co-limitation in the mixed layer during summer (Popp

et al., 1999; Parslow et al., 2001).
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Figure 2. (a) Available mean sea surface temperature (SST), photosynthetically available radiation (PAR) and chlorophyll a concentration

for the 47◦ S site. The dashed intervals represent the studied periods. (b) Temporal variability of the total and major component fluxes, and

their relative contributions to the total mass flux for the < 1 mm fraction at 1000 m water depth at the 47◦ S site for the period July 1999–

October 2001. Biogenic silica, carbonate and particulate organic carbon (POC) were directly measured. “Other” indicates un-characterized

mass contributions (organic components other than carbon and small amounts of lithogenic material; Trull et al., 2001). Grey horizontal bars

highlight the summer period (December to February) of each year.

3 Material and methods

3.1 Field experiment

A series of deep-moored sediment trap deployments was in-

stigated in 1997 by the Australian SAZ program (Trull et

al., 2001b) and now continues as a component of the Aus-

tralian Integrated Marine Observing System Southern Ocean

Time Series (Trull et al., 2010; Shadwick et al., 2015). Two

sites representative of a large proportion of the SAZ and

PFZ were occupied quasi-continuously for the decade 1997–

2007. Both sites were located along the 140◦ E longitude:

station 47◦ S was set on the abyssal plain of the central SAZ,

whereas station 54◦ S was placed on a bathymetric high of

the Southeast Indian Ridge in the PFZ (Fig. 1, Table 1). Ad-

ditionally, two other sites were instrumented over a 1-year

period, beneath the SAF (site 51◦ S, 1997–1998) and within

the southern Antarctic Zone (AZ) (site 61◦ S, 2001–2002).

Here, we present data from the 47◦ S 1000 m trap between

1999 and 2001 (2-year record) and from the 54◦ S 800 m trap

between the following years: 1997–1998, 1999–2000, 2002–

2004 and 2005–2007 (6-year record). Biogenic particle flux

data of sites 47, 51 and 54◦ S for the first year deployment

(1997–1998) and of site 61◦ S for the year 2001–2002 have

already been published in Trull et al. (2001a) and Rigual-

Hernández et al. (2015), respectively.

All traps were MacLane Parflux sediment traps: conical

in shape with a 0.5 m2 opening area and equipped with a

carrousel of 13 or 21 sampling cups. Cup rotation intervals

Biogeosciences, 12, 5309–5337, 2015 www.biogeosciences.net/12/5309/2015/
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Figure 3. (a) Available mean sea surface temperature (SST), photosynthetically available radiation (PAR) and chlorophyll a concentration for

the 54◦ S site. The dashed intervals represent the studied periods. (b) Temporal variability of the total and major component fluxes, and their

relative contributions to the total mass flux for the < 1 mm fraction at 800 m water depth at the 54◦ S site for the periods July 1999–August

2000, November 2002–October 2004 and December 2005–October 2007. Biogenic silica, carbonate and particulate organic carbon (POC)

were directly measured. “Other” indicates un-characterised mass contributions (organic components other than carbon and small amounts of

lithogenic material; Trull et al., 2001). Grey horizontal bars highlight the summer period (December to February) of each year.

Table 1. Deployment summary of sediment traps at stations 47, 54 and 61◦ S.

Site and trap Hydrographic Latitude Longitude Water column Trap depth

designations zone ◦ S ◦ E depth (m) (m)

47◦ S_1000 SAZ 46◦46′S 142◦4′E 4540 1060

54◦ S_800 PFZ 53◦45′S 141◦45′E 2280 830

61◦ S_2000 AZ 60◦44′S 139◦54′E 4393 2000

were established based on anticipated mass fluxes. The short-

est intervals corresponded with the austral summer and au-

tumn ranging typically between 4.25 and 10 days, whereas

the longest intervals were 60 days, corresponding with win-

ter (Table 2). Each trap was paired with an Aanderaa current

metre and temperature sensor. The 250 mL collection cups

were filled with a buffered solution of sodium tetraborate

(1 g L−1), sodium chloride (5 g L−1) and mercury chloride

(3 g L−1) in unfiltered deep seawater from the region (col-

lected at 1200 m depth, 49◦17′ S, 153◦58′ E). Full details of

the mooring designs can be found in Bray et al. (2000) and

Trull et al. (2001a).

www.biogeosciences.net/12/5309/2015/ Biogeosciences, 12, 5309–5337, 2015



5314 A. S. Rigual-Hernández et al.: Latitudinal and temporal distributions of diatom populations

Table 2. Individual cup fluxes for the < 1 mm fraction.

Deployment Cup Sampling period Length Diatoms Total mass BSiO2 CaCO3 POC

mid-point days 106 valves m−2 d−1 mg m−2 d−1 mg m−2 d−1 % mg m−2 d−1 % mg m−2 d−1 %

47◦ S 1000 m, 1 31/07/1999 20.0 0.002 19.6 0.8 4 8.6 44 3.0 15

1999–2000 2 20/08/1999 20.0 0.113 27.1 3.4 13 15.3 57 2.8 10

3 06/09/1999 15.0 0.195 45.9 5.1 11 26.2 57 4.2 9

4 21/09/1999 15.0 0.147 57.5 5.4 9 36.0 63 4.4 8

5 04/10/1999 10.0 0.213 66.5 7.9 12 46.8 70 4.2 6

6 14/10/1999 10.0 0.364 65.9 3.8 6 46.1 70 4.2 6

7 24/10/1999 10.0 0.137 89.8 4.3 5 66.4 74 5.3 6

8 03/11/1999 10.0 0.080 73.9 3.8 5 56.9 77 4.1 6

9 13/11/1999 10.0 12.7 0.2 2 9.1∗ 72∗ 1.1∗ 9∗

10 23/11/1999 10.0 4.2 0.2∗ 6∗ 3∗ 72∗ 0.5∗ 12∗

11 03/12/1999 10.0 4.3 0.2∗ 6∗ 3.1∗ 72∗ 0.5∗ 12∗

12 13/12/1999 10.0 13.8 0.8∗ 6∗ 9.9∗ 72∗ 2.0∗ 14∗

13 23/12/1999 10.0 0.049 32.6 2.4 7 19.3 59 3.7 11

14 02/01/2000 10.0 0.001 38.5 2.2 6 25.0 65 3.6 9

15 12/01/2000 10.0 15.9 0.1 1 9.5∗ 60∗ 1.9∗ 12∗

16 22/01/2000 10.0 14.0 0.6 5 8.4∗ 60∗ 1.6∗ 12∗

17 03/02/2000 15.0 0.002 11.4 0.2 2 6.8∗ 60∗ 1.1∗ 10∗

18 21/02/2000 20.0 8.0 4.8∗ 60∗ 1.0∗ 13∗

19 01/04/2000 60.0 0.110 39.6 2.9 7 23.4 59 4.7 12

20 31/05/2000 60.0 0.125 47.0 5.1 11 33.2 71 3.3 7

21 30/07/2000 60.0 0.002 13.0 0.7 5 7.4 57 1.6 12

47◦ S 1000 m, 1 13/10/2000 10.0 10.5 0.7 6 8.0 76 0.5 5

2000–2001 2 23/10/2000 10.0 15.3 0.4 3 12.7 83 0.6 4

3 02/11/2000 10.0 0.164 23.7 1.0 4 18.2 76 1.2 5

4 12/11/2000 10.0 1.559 92.3 4.6 5 69.9 76 5.1 6

5 22/11/2000 10.0 0.037 16.7 0.1 1 12.3∗ 74∗ 1.6∗ 10∗

6 02/12/2000 10.0 0.001 176.3

7 12/12/2000 10.0 9.9 5.7 57 1.5 15

8 22/12/2000 10.0 8.9 0.1 1 5.2 59 0.8 9

9 01/01/2001 10.0 0.053 30.4 1.6 5 20.5 67 2.3 8

10 11/01/2001 10.0 0.345 51.3 3.2 6 35.2 69 3.6 7

11 21/01/2001 10.0 0.200 48.4 5.1 10 32.8 68 3.2 7

12 31/01/2001 10.0 0.089 21.1 1.4 6 13.5 64 2.0 9

13 10/02/2001 10.0 0.077 62.0 3.3 5 47.5 77 3.3 5

14 20/02/2001 10.0 0.435 75.4 4.1 5 58.8 78 3.6 5

15 02/03/2001 10.0 0.758 89.4 6.5 7 69.1 77 4.2 5

16 14/03/2001 15.0 0.398 104.8 9.1 9 87.3 83 3.5 3

17 29/03/2001 15.0 64.0∗ 5.3∗ 8∗ 50.0∗ 78∗ 2.9∗ 5∗

18 03/05/2001 55.0 0.231 52.9 4.2 8 39.9 75 2.7 5

19 30/06/2001 60.0 0.293 32.2 1.8 6 23.9 74 1.9 6

20 29/08/2001 60.0 0.126 19.8 1.4 7 15.7 79 1.3 6

21 13/10/2001 30.0 0.038 9.7 0.4 5 5.4 56 1.4 14

3.2 Quality check of downward particle fluxes

Current speeds largely influence the efficiency with which

sediment traps collect the particles sinking in the water col-

umn (Baker et al., 1988; Yu et al., 2001). The threshold of

current velocity above which sinking particles are no longer

quantitatively sampled is not well known, but has been sug-

gested to be around 12 cm s−1 (Baker et al., 1988). Average

current speeds for the whole sampling interval at the trap lev-

els were lower than 11 cm s−1 for both sites and showed little

seasonal variability (Bray, unpublished results, available on-

line at imos.org.au). Therefore, these mild conditions seem

to be sub-critical for any strong concerns over collection

efficiencies. Additionally, radioisotope analyses of material

from the first year deployment by Trull et al. (2001) provide

some extra insights to assess the collection efficiency of the

traps. The 230Th flux/production ratios for the 1997–1998 de-

ployment were 0.6± 0.1 and 0.7± 0.1 for the 47 and 54◦ S

traps, respectively. These values suggest that some degree of

under trapping is likely to have occurred at both sites. How-

ever, as these values are almost identical for both traps, it can

be assumed that the trapping efficiency did not account for

the observed latitudinal variations in the magnitude of the

particle export between sites. Taking into consideration all

the above and the fact that the assessment of trapping effi-

ciency from 230Th alone is fraught with uncertainties (Trull

et al., 2001a; Buesseler et al., 2007), trap fluxes were not cor-

rected for possible under trapping in the present study.

3.3 Determination of major constituents of the flux

A detailed description of the methodology used for the de-

termination of the flux intensity and composition of settling

particles for the first mooring deployments in 1997–1998 can

be found in Bray et al. (2000) and Trull et al. (2001a). After

Biogeosciences, 12, 5309–5337, 2015 www.biogeosciences.net/12/5309/2015/
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Table 2. Continued.

Deployment Cup Sampling period Length Diatoms Total mass BSiO2 CaCO3 POC

mid-point days 106 valves m−2 d−1 mg m−2 d−1 mg m−2 d−1 % mg m−2 d−1 % mg m−2 d−1 %

54◦ S 800 m, 1 26/09/1997 8.5 0.275 2.7 1.4∗ 53∗ 0.7 27 0.1∗ 3∗

1997–1998 2 04/10/1997 8.5 11.5 6.1∗ 53∗ 3.1 27 0.3∗ 3∗

3 13/10/1997 8.5 11.5 6.1∗ 53∗ 3.1 27 0.3∗ 3∗

4 21/10/1997 8.5 4.561 47.0 25.1 53 12.6 27 1.4 3

5 30/10/1997 8.5 13.121 100.0 52.5 53 26.0 26 2.7 3

6 07/11/1997 8.5 20.564 141.7 79.3 56 35.5 25 2.3 2

7 16/11/1997 8.5 26.211 233.5 131.7 56 56.4 24 4.3 2

8 24/11/1997 8.5 11.542 165.8 81.7 49 45.8 28 4.4 3

9 03/12/1997 8.5 4.914 53.3 13.1 25 20.5 38 2.4 4

10 11/12/1997 8.5 63.2 20.5 33 16.6 26 2.5 4

11 20/12/1997 8.5 11.711 148.2 63.8 43 26.5 18 5.0 3

12 28/12/1997 8.5 20.881 111.9 38.8 35 29.7 27 4.6 4

13 04/01/1998 4.3 34.729 109.7 51.2 47 29.5 27 4.9 5

14 08/01/1998 4.3 99.9 54.2 54 23.0 23 4.5 5

15 12/01/1998 4.3 151.8 92.7 61 28.7 19 4.0 3

16 16/01/1998 4.3 153.0 87.8 57 31.5 21 5.8 4

17 21/01/1998 4.3 70.808 265.5 164.7 62 50.6 19 8.8 3

18 25/01/1998 4.3 54.059 396.0 259.2 65 66.0 17 9.9 2

19 31/01/1998 8.5 41.101 276.2 171.7 62 47.2 17 7.0 3

20 09/02/1998 8.5 28.947 141.7 74.3 52 37.0 26 4.6 3

21 17/02/1998 8.5 66.4 30.5 46 20.4 31 2.3 3

54◦ S 800 m, 1 31/07/1999 20.0 9.681 45.9 34.3 75 1.8 4 1.3 3

1999–2000 2 20/08/1999 20.0 10.944 71.8 52.8 74 3.2 4 0.9 1

3 06/09/1999 15.0 7.948 81.4 63.2 78 3.6 4 1.1 1

4 21/09/1999 15.0 4.867 25.1 17.1 68 2.6 10 0.9 3

5 04/10/1999 10.0 5.622 44.5 31.9 72 3.2 7 1.0 2

6 14/10/1999 10.0 9.942 101.1 70.8 70 5.8 6 1.1 1

7 24/10/1999 10.0 8.689 58.2 37.6 65 6.2 11 1.1 2

8 03/11/1999 10.0 5.857 106.3 62.0 58 11.3 11 3.9 4

9 13/11/1999 10.0 6.081 121.9 80.3 66 20.2 17 2.6 2

10 23/11/1999 10.0 28.312 294.4 170.7 58 63.8 22 7.1 2

11 03/12/1999 10.0 51.610 514.8 302.5 59 108.5 21 16.7 3

12 13/12/1999 10.0 10.590 724.4 429.3 59 142.5 20 23.0 3

13 23/12/1999 10.0 15.287 660.6 396.3 60 106.2 16 20.0 3

14 02/01/2000 10.0 19.142 511.0 309.1 61 57.8 11 16.4 3

15 12/01/2000 10.0 17.274 338.7 207.0 61 35.5 10 9.5 3

16 22/01/2000 10.0 11.3 6.3 56 2.3 20 0.4 3

17 03/02/2000 15.0 3.892 104.4 35.7 34 52.3 50 3.4 3

18 21/02/2000 20.0 11.224 193.9 118.8 61 34.4 18 4.1 2

19 01/04/2000 60.0 4.764 132.0 69.4 53 28.7 22 2.8 2

20 31/05/2000 60.0 3.390 50.1 31.5 63 5.8 12 1.4 3

21 30/07/2000 60.0 1.117 36.9 20.3 55 4.7 13 1.3 3

recovery, sediment trap cups were allowed to settle before

supernatant was drawn off with a syringe for salinity, nutri-

ents and pH measurements. The remaining sample slurries

were sieved through a 1 mm sieve and then split into 10 frac-

tions using a rotary splitter (McLane, Inc.). Three of these

splits were filtered onto Nucleopore filters (0.45 pore size),

removed from the filter as a wet cake of material, oven-dried

at 60 ◦C and ground in a mortar. This material was used to de-

termine the dry mass flux and the major components of the

flux (particulate inorganic carbon (PIC), POC and biogenic

silica). PIC was determined by closed system acidification

with phosphoric acid and coulometry. Particulate total car-

bon (PC) was determined by unacidified combustion using a

carbon-hydrogen-nitrogen (CHN) elemental analyzer. POC

was calculated from PC by substraction of PIC. Total sili-

con and aluminium contents were estimated by HF–HNO3

microwave digestion and inductively coupled plasma emis-

sions spectrometry following the methodology described by

Bray et al. (2000). Biogenic silica was determined from to-

tal silica by subtracting lithogenic silica estimated by assum-

ing a lithogenic Al : Si mass ratio of 3.42 (Taylor, 1964).

These methods for PIC and POC/particulate organic nitro-

gen (PON) were used for all subsequent years, with very

slight modifications: (i) the wet cake method was replaced

by drying prior to removing the material from the filter, (ii)

in some years sieving and filtering was done at sea and the

samples were frozen on the filters until dried upon returning

to land. The silica methods varied more strongly over time:

(i) for deployments beginning in 1998, 1999 and 2000, the

use of HF in the digestion was replaced by high temperature

combustion with lithium borate in a graphite crucible and

HNO3 digestion to determine total silicon and aluminium;

(ii) biogenic silica for these years (and retroactively for 1997)

was calculated using the updated estimate for the lithogenic
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Table 2. Continued.

Deployment Cup Sampling period Length Diatoms Total mass BSiO2 CaCO3 POC

mid-point days 106 valves m−2 d−1 mg m−2 d−1 mg m−2 d−1 % mg m−2 d−1 % mg m−2 d−1 %

54◦ S 800 m, 1 23/11/2002 10.0 5.789 96.7 46.8 48 18.3 19 3.6 4

2002–2003 2 03/12/2002 10.0 27.759 190.6 110.6 58 37.5 20 4.6 2

3 13/12/2002 10.0 65.376 363.9 203.6 56 81.0 22 12.3 3

4 23/12/2002 10.0 36.000 240.7 134.0 56 47.2 20 11.4 5

5 02/01/2003 10.0 6.766 125.6 54.4 43 45.4 36 4.8 4

6 12/01/2003 10.0 18.438 158.9 93.7 59 35.0 22 5.4 3

7 22/01/2003 10.0 28.832 360.2 219.1 61 68.9 19 8.6 2

8 01/02/2003 10.0 45.008 213.8 113.7 53 48.3 23 5.5 3

9 11/02/2003 10.0 28.106 396.5 253.8 64 56.0 14 5.1 1

10 21/02/2003 10.0 16.957 60.8 26.6 44 23.7 39 2.2 4

11 03/03/2003 10.0 1.902 58.5 16.8 29 23.8 41 5.5 9

12 13/03/2003 10.0 1.462 89.3 26.6 30 37.0 41 7.0 8

13 23/03/2003 10.0 2.326 49.5 13.6 28 25.1 51 3.4 7

14 02/04/2003 10.0 0.995 33.5 7.6 23 18.2 54 2.7 8

15 12/04/2003 10.0 1.192 31.9 6.2 19 20.1 63 1.6 5

16 22/04/2003 10.0 0.724 21.6 5.8∗ 27∗ 14.0 65 1.0 4

17 09/05/2003 25.0 1.996 23.8 7.3 31 12.8 54 0.9 4

18 11/06/2003 40.0 1.625 23.7 10.8 46 7.8 33 1.0 4

19 23/07/2003 45.0 1.226 16.9 8.0 47 5.5 33 0.7 4

20 25/08/2003 20.0 2.606 33.6 13.5 40 11.9 35 1.8 5

21 15/09/2003 23.0 33.6

54◦ S 800 m, 1 04/10/2003 14.0 0.352 15.1 8.1∗ 54∗ 4.5∗ 30∗ 0.5∗ 3∗

2003–2004 2 18/10/2003 14.0 1.143 23.4 12.6 54 7.0 30 0.8 3

3 01/11/2003 14.0 2.808 34.8 18.6 54 10.8 31 1.1 3

4 15/11/2003 14.0 11.519 121.0 54.6 45 19.9 16 2.0 2

5 29/11/2003 14.0 7.748 75.5 35.9 48 14.6 19 1.6 2

6 13/12/2003 14.0 19.892 178.6 111.6 62 40.2 23 3.6 2

7 27/12/2003 14.0 10.320 232.6 134.8 58 43.6 19 7.2 3

8 10/01/2004 14.0 30.998 182.0 114.5 63 33.7 19 6.2 3

9 24/01/2004 14.0 16.786 121.9 81.7 67 21.0 17 3.3 3

10 07/02/2004 14.0 11.142 63.9 37.0 58 10.8 17 2.7 4

11 21/02/2004 14.0 5.982 28.5 16.6 58 7.0 24 1.0 4

12 06/03/2004 14.0 6.189 31.0 18.4 59 7.7 25 0.9 3

13 20/03/2004 14.0 9.824 66.2 45.3 68 10.2 15 1.0 2

14 03/04/2004 14.0 11.515 84.6 52.6 62 16.9 20 0.8 1

15 17/04/2004 14.0 0.622 15.6 10.1∗ 65∗ 4.9 31 0.8 5

16 01/05/2004 14.0 0.658 10.6 6.9∗ 65∗ 4.0 38 0.5 4

17 25/05/2004 35.0 3.431 19.6 13.7 70 3.5 18 0.4 2

18 29/06/2004 35.0 1.549 19.3 11.3 59 4.5 23 1.1 6

19 03/08/2004 35.0 1.235 14.5 6.0 41 2.8 20 2.0 14

20 07/09/2004 35.0 1.088 10.3 5.0 49 3.8 37 0.5 5

21 02/10/2004 14.0 0.458 7.3 3.6 49 2.5 34 0.5 7

Al : Si mass ratio of 3.83 (Taylor and McLennan, 1985); (iii)

from 2001 onwards, total silica was not measured, instead

hot alkaline digestion and colorimetry was used to estimate

biogenic silica directly (following the method of Quéguiner,

2001).

3.4 Siliceous microplankton sample preparation

A total of 138 samples were processed for siliceous mi-

croplankton analysis. Each split was refilled with distilled

water to 40 mL, from which 10 mL were subsampled and

buffered with a solution of sodium carbonate and sodium

hydrogen carbonate (pH 8) and stored at 4 ◦C in the dark

for future calcareous nannoplankton analysis. The remain-

ing 30 mL were treated with potassium permanganate, hy-

drogen peroxide and concentrated hydrochloric acid follow-

ing the methodology used by Romero et al. (1999). Three

slides per sample were prepared and mounted using the stan-

dard decantation method outlined by Bárcena and Abrantes

(1998). This method produces random settling of the diatom

valves for quantitative microscopic purposes. Siliceous mi-

croplankton analysis was carried out on permanent slides

(Norland optical adhesive 61 mounting medium; refractive

index: 1.56) of acid-cleaned material. Qualitative and quan-

titative analysis were done at x1000 and x400 magnifications

using an Olympus BH-2 compound light optical microscope

with phase-contrast illumination. In order to properly charac-

terise the diatom assemblages, a target of 400 diatom valves

was counted per sample. Owing to the strong seasonality in

diatom production, some cups collected very low numbers

of diatom valves. For these samples a compromise between

number to be counted and time spent had to be reached but

the number of valves counted was never less than 100 with

the exception of cup no. 6 of year 2000–2001, and cup no. 14

of year 1999–2000 at the 47◦ S site which were not consid-
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Table 2. Continued.

Deployment Cup Sampling period Length Diatoms Total mass BSiO2 CaCO3 POC

mid-point days 106 valves m−2 d−1 mg m−2 d−1 mg m−2 d−1 % mg m−2 d−1 % mg m−2 d−1 %

54◦ S 800 m, 1 22/12/2005 17.0 24.184 197.9 120.0 61 43.5 22 4.6 2

2005–2006 2 08/01/2006 17.0 19.228 193.6 115.2 59 47.5 25 3.2 2

3 25/01/2006 17.0 47.595 418.1 275.3 66 65.1 16 12.2 3

4 11/02/2006 17.0 11.571 178.0 60.8 34 92.1 52 3.9 2

5 28/02/2006 17.0 4.840 116.7 31.7 27 66.9 57 2.4 2

6 17/03/2006 17.0 1.180 44.9 7.9 17 30.1 67 1.5 3

7 03/04/2006 17.0 8.853 110.6 46.0 42 50.2 45 2.6 2

8 20/04/2006 17.0 11.216 142.8 86.5 61 33.0 23 3.1 2

9 07/05/2006 17.0 9.477 107.0 63.5 59 23.3 22 2.6 2

10 07/06/2006 45.0 0.904 18.6 7.6 41 8.0 43 0.6 3

11 22/07/2006 45.0 0.072 3.6 1.6∗ 45∗ 1.2 33 0.4 10

12 05/09/2006 45.0 0.778 9.1 4.6 50 2.8 31 0.3 3

1 18/10/2006 16.0 0.291 6.4 1.9∗ 29∗ 1.0 15 0.4 7

2 03/11/2006 16.0 1.065 23.9 6.9 29 3.4 14 1.2 5

3 19/11/2006 16.0 4.461 77.6 25.1 32 13.6 18 3.4 4

4 05/12/2006 16.0 23.929 131.5 71.5 54 28.7 22 4.5 3

5 21/12/2006 16.0 72.099 333.9 220.9 66 30.8 9 10.5 3

6 06/01/2007 16.0 100.622 335.5 243.5 73 18.4 5 9.5 3

7 22/01/2007 16.0 0.014 0.8 0.6∗ 72∗ 0.1 7 0.0∗ 3∗

8 07/02/2007 16.0 0.028 1.0 0.7∗ 72∗ 0.1∗ 11∗ 0.0∗ 2∗

9 23/02/2007 16.0 0.012 0.6 0.4∗ 72∗ 0.1∗ 11∗ 0.0∗ 2∗

10 11/03/2007 16.0 0.021 0.6 0.4∗ 72∗ 0.1∗ 11∗ 0.0∗ 2∗

11 27/03/2007 16.0 7.500 33.0 22.8 69 3.8 12 1.1 3

12 12/04/2007 16.0 0.030 1.8 1.2∗ 69∗ 0.8 43 0.1 4

13 28/04/2007 16.0 0.106 6.2 4.3∗ 69∗ 4.1 67 0.1 2

14 14/05/2007 16.0 0.010 0.7 0.5∗ 69∗ 0.3∗ 51 0.0∗ 3∗

15 30/05/2007 16.0 0.013 0.5 0.4∗ 69∗ 0.3∗ 51∗ 0.0∗ 3∗

16 18/06/2007 23.0 0.420 9.0 6.2∗ 69∗ 3.9 43 0.3 3

17 11/07/2007 23.0 0.005 0.3 0.2∗ 69∗ 0.2∗ 43∗ 0.0∗ 3∗

18 03/08/2007 23.0 0.001 0.2 0.2∗ 69∗ 0.1∗ 43∗ 0.0∗ 3∗

19 23/08/2007 16.0 0.001 0.1 0.1∗ 69∗ 0.0∗ 43∗ 0.0∗ 3∗

20 08/09/2007 16.0 0.140 4.2 2.9∗ 69∗ 1.9 45 0.1 3

21 24/09/2007 16.0 0.067 3.1 2.2∗ 69∗ 1.3 42 0.2 6

∗ Component fluxes representing intervals for which insufficient material was available for component measurement and were estimated.

ered for relative abundance calculations due to their negligi-

ble diatom content. The resulting counts yielded estimates of

specimens m−2 d−1 according to Sancetta and Calvert (1988)

and Romero et al. (2009), as well as relative abundances of

diatom taxa.

3.5 Taxonomic identifications

All diatom and silicoflagellate specimens were identified to

the lowest taxonomic level possible. Radiolarians were only

identified to group level. Scanning electron microscope im-

agery was used on selected samples to verify taxonomic iden-

tifications made with the light microscope. Taxonomy fol-

lowed modern concepts in Hasle and Syvertsen (1997). The

resting spores of members of the subgenus Hyalochaete of

the genus Chaetoceros were identified only at group level

due to a lack of morphological criteria. The differentia-

tion between Pseudo-nitzschia lineola and Pseudo-nitzschia

turgiduloides was often difficult due to their state of preser-

vation in the samples; therefore, they were grouped under the

category Pseudo-nitzschia cf.lineola in this study. A species

or group of species of the genus Thalassiosira larger than

20 µm, highly dissolved and with radial to fasciculated are-

olation were grouped together under the name Thalassiosira

sp. 1. Several small Thalassiosira species with similar mor-

phological features were assembled together under Thalas-

siosira trifulta group following Shiono and Koizumi (2000).

Due to the gradational nature of the morphology between

Thalassiosira gracilis var. gracilis and T. gracilis var. ex-

pecta, both varieties were grouped together under the name

T. gracilis group following the recommendations of Crosta et

al. (2005).

3.6 Statistical analysis

In order to enable comparison with other sites, annual flux

estimates are provided in Table 3. These were obtained by

assuming that total mass flux outside of the sampling pe-

riod was constant and by linearly interpolating values for the

small gaps (i.e. 8.5–17 days intervals) during the productive

season. No attempt was made to annualise the relative con-

tribution of the diatom taxa, and therefore average values of

the integrated diatom assemblage for whole sampling inter-

val are provided in Table 3.

In order to investigate the covariability between the main

diatom taxa along our sediment trap records, we conducted

separate principal component analyses (PCA) for each site

using of Statistica 7.0® software. PCA analysis is a statis-
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Table 3. Estimated annual export fluxes of total mass flux, biogenic silica, calcium carbonate, POC and diatom valves for < 1 mm fraction at

the 47, 54 and 61◦ S sites.

(a) Annual fluxes of biogeochemical components (g m−2 yr−1) and diatom valves (valves 108 m−2 yr−1).

Trap Year Total mass flux SiO2-biogenic PIC as CaCO3 POC Diatom valves (x108)

47_1000 1999–2000 12 1 8 1.1 0.3

2000–2001 15 1 12 0.9 0.8

Average±SD 14± 2 1± 0 10± 3 1.0± 0.1 0.5± 0.4

54_800 1997–1998 19 10 4 0.6 30.2

1999–2000 52 31 9 1.4 29.1

2002–2003 30 16 8 1.1 39.0

2003–2004 20 12 4 0.6 22.5

2005–2006 29 15 9 0.7 30.8

2006–2007 16 10 2 0.5 34.5

Average±SD 24± 13 12± 9 7± 3 0.8± 0.4 31.0± 5.5

61_2000 2001–2002 85 65 6 1.2 242.9

(b) Proportion of biogeochemical components (wt %).

Trap Year SiO2-biogenic PIC as CaCO3 POC

47_1000 1999–2000 8 65 9.0

2000–2001 7 76 5.6

Average±SD 7± 1 70± 8 7.3± 2.4

54_800 1997–1998 53 23 2.9

1999–2000 60 17 2.7

2002–2003 52 25 3.5

2003–2004 59 20 3.1

2005–2006 53 30 2.5

2006–2007 63 12 3.3

Average±SD 57± 4 21± 7 3.0± 0.4

61_2000 2001–2002 76 7 1.4

(c) Annual fluxes of biogeochemical elements, mmol m−2 yr−1 and mole ratios.

Trap Year BSi PIC POC BSi : PIC POC : BSi

47_1000 1999–2000 15 76 89 0.2 5.7

2000–2001 17 116 72 0.1 4.2

Average±SD 16± 1 96± 28 80± 12 0.2± 0.0 4.9± 1.1

54_800 1997–1998 168 43 46 3.9 0.3

1999–2000 513 87 117 5.9 0.2

2002–2003 264 77 89 3.4 0.3

2003–2004 192 40 50 4.8 0.3

2005–2006 252 87 59 2.9 0.2

2006–2007 168 19 43 8.9 0.3

Average±SD 259± 131 59± 29 67± 29 5.0± 2.2 0.3± 0.0

61_2000 2001–2002 1081 63 102 17.3 0.1
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tical technique that reduces the information brought by a

high number of independent variables into a smaller set of

dimensions (factors) with a minimum loss of information.

Only species and taxonomic groups with relative contribu-

tions > 1 % for the entire sampling period were considered in

the analysis, i.e. thirteen taxa from site 47◦ S and nine taxa

from site 54◦ S. The relative contribution of these groups of

species was recalculated for each sample and then a log trans-

formation (log x+1) was applied in order to normalise the

distribution of the data. Diatom groups were then determined

using a Q-mode factor analysis of the samples with a max-

imised variance (VARIMAX) rotation.

The Shannon’s diversity index (Shannon, 1949) was used

to document latitudinal diversity trends across sites (Table 4).

3.7 Environmental variables

Weekly SSTs for the decade 1997–2007 were derived from

the IGOSS NMC (the Integrated Global Ocean Services

System Products Bulletin, National Meteorological Center;

Reynolds et al., 2002) database, each value is a weekly com-

posite of data collected within the area 48.5–45.5◦ S× 130–

150◦ E for the 47◦ S site and 55.5–52.5◦ S× 130–150◦ E for

the 54◦ S site (Figs. 2a and 3a). Sea-viewing Wide Field-of-

View Sensor (SeaWiFS) satellite-derived chlorophyll a and

photosynthetically available radiation (PAR) estimates were

obtained from NASA’s Giovanni online data system (Acker

and Leptoukh, 2007) for the same area used for the SST es-

timates (Figs. 2a and 3a).

Primary productivity values (mg C m−2 d−1) for all the

sites were obtained from the Ocean Productivity website

(www.science.oregonstate.edu/ocean.productivity/index.

php), which provides estimates of net primary productivity

derived from SeaWiFS satellite data by the standard verti-

cally generalized production model (VGPM; Behrenfeld and

Falkowski, 1997) and the carbon-based production model

(CbPM; Behrenfeld et al., 2005).

4 Results

Here, we present the chemical (total mass, biogenic silica,

carbonate and POC) and biological (diatom species) com-

positions of the particle fluxes registered at ∼ 1000 m at the

47◦ S site during 2 years (July 1999–October 2001) and at

54◦ S site during 6 years (September 1997–February 1998,

July 1999–August 2000, November 2002–October 2004 and

December 2005–October 2007; Table 2). A description of

the total particle flux and its chemical signature at stations

47 and 54◦ S for the first year deployment of the sediment

traps (1997–1998) can be found in Trull et al. (2001).

4.1 Biogeochemical fluxes

The total mass and bulk component (biogenic silica, carbon-

ate and POC) fluxes for both traps are shown in Figs. 2b

and 3b and listed in Table 2. Annual total mass flux at∼ 1 km

depth was the lowest at station 47◦ S (14± 2 g m−2 yr−1; 2-

year average± standard deviation) and the highest at sta-

tion 54◦ S (24± 13 g m−2 yr−1; 6-year average± standard

deviation; Table 3). BSi flux followed a similar latitudinal

trend with lower fluxes at 47◦ S (1± 0 g m−2 yr−1) com-

pared to 54◦ S (12± 9 g m−2 yr−1). Carbonate export ex-

hibited less variability between sites, with values somewhat

higher at 47◦ S (10± 3 g m−2 yr−1) than those measured at

54◦ S (7± 3 g m−2 yr−1, respectively). Interestingly, despite

the strong latitudinal differences in the magnitude of the

mass fluxes, POC export was very similar at both stations

(1.0± 0.1 and 0.8± 0.4 g m−2 yr−1, for 47 and 54◦ S, respec-

tively).

In terms of relative abundance, the biogenic silica fraction

represented 57 % of the mass flux at the 54◦ S site, whereas

its contribution dramatically dropped to 7 % at the 47◦ S sta-

tion. Calcium carbonate and POC accounted for 70 and 7.3 %

at the 47◦ S site, respectively, and 21 and 3 % at the 54◦ S

station (Table 3). These differences were primarily driven

by the northward decrease in the biogenic silica fluxes. The

BSi : PIC mole ratios decreased northward mirroring the lati-

tudinal variations of the particle composition, from 5.0 at sta-

tion 54◦ S to 0.2 at station 47◦ S (Table 3; Fig. S1 in the Sup-

plement). The POC : BSi followed an opposite pattern with

0.3 at 54 and 4.9 at 47◦ S.

The seasonality of the total mass flux at station 47◦ S

during the 2-year record showed a period of enhanced

particle export in spring and secondary peaks in summer

and autumn (Fig. 2b). The highest fluxes were registered

in November–December 2000 (92–176 mg m−2 d−1), March

2001 (105 mg m−2 d−1) and October 1999 (90 mg m−2 d−1).

Total mass flux at the 54◦ S site was strongly seasonal with

maximum values occurring during the late spring–summer

and very low export prevailing through the autumn and win-

ter months. The late spring–summer export maxima were

as short as 3 months and often showed a bimodal distribu-

tion (e.g. 1997–1998, 1999–2000, 2002–2003; Fig. 3b). The

highest total mass fluxes at this site were collected during

December–January 1999 (511–724 mg m−2 d−1), January

2006 (418 mg m−2 d−1), February 2003 (397 mg m−2 d−1)

and January 1998 (396 mg m−2 d−1).

4.2 Diatom fluxes

The biogenic silica flux at the 47 and 54◦ S site was com-

posed of diatoms, silicoflagellates, radiolarians and a hand-

ful of skeletons of the dinoflagellate Actiniscus pentaste-

rias. Diatom fluxes were 1 order of magnitude higher than

those of silicoflagellates and radiolarians at the 47◦ S site,

and 1 and 3 orders of magnitude higher, respectively, at the

54◦ S site. Consistent with the biogenic silica flux, diatoms

were most numerous in the 54◦ S site with an annual flux of

31± 5.5× 108 valves m−2 yr−1 (6-year average± standard
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Table 4. List of diatom species recorded in the sediment traps of the 47, 54 and 61◦ S (2000 m) sites along the 140◦ E. Relative abundances

< 0.1 are represented by an asterisk (∗), whereas the absence of a taxon in a given site is represented by an empty circle (©).

Species SAZ (47◦ S) PFZ (54◦ S) AZ (61◦ S)

Actinocyclus actinochilus (Ehrenberg) Simonsen ∗
©

∗

Actinocyclus curvatulus Janisch 0.3 ∗
©

Actinocyclus exiguus Fryxell and Semina ∗
© ©

Actinocyclus octonarius Ehrenberg ∗
© ©

Actinocyclus spp. 0.6 ∗ ∗

Alveus marinus (Grunow) Kaczmarska and Fryxell ∗
© ©

Asteromphalus hookeri Ehrenberg ∗ 0.5 0.2

A. hyalinus Karsten ∗ 0.2 0.2

A. parvulus Karsten ∗ 0.1 0.2

Asteromphalus spp. © ©
∗

Azpeitia tabularis (Grunow) Fryxell and Sims 10.8 0.8 0.7

Chaetoceros aequatorialis var. antarcticus Manguin © 0.1 ∗

Ch. atlanticus Cleve 0.1 0.5 0.2

Ch. dichaeta Ehrenberg © 0.6 0.1

Ch. peruvianus Brightwell 0.1 ∗
©

Chaetoceros subgenus Hyalochaete spp. 0.2 0.4 0.2

Chaetoceros subgenus Phaeoceros spp. © 0.1 0.2

Chaetoceros resting spores 2.3 0.5 0.1

Cocconeis spp. 0.2 © ©

Corethron sp. ∗ ∗ ∗

Cyclotella spp. ∗
© ©

Dactyliosolen antarcticus Castracane

Diploneis bombus (Ehrenberg) Ehrenberg ∗
© ©

Eucampia antarctica (Castracane) Mangin (summer form) © 0.3 ©

E. antarctica (Castracane) Mangin (winter form) ∗ ∗ 0.1

Fragilariopsis curta (Van Heurck) Hustedt ©
∗ 0.6

F. cylindrus (Grunow) Krieger ©
∗ 0.2

F. doliolus (Wallich) Medlin and Sims 0.5 © ©

F. kerguelensis (O’Meara) Hustedt 43 59.3 79.9

F. obliquecostata (van Heurck) Heiden ©
∗ ∗

F. pseudonana (Hasle) Hasle ∗ 3.1 2

F. rhombica (O’Meara) Hustedt 0.4 2.3 0.9

F. ritscherii Hustedt 0.4 0.1 0.1

F. separanda Hustedt © 0.1 2.1

F. cf. sublineata (Van Heurck) Heiden © ©
∗

Fragilariopsis spp. ©
∗

©

Gyrosigma spp. ©
∗

©

Haslea trompii (Cleve) Simonsen © 0.1 ∗

Hemidiscus cuneiformis Wallich 3.7 © ©

Navicula directa (Smith) Ralfs in Pritchard © 4.6 0.3

Nitzschia bicapitata Cleve 2.8 ∗
©

N. braarudii (Hasle) 0.2 © ©

N. kolaczeckii Grunow 0.6 ∗
©

N. sicula (Castracane) Hustedt var. bicuneata Grunow 2 ∗ 0.1

N. sicula (Castracane) Hustedt var. rostrata Hustedt ∗ ∗
©

Nitzschia spp. ∗ ∗
©

Paralia spp. ∗
© ©

Pleurosigma spp. 0.2 0.1 ∗

Porosira pseudodenticulata (Hustedt) Jousé 0.1 ∗ ∗

Proboscia alata (Brightwell) Sundström 0.1 ∗
©

P. inermis (Castracane) Jordan Ligowski ©
∗

©

Proboscia spp. ∗ ∗
©
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Table 4. Continued.

Species SAZ (47◦ S) PFZ (54◦ S) AZ (61◦ S)

Psammodiction panduriforme (Gregory) Mann 0.1 © ©

Pseudo-nitzschia cf. lineola ∗ 8.1 0.4

P-n. heimii Manguin ∗ 4.6 ∗

Pseudo-nitzschia spp. ∗
© 0.1

Rhizosolenia antennata (Ehrenberg) Brown f. antennata ∗ ∗
©

R. antennata (Ehrenberg) Brown f. semispina Sundström 0.1 ∗
©

R. bergonii Peragallo 1.8 ∗
©

Rhizosolenia cf. costata ©
∗

©

R. curvata Zacharias ©
∗

©

R. polydactyla Castracane f. polydactyla ∗ ∗
©

Rhizosolenia sp. f. 1A (Armand et Zielinski) ©
∗ ∗

Rhizosolenia spp. 0.2 ∗ 0.1

Roperia tesselata (Roper) Grunow 3.2 ∗
©

Stellarima stellaris (Roper) Hasle et Sims 0.5 ∗
©

Thalassionema nitzschioides var. capitulata (Castracane) Moreno-Ruiz ∗ 0.2 0.1

T. nitzschioides var. lanceolata (Grunow) Pergallo et Pergallo 0.2 0.9 0.1

T. nitzschioides var. parvum Moreno-Ruiz ∗ ∗
©

T. nitzschioides var. 1 (Zielinski et Gersonde) 0.2 0.4 ©

Thalassiosira eccentrica (Ehrenberg) Cleve 0.9 0.1 0.2

T. ferelineata Hasle and Fryxell 0.3 © ©

T. gracilis var. expecta (Van Landingham) Frxyell et Hasle 0.1 0.7 0.4

T. gracilis var. gracilis (Karsten) Hustedt 0.3 3.9 3.6

T. gracilis group 0.3 4.6 4.1

T. gravida Cleve © ©
∗

T. lentiginosa (Janisch) Fryxell 2.1 2.1 5

T. leptopus (Grunow ex Van Heurck) Hasle et G.Fryxell © ©
∗

T. lineata Jousé 2.2 © ©

T. maculata Fryxell et Johans. 0.2 0.1 ∗

T. oestrupii (Ostenfeld) Hasle var. oestrupii Fryxell and Hasle 3.6 0.3 ∗

T. oestrupii (Ostenfeld) Hasle var.venrickae Fryxell and Hasle 0.6 0.1 ©

T. oliveriana(O’Meara) Makarova et Nikolaev 0.1 0.6 0.7

T. symmetrica Fryxell et Hasle 0.3 ∗
©

T. trifulta Fryxell 0.1 © ©

T. tumida (Janisch) Hasle 0.2 0.3 0.1

Thalassiosira sp. 1 5.4 0.1 ∗

Thalassiosira sp. 2 0.2 0.1 ©

Thalassiosira sp. 3 © 0.2 ©

Thalassiosira eccentric group 0.1 © ©

T. linear group 0.2 ∗ 0.1

T. trifulta group 1.9 0.1 ©

Thalassiosira spp. < 20 µm 0.9 1.4 0.4

Thalassiosira spp. > 20 µm 1.7 0.1 ∗

Thalassiothrix antarctica Schimper ex Karsten 2.2 0.4 0.2

Trachyneis aspera (Ehrenberg) Cleve © © ©

Trichotoxon reinboldii (Van Heurck) Reid et Round ©
∗

©

Tropidoneis group ∗ 0.4 ∗

Other centrics 1.2 0.1 ∗

Other pennates 0.2 ∗ 0.1

Shannon’s diversity index 2.48 1.86 1.04

deviation) compared to 0.5± 0.4× 108 valves m−2 yr−1 (2-

year average± standard deviation) of the 47◦ S site.

Total diatom-valve flux at the 47◦ S site (Fig. 4a) showed

a less pronounced seasonality than that observed at 54◦ S

(Fig. 5a) and exhibited a weak correlation with the to-

tal mass (r = 0.37, n= 30) and BSi (r = 0.42, n= 29)

fluxes. Diatoms occurred in the greatest numbers dur-

ing November 2000 (1.6× 106 valves m−2 d−1), February–
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Figure 4. Temporal variability of (a) total diatom flux and biogenic silica and (b) flux and relative contribution of the main diatom species at

1000 m at the 47◦ S site for the period July 1999–October 2001.

March 2001 (0.4–0.8× 106 valves m−2 d−1) and October

1999 (0.4× 106 valves m−2 d−1).

At station 54◦ S, total diatom-valve flux was highly sea-

sonal and followed a similar pattern to that of the total

mass (r = 0.66, n= 108) and BSi fluxes (r = 0.68, n= 108).

These correlations are high despite the biases associated with

our diatom-valve counting technique which does not allow

for quantification of small valve fragments. In particular the

high diatom-valve fragmentation observed during the pro-

ductive period of 1999–2000 reduced the correlations be-

tween diatom-valve flux and total mass and BSi fluxes. In

fact, the latter correlations increased significantly after ex-

cluding the 1999–2000 data (r = 0.85, n= 88 and r = 0.87,

n= 88, respectively).

The spring–summer diatom bloom often exhibited two

peaks of enhanced export separated by a period of lower

flux (e.g. 1997–1998, 1999–2000, 2002–2003; Figs. 5a

and 7). During the productive period of 2006–2007, the

diatom bloom exhibited one single peak during which

the largest diatom fluxes of the record were regis-

tered (up to 100× 106 valves m−2 d−1 in January 2007;

Fig. 5a). Secondary diatom flux maxima were regis-

tered in January 1998 (71× 106 valves m−2 d−1), Decem-

ber 2002 (65× 106 valves m−2 d−1) and December 1999

(52× 106 valves m−2 d−1). We noticed that during the 1999–

2000, summer bloom the high BSi fluxes were not coupled

with a proportional increase of the diatom valves (Fig. 5a).

The higher degree of fragmentation observed on these sam-

ples could be attributed to either a more intense grazing pres-

sure by the zooplankton community that year or by a higher

fragmentation of the valves during the sample preparation

due to the presence of abundant numbers of weakly silicified

diatoms (e.g. species of the genus Pseudo-nitzschia) which

are more prone to break during the sample processing (Rem-

bauville et al., 2015).

In terms of diatom assemblage composition, the occur-

rence and fractional contributions of all the diatom taxa

found at the 47 and 54◦ S study sites, as well as at 61◦ S

(Rigual-Hernández et al., 2015), are provided in Table 4.

The diatom sinking assemblage at station 47◦ S was more
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Figure 5. Temporal variability of (a) total diatom flux and biogenic silica and (b) flux and relative contribution of the main diatom species at

800 m at the 54◦ S site for the periods July 1999–August 2000, November 2002–October 2004 and December 2005–October 2007.
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Table 5. Varimax loadings matrix (rotation: varimax normalised). Factor loadings for analysis on sediment trap samples using species and

group of species with abundances higher than 1 % of the total integrated diatom assemblage for the whole sampling period at the 47◦ S

(a) and 54◦ S site (b). Bold print indicates the dominant species or group of species within each factor (loadings > 0.70).

(a) 47◦ S site.

Factor 1 Factor 2 Factor 3 Factor 4

Fragilariopsis kerguelensis 0.05 −0.73 −0.46 −0.35

Azpeitia tabularis 0.59 0.38 0.06 0.55

Thalassiosira sp. 1 −0.11 0.91 −0.17 −0.21

Nitzschia bicapitata −0.82 0.41 0.09 0.19

Chaetoceros resting spores −0.59 0.12 0.56 0.08

Thalassiosira oestrupii var. oestrupii −0.06 −0.75 0.20 0.13

Hemidiscus cuneiformis 0.63 0.47 0.03 −0.09

Roperia tesselata 0.04 −0.29 0.73 0.11

Thalassiothrix antarctica 0.06 −0.05 0.05 0.61

Nitzschia sicula var. bicuneata −0.64 −0.09 −0.03

Thalassiosira lineata 0.15 0.02 0.78 −0.39

Rhizosolenia bergonii 0.08 0.14 0.17 −0.57

Thalassiosira lentiginosa 0.47 −0.16 0.15 0.29

Thalassiosira trifulta group −0.53 −0.04 −0.06 −0.57

Variance (%) 19 19 13 13

Cumulative variance 19 38 51 64

(b) 54◦ S site.

Diatom species or groups of species Factor 1 Factor 2 Factor 3

Fragilariopsis kerguelensis −0.91 −0.20 −0.11

Navicula directa 0.84 −0.14 0.17

Pseudo-nitzschia heimii 0.35 0.70 0.36

Pseudo-nitzschia cf. lineola 0.77 0.25 0.41

Thalassiosira gracilis group 0.81 −0.19 0.19

Fragilariopsis pseudonana 0.79 0.09 −0.08

Fragilariopsis rhombica 0.85 0.29 0.14

Thalassiosira lentiginosa 0.09 −0.89 0.00

Chaetoceros group 0.12 0.12 0.93

Variance (%) 48 17 14

Cumulative total variance (%) 48 65 79

Bold values highlight the taxa that define each factor.

diversified (H ′ for the entire sampling period= 2.48) than

those found south the SAF (H ′= 1.86 at the 54◦ S;H ′= 1.04

at the 61◦ S) consisting of 79 species or groups of species.

The most abundant species was Fragilariopsis kerguelensis,

which represented 43 % of the integrated assemblage for the

entire sampling period (Fig. 4). Subordinate contributions

to the diatom assemblage were made by Azpeitia tabularis

(10 %), Thalassiosira sp. 1 (4 %), Nitzschia bicapitata (4 %),

resting spores of Chaetoceros spp. (subgenus Hyalochaetae;

3 %), Thalassiosira oestrupii var. oestrupii (3 %), Hemidis-

cus cuneiformis (3 %) and Roperia tesselata (3 %; Fig. 4). A

total of 77 taxa were identified at the 54◦ S site (Table 4). F.

kerguelensis was also the dominant species, contributing up

to 59 % of the diatom assemblage for the whole sampling pe-

riod (Fig. 5). Secondary contributors correspond to Pseudo-

nitzschia cf. lineola (8 %), Pseudo-nitzschia heimii (5 %),

Thalassiosira gracilis group (4 %), Fragilariopsis pseudo-

nana (3 %), Fragilariopsis rhombica (2 %) and Thalassiosira

lentiginosa (2 %; Fig. 5).

4.3 Principal component analysis of diatom

assemblages

The PCA for the 47◦ S site identified four components con-

taining 64 % of the total variance, whereas that of the 54◦ S

site required three components to describe 79 % of the infor-

mation of diatom data (Table 5). Figure 6 shows the position

of the species on the first two PCA axes for the 47 and 54◦ S

sites. Together with the species, we plotted total and major

components mass fluxes.

The first component of the PCA for the 47◦ S site ac-

counted for 19 % of the variance. The centric species A. tab-
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ularis and H. cuneiformis (Fig. 6) had a positive loading on

factor 1 and exhibited their highest relative abundance during

spring and summer (Fig. 4). Factor 2 explained 19 % of the

variance and was dominated by F. kerguelensis, T. oestrupii

var. oestrupii and Thalassiosira sp. 1. F. kerguelensis main-

tained a relatively constant contribution to the diatom assem-

blages during the whole sampling interval with a tendency to

peak in late summer and autumn together with T. oestrupii

var. oestrupii. None of the factors of the PCA of the 47◦ S

site were significantly correlated with the biogenic particle

fluxes (Fig. 6a and Table 6a).

At the 54◦ S site, the first component (48 % of the total

variance) was highly correlated with the bulk components

of the flux (Fig. 6b and Table 6b) and individualises two

groups of diatom species. High-positive factor loadings char-

acterise the bloom-forming Pseudo-nitzschia cf. lineola, F.

rhombica, F. pseudonana and N. directa and the cool-open-

ocean diatom T. gracilis group. The relative contribution of

these species peaked during the productive season (Fig. 5)

and showed a strong positive correlation with all the compo-

nents of the flux (Fig. 6b and Table 6b). Therefore, diatom

species characterized by a high-positive first factor loading

can be defined as the “high-export group”. In contrast, a high-

negative factor loading on the first PCA axis was attributed

to F. kerguelensis, which peaked during winter and autumn,

coinciding with very low particle fluxes. Pseudo-nitzschia

heimii was the only species with a high positive factor load-

ing on the second PCA axis (Fig. 6b and Table 5) and its

relative abundance peaked mainly from mid-summer to au-

tumn. With the exception of year 2002-2003, a consistent di-

atom species succession was consistently observed over the

growth season at the 54◦ S site (Figs. 5b and 7). During those

years with a double peak diatom sedimentation bloom, the

first maximum (November to early December) was always

dominated by F. kerguelensis and by other large and heavily

silicified diatoms, such as T. lentiginosa. During the second

peak (in late December to early February), the relative con-

tribution of Pseudo-nitzchia cf. lineola and small Fragilar-

iopsis species increased sharply, representing together up to

50 % of the diatom assemblage in January 2000 (Figs. 5b and

7). Even during year 2006–2007, when the diatom sedimen-

tation bloom exhibited a single maximum, a similar succes-

sion can be discerned within the peak.

5 Discussion

5.1 Latitudinal trend of biogenic particle fluxes to the

ocean interior

The contrasting latitudinal variations in the composition and

magnitude of the particle fluxes along the 140◦ E transect

reflect the physicochemical and biological characteristics of

the different zonal systems sampled by the traps. Relatively

low BSi and diatom export measured in the mesopelagic wa-

Table 6. Correlation coefficients between the PCA factors and the

fluxes of bulk components (total mass, carbonate, biogenic silica

and POC) for the 47◦ S (a) and 54◦ S (b) sites.

(a) 47◦ S site.

Factor 1 Factor 2 Factor 3 Factor 4

Total mass −0.10 −0.14 0.01 −0.19

Biogenic silica −0.09 −0.10 0.12 −0.11

Carbonate −0.07 −0.18 −0.03 −0.20

POC −0.28 0.06 0.14 −0.12

(b) 54◦ S site.

Factor 1 Factor 2 Factor 3

Total mass 0.73 0.07 0.03

Biogenic silica 0.71 0.08 −0.01

Carbonate 0.66 0.06 0.15

POC 0.75 0.12 0.06

Bold values are significant at p < 0.05.

ters of the SAZ (Fig. 8a and Table 3) are consistent with the

low-to-moderate diatom biomass accumulation in the surface

layer of this region (Kopczynska et al., 2001; de Salas et al.,

2011). Low silicic acid (Bowie et al., 2011a) and iron lev-

els (Sedwick et al., 2008; Bowie et al., 2009; Mongin et al.,

2011), together with light limitation, as a result of cloudiness

(Bishop and Rossow, 1991) and deep summer mixed layers

(70–100 m; Rintoul and Trull, 2001), are considered the main

factors responsible for the reduced diatom production in the

SAZ. Moreover, the low BSi : PIC mole ratios measured by

the traps (< < 1; Table 3) illustrate the relatively low contri-

bution of diatoms to the particle flux export to the ocean inte-

rior. Low diatom export fluxes and BSi : PIC mole ratios are

characteristic of carbonate-dominated and low-productivity

regimes (Honjo et al., 2008) and typical of much of the cir-

cumpolar SAZ (Honjo et al., 2000; Trull et al., 2001a).

The higher diatom-valve fluxes and BSi export at the 54◦ S

site (Table 3; Fig. 8a) agrees well with previous studies of the

PFZ surface waters south of Tasmania, which reported rela-

tively large and heavily silicified diatoms as major contribu-

tors to the phytoplankton biomass (Kopczynska et al., 2001;

de Salas et al., 2011). Higher levels of silicic acid (Smith

Jr et al., 2000), colder summer surface waters and shallower

mixed winter layers than those of the SAZ (Rintoul and Trull,

2001) are most likely the main factors responsible for the

greater prevalence of diatoms in this region. As a result of

the enhanced diatom production and the drop in the abun-

dance of calcifying phytoplankton (Findlay and Giraudeau,

2000; Honjo et al., 2000), BSi : PIC mole ratios of the set-

tling material at this site shift to > 1 (Table 3).

Further south, at station 61◦ S in the southern AZ, Rigual-

Hernández et al. (2015) documented an annual diatom flux

1 order of magnitude greater than that measured at the

54◦ S site (243× 108 valves m−2 d−1 at 2000 m; Table 3 and
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Figure 6. Principal component analysis for the PFZ 47◦ S (a) and SAZ 54◦ S sites (b). Projection of the variables (diatom species or groups

of species accounting for more than 1 % of the integrated assemblage for the whole sampling period) on the first two PCA axes together with

total mass (grey), biogenic silica (blue), carbonate (yellow) and POC (red) flux.

Fig. 8a). The corresponding BSi export was as large as

65 g m−2 y−1, a value very similar to that reported in the AZ

south of New Zealand by Honjo et al. (2000; 57 g m−2, sta-

tion MS-4; Fig. 1). These very high BSi fluxes are arguably

the largest BSi exports ever measured in the world ocean

(Honjo et al., 2008). Due to the upwelling of Circumpolar

Deep Water (CDW) at the Antarctic Divergence, the surface

waters of the southern AZ exhibit very high silicate concen-

trations (up to 70 mmol Si m−3; Pollard et al., 2006) which

enhance diatom growth at the expense of other phytoplank-

ton groups (Mengelt et al., 2001; Selph et al., 2001). These

high diatom export values are consistent with the large accu-

mulation of diatom remains in the surface sediments between

the polar front (PF) and the winter sea ice edge that encircles

Antarctica, the so-called diatom ooze belt (Burckle and Cir-

illi, 1987). This diatom ooze belt constitutes the single most

important sink for silica in the world ocean (DeMaster, 1981;

Ledford-Hoffman et al., 1986; Tréguer et al., 1995; Tréguer,

2014).

5.2 Latitudinal diatom species distribution

The species occurrence observed along the 140◦ E transect

is consistent with previous reports on diatom assemblage

composition in the surface waters (Kopczynska et al., 1986;

Kopczynska et al., 2001; de Salas et al., 2011) and sediments

(Armand et al., 2005; Crosta et al., 2005; Romero et al.,

2005) of the Australian sector of the Southern Ocean, and

provide evidence, once again, that the frontal systems rep-

resent natural physical boundaries for phytoplankton species

distribution (Boyd, 2002).

Overall, the diatom assemblage registered at the 47◦ S site

is typical of the SAZ and differs significantly from those

found in the PFZ and AZ (Table 4). The SAZ represents a

“buffer zone” between the subtropical gyres to the north and

the polar waters to the south which results in a highly diverse

diatom community as highlighted by the highest H ′ (2.48;

Table 4) of the study transect. The occurrence of the warm

water taxa H. cuneiformis, Fragilariopsis doliolus, Nitzschia

kolaczeckii and T. lineata (Romero et al., 2005; Venrick et al.,

2008) is restricted to this station, and therefore, these species

appear as good indicators for the southward migration of the

warmer, saltier and nutrient-poor water masses of the SAZ

into the ACC. Moreover, the stark increase in the abundance

of the open-ocean diatoms A. tabularis, N. bicapitata, R. tes-

selata and Thalassiosira oestrupii north of the SAF suggest

the preference of these species for warmer waters (Hasle and

Syvertsen, 1997; Romero et al., 2005).

The sinking diatom assemblage registered at the 54◦ S site

is characteristic of the ACC waters and largely defined by the

dominance of F. kerguelensis. The relative abundance of F.

kerguelensis at the PFZ (59 %) represents a transitional value

between that of the AZ (80 %) and that of the SAZ (43 %).

This strong latitudinal gradient mirrors its distribution in the

surface sediments, which has been previously tied to sum-

mer SST (Crosta et al., 2005; Esper et al., 2010). However,

other potentially important influences such as mixed layer

depth, seasonality, and iron and silicate abundance also ex-

hibit latitudinal gradients, and therefore may also influence

the distribution of this species. Peak abundances of Pseudo-

nitzschia species along the 140◦ E transect are observed in

the PFZ (Table 4) and are consistent with previous studies

that described this genus as a major contributor to the bulk

phytoplankton biomass in the ACC waters (e.g. Kopczynska

et al., 2001; Smetacek et al., 2002; de Salas et al., 2011).

Moreover, it is worth noting that P-n. heimii, together with
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Figure 7. Temporal variability of the total diatom, “high-export group”, Fragilariopsis kerguelensis, biogenic silica and POC fluxes for the

6-year record at the 54◦ S site.

other large diatoms (e.g. Thalassiothrix and Proboscia), have

been reported to be major contributors of a SCM consistently

observed between 53 and 58◦ S along 140◦ E (Kopczynska

et al., 2001; Parslow et al., 2001). Navicula directa also

showed maximum abundances at the PFZ site with values

∼ 5 %. This species has been traditionally described as a

benthic-dwelling species (Scott and Marchant, 2005 and ref-

erences therein) with an affinity for sea ice conditions (Ar-

mand, 1997). However, its persistent presence throughout the

6-year record and similar seasonal flux pattern to that of other

well-known open-ocean species of the ACC, such as Thalas-

siosira gracilis group (r = 0.8, n= 108; Fig. 5b), point to a

pelagic distribution of this species. This concept agrees well

with Kopczynska et al. (1986) and Waite and Nodder (2001),

who documented Navicula populations of considerable abun-

dance in areas remote from coastal and sea ice influence in

the Australian sector.

Although in many aspects the composition of the diatom

assemblage at the 61◦ S site was similar to that of station

54◦ S, there were some qualitative and quantitative differ-

ences. As a result of the southward increase in the relative

abundance of F. kerguelensis, the diversity (H ′) and the rel-

ative contribution of most of the secondary constituents of

the diatom assemblage at 61◦ S exhibited lower values than

at 54◦ S (Table 4). For example, Pseudo-nitzchia species that

represented cumulatively 13 % of the integrated assemblage,

dropped to < 1 % at the 61◦ S site. Navicula directa followed

a similar pattern with maximum abundances at 54◦ S (5 %)

and negligible fluxes at 61◦ S. It is possible, however, that

other factors, such as selective grazing or ecological con-

straints, may also account for the lower contribution of these

species in the AZ.

5.3 Seasonal variability of diatom assemblages

Taking into account that diatoms are, by far, the main con-

tributors to the BSi production at the 54◦ S site, and that the

BSi fraction, in turn, dominated the total mass flux, the strong

correlation between diatom-valve and mass fluxes (r = 0.85;

n= 88) suggests that the particle export at the PFZ is mainly

mediated by diatoms. In contrast, at the 47◦ S site, the silica-

poor content of the particles and the low correlation between

diatom-valve and mass fluxes (r = 0.37; n= 30) indicates a

minor role for diatoms in regulating the export in the SAZ.

These results underscore the contrasting role that diatoms

play in the controls on the flux north and south of the SAF

(Trull et al., 2001a; Ebersbach et al., 2011).

The less defined seasonal pattern and lower amplitude

of the diatom fluxes observed at the 47◦ S site (Fig. 4) are

a reflection of the different algal community north of the
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Figure 8. (a) Annual mean total mass, major component and diatom-valve fluxes for the < 1 mm particulate fraction for the 47, 54 and 61◦ S

sites. (b) Annual average of chlorophyll a concentration and two different estimates of primary productivity (standard vertically generalized

production model – VGPM; and carbon-based production model – CbPM) for the 47, 54 and 61◦ S sites from October 1997 to September

2007.

SAF, dominated by non-siliceous phytoplankton (Odate and

Fukuchi, 1995; Kopczynska et al., 2001; de Salas et al.,

2011). For both years of our study, the highest annual di-

atom export events coincided with the onset of the biomass

accumulation in the surface waters, indicating that diatoms

responded rapidly to the enhanced light levels (Fig. 2a) and

to the formation of a stable and shallow mixed layer (Rintoul

and Trull, 2001). However, unlike the chlorophyll a concen-

tration that gradually increased throughout the spring, diatom

export rapidly returned to winter values most likely caused

by the depletion of the winter silicate and/or iron stocks

(Lannuzel et al., 2011). This seasonal pattern is character-

istic of the SAZ and other silicate-poor environments, where

diatoms typically bloom at the beginning of the successional

sequence and then are replaced by other functional groups

(Margalef, 1978; Balch, 2004; Alvain et al., 2008; Rigual-

Hernández et al., 2013). The increase in the diatom and BSi

fluxes from January to early March 2001 suggests the ex-

port of a second diatom bloom that year. South of Tasmania

the SAZ exhibits a complex physical structure with frequent

wind mixing events (Yuan, 2004) and fronts meandering and

forming eddies that can reach the trap location (Rintoul and

Trull, 2001; Herraiz-Borreguero and Rintoul, 2011). Thus, it

is likely that one of these mechanisms injected nutrients into

the surface layer of the 47◦ S site fuelling diatom produc-

tion and allowing the “reset” of phytoplankton succession.

In terms of population dynamics, the seasonal succession of

species at the 47◦ S site was not as clearly expressed as in sta-

tion 54◦ S and none of the diatom species seem to play an im-

portant role in the export controls of any of the components

of the flux as indicated by the results of the PCA (Fig. 6a).

F. kerguelensis exhibited fairly constant relative abundances

throughout the record suggesting little competition for re-

sources with other diatom species. The temperate-to-warm

water species H. cuneiformis and A. tabularis showed their

maximum contribution at times of maximum diatom export

which suggests that these species are the first to respond to

nutrient supply in the surface waters in this region.

The annual export maxima of total mass and diatom-valve

flux at 54◦ S were separated into two peaks for most of the

years (Figs. 5a and 7). A similar double peak feature of the

particle bloom has been previously reported in the AZ of the

Pacific (Honjo et al., 2000; Grigorov et al., 2014) and At-

lantic (Fischer et al., 2002). Honjo (2004) speculated that

such a double peak structure may be due to a break in pri-

mary production caused by a temporary depletion of a limit-

ing nutrient, while Grigorov et al. (2014) attributed the drop

in the diatom flux between two periods of enhanced export to

a storm event that mixed the diatom biomass out of the sur-

face layer. The lack of accompanying in situ measurements

of nutrient concentration and mixed layer depth precludes the

direct assessment of these possibilities.

The initial diatom population size, species-specific physio-

logical traits and selective grazing pressure are crucial factors

determining which diatom species dominates or co-dominate

an individual bloom (Assmy et al., 2007; Assmy et al., 2013;

Boyd, 2013). The chain-forming F. kerguelensis is one of the

most abundant diatom species in ACC waters (e.g. Laubscher

et al., 1993; Bathmann et al., 1997; Smetacek et al., 2002)

and has been reported to represent up to 90 % of the sum-

mer diatom populations in the AZ (Gall et al., 2001). The

high relative contribution of F. kerguelensis throughout our

record is consistent with these latter studies and suggests the

presence of a large seeding population of this species be-

fore the onset of the bloom. These large initial seed stocks,

together with the effective mechanical protection of its ro-

bust frustule (Hamm et al., 2003) against the heavy copepod

grazing pressure of the ACC (Pollard et al., 2002; McLeod
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et al., 2010) are most likely the main factors determining

the dominance of F. kerguelensis during the growth season.

The increase in the relative abundance of the lightly silicified

Pseudo-nitzschia cf. lineola and small Fragilariopsis species

during the second part of the bloom (Figs. 5b and 7) is con-

sistent with the observations of Kopczynska et al. (2001) who

reported F. pseudonana and P-n. lineola dominating the di-

atom assemblages in the PFZ waters south of Tasmania dur-

ing late summer. Assmy et al. (2007) reported large numbers

of P-n. lineola during the last stages of the fertilisation exper-

iment EisenEx, indicating the capacity of this diatom to out-

compete other taxa under iron-limiting conditions. Moreover,

small Fragilariopsis and Pseudo-nitzschia species are known

to produce an iron-storage protein (ferritin) that allow them

to undergo more cell divisions than other open-ocean di-

atoms under low iron concentrations (Marchetti et al., 2009).

We speculate, that due to these particular physiological traits

Pseudo-nitzschia and small Fragilariopsis species may gain

a competitive advantage under the environmental conditions

during the last stages of the diatom bloom (i.e. low silica

and iron concentrations, and enhanced PAR), enabling such

species to escape grazing and/or outcompete other diatoms.

However, this scenario does not account for our observations

in 2002–2003, when Pseudo-nitzschia and small Fragilari-

opsis species exhibited higher relative contribution in the first

seasonal export peak (Figs. 5b and 7). This exceptional sea-

sonal flux peak remained unexplained and likely due to other

environmental conditions not captured by our study.

5.4 Ecological flux vectors in the PFZ

The short and vigorous summer particle export, consistently

observed during our 6 year record at the 54◦ S trap is charac-

teristic of high latitude systems (e.g. Honjo et al., 2000; Fis-

cher et al., 2002; Pilskaln et al., 2004) and can contribute up

to 66 % of the annual POC export to 800 m in just 2 months

(e.g. 1999–2000). Therefore, these large summer pulses of

POC are responsible for a major proportion of the variability

in carbon sequestration from the atmosphere in the PFZ. The

mechanism is primarily through the increase in the overall

flux, because the fractional POC content was not observed to

increase during high flux periods. For example, % POC for

the year 1999–2000 ranged between 1.2 % and 3.7, and max-

imum relative abundances occurred at times of relatively low

fluxes (Fig. 3b).

The strong positive correlation between factor 1 and POC

fluxes at the 54◦ S site (Table 6) indicates an intimate asso-

ciation between high relative abundances of the high-export

group species and pulses of POC export. As a specific exam-

ple of this, during January 1999 and December 2000, when

the highest contribution of the high-export group was noted

(55–60 % of the total diatom flux; Fig 7), the PFZ sediment

trap registered the largest POC fluxes of the record (up to

23 mg m−2 d−1; Fig. 7). Interestingly, these observations of

elevated POC flux coincide with significantly lower summer

SSTs than other years.

All the members of the high-export group have been previ-

ously reported as important components of both natural and

iron-fertilised blooms in the Southern Ocean (Bathmann et

al., 1997; Waite and Nodder, 2001; Smetacek et al., 2002;

Assmy et al., 2007; Quéguiner, 2013; Grigorov et al., 2014;

Rigual-Hernández et al., 2015). The increase in the relative

abundance and fluxes of these species during the growth sea-

son indicates that they respond opportunistically to the en-

hanced light levels, most likely undergoing cycles of rapid

biomass build-up followed by mass mortality and sinking in

the form of aggregates (Smetacek et al., 2004; Green and

Sambrotto, 2006; Assmy et al., 2013). This concept is sup-

ported by the recent findings of Closset et al. (2015) who

documented an increase in the particle sinking speeds at the

54◦ S site during the summer 1999–2000 of up to at least

35 m d−1, a value that falls within the range of previous es-

timates for marine snow sinking rates (Turner, 2002; Trull et

al., 2008; Laurenceau-Cornec et al., 2015). Moreover, other

regionally relevant PFZ studies (Ebersbach et al., 2011; Grig-

orov et al., 2014) concluded that aggregates are the principal

form of particle export during the growth season. Taken to-

gether, our data and these studies strongly suggest that ag-

gregate formation is a widespread mechanism of the summer

bloom in the open-ocean waters of the ACC.

We speculate that the massive development of high-export

group diatoms during the growth season facilitates the for-

mation of aggregates in the upper water column, which re-

sults in an increase in sinking rates and POC fluxes. Aggre-

gates, and particularly diatom flocs, are rich in exopolymers

that increase their effectiveness at scavenging particles they

have collided with (Alldredge and McGillivary, 1991; Pas-

sow and De La Rocha, 2006). Therefore, it is possible that

the formation of aggregates during the diatom bloom facili-

tated the scavenging of other particles (including phytoplank-

ton chains and cells, biominerals and detritus), leading to the

co-sedimentation of the major components of the flux (i.e.

calcium carbonate, silica and organic carbon). This scaveng-

ing mechanism is consistent with previous laboratory obser-

vations made by Passow and De La Rocha (2006) and can

explain the increase of the sinking rates during the growth

season as well as the positive correlation between factor 1

and all bulk components of the flux (Fig. 6b, Table 6b).

Since most of the members of the high-export group are of

relatively small in size and weakly silicified, it is unlikely that

these species accounted for the major fraction of the BSi ex-

port during the summer bloom for most of the years. In con-

trast, the thick-shelled F. kerguelensis is a more compelling

candidate to be responsible for the bulk of the BSi export, be-

cause despite the fact that its relative abundance exhibited the

lowest values of the record during summer, its valve fluxes

always were the highest during this season. In terms of car-

bonate export, the correlation between factor 1 and carbonate

flux is not as strong as with the rest of the components of the
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flux but still high (Fig. 6b, Table 6b), indicating that high-

est relative contribution of the high-export group diatoms is

also associated with high carbonate export. Although specu-

lative, it is possible that the formation of aggregates during

the diatom bloom also facilitated the scavenging of at least

the fine fraction of the carbonate (mainly coccoliths; Ziveri

et al., 2007; Iversen and Ploug, 2010) which would have led

to the co-sedimentation of the BSi, POC and carbonate frac-

tions. However, other seasonal ecological influences are also

likely to be involved, given that the contribution of larger car-

bonate particles in the form of foraminifera tests is also in-

creased in summer (King and Howard, 2003).

The massive sedimentation of giant diatoms characteristic

of the SCM shade flora (e.g. Thalassiothrix and some rhi-

zosolenids) in autumn and winter (the so-called fall dump)

has been hypothesised to contribute to a substantial frac-

tion of the annual carbon export in the PFZ (Kemp et al.,

2006; Kemp and Villareal, 2013; Quéguiner, 2013). At the

54◦ S site, the highest fluxes and relative contribution of the

deep dwellers Thalassiothrix antarctica and Proboscia were

recorded between the end of the productive period and win-

ter (Fig. 5); however their contribution to the total diatom

assemblage was always low (< 3.6 %) and their flux pulses

were not coupled with significant increases in POC export

(Fig. 7). Thus, our data do not provide evidence that the

sedimentation of these species was associated with a “fall

dump” in the PFZ south of Tasmania. However, it has been

suggested that sediment traps do not act as good samplers of

large mats formed by these long diatoms (Kemp et al., 2006),

and therefore their mass sedimentation during autumn and/or

winter could have been missed by our sampling technique.

5.5 Relative importance of the SAZ and PFZ to carbon

export

The depth at which the organic carbon is re-mineralised to

CO2 by zooplankton and bacteria determines the timescales

during which carbon is sequestered from the atmosphere (Ya-

manaka and Tajika, 1996; Smetacek et al., 2012). In the SAZ

and the PFZ, the fraction of organic carbon recycled within

the winter mixed layer (> 400 m in the SAZ and between 150

and 200 m in the PFZ; Rintoul and Bullister, 1999; Rintoul

and Trull, 2001) would re-equilibrate with the atmosphere

within months, whereas only the comparatively smaller por-

tion that reaches deeper layers will remain in the ocean in-

terior for centuries or longer timescales (Trull et al., 2001a).

Thus, from the perspective of carbon sequestration, the POC

fluxes measured by the traps reported in this study are prob-

ably of greater importance than those re-mineralised at mid-

depths.

Despite the fact that total mass fluxes in the PFZ at∼ 1 km

were twofold larger than those of the SAZ, the annual POC

export was almost identical in both regions (Fig. 8a), imply-

ing that particles sinking out of the mixed layer in the SAZ

were relatively POC rich (Trull et al., 2001a; Ebersbach et

al., 2011). Taking into account that gross primary produc-

tion is similar in the two zones, or perhaps somewhat lower

in the PFZ (Fig. 8b; Lourey and Trull, 2001; Cavagna et

al., 2011; Westwood et al., 2011), our results challenge the

notion that for a given similar level of production, diatom-

dominated ecosystems export greater amounts of carbon to

the deep ocean than ecosystems dominated by smaller, non-

siliceous phytoplankton (Buesseler, 1998; Boyd and Newton,

1999; Laws et al., 2000). Trull et al. (2001) hypothesised that

the similar POC export at both sites could be due to either

(1) a more efficient repackaging of carbon for deep transport

by the zooplankton community in the SAZ than in the PFZ

or (2) to the fact that the silicate-rich particles exported in

the PFZ may experience stronger loses of organic carbon at

mesopelagic depths than do the carbonate-rich particles of

the SAZ. Results from of the SAZ-sense programme (Bowie

et al., 2011b) taken together with the data presented in this

study provide key information to assess these hypotheses.

Analysis of the flux size spectra at the 47 and 54◦ S sites

by Ebersbach et al. (2011) during January and February 2007

revealed that the vertical export at both stations was dom-

inated by heavily processed particles, mainly faecal aggre-

gates with a slight shift towards smaller particles within the

PFZ due to abundant chains of diatoms sinking individually

or as part of unconsolidated aggregates. Although the latter

study was limited to a short observational period, the results

of Ebersbach et al. (2011) suggest that zooplankton grazing

had a similar impact on the control of particle export at both

sites, and therefore the first hypothesis seems unlikely.

On the other hand, our data show that only a few di-

atom species, particularly F. kerguelensis, dominate the par-

ticle export in the silicate-rich and iron-limited waters of the

PFZ and AZ. Most of these species are known to signifi-

cantly increase their BSi : PON and BSi : POC ratios under

iron deficiency resulting in the thickening of its already ro-

bust frustule (Takeda, 1998; Hoffmann et al., 2007). Further-

more, recent findings from the European Iron Fertilisation

Experiment (EIFEX; Smetacek et al., 2012) illustrated that

the cellular content of a large fraction of the F. kerguelensis

stock outside and inside the patch was recycled in the sur-

face layer, resulting in the disproportional sinking of empty

frustules to the deep ocean (Assmy et al., 2013). Assmy et

al. (2013) concluded that due to these particular traits, F.

kerguelensis and other exceptionally robust diatoms, such as

Thalassiosira lentiginosa and Thalassionema nitzschioides,

preferentially sequester silicon relative to carbon in the iron-

limited waters of the ACC. This concept is consistent with

our findings in the open waters of the Australian sector south

of the SAF, and would help to explain the low POC content

and POC : BSi ratios of the particles registered at meso- and

bathypelagic depths by our PFZ and AZ traps.

Significantly, comparisons of our results (Fig. 8a) with

satellite and in situ measurements of primary production

(Fig. 8b) suggest that high BSi sedimentation rates should be

interpreted as a proxy for iron-limited diatom assemblages

Biogeosciences, 12, 5309–5337, 2015 www.biogeosciences.net/12/5309/2015/



A. S. Rigual-Hernández et al.: Latitudinal and temporal distributions of diatom populations 5331

(Hutchins and Bruland, 1998; Takeda, 1998; Assmy et al.,

2013) rather than for high primary production. This con-

clusion raises corresponding caution to previous studies that

suggest that higher BSi fluxes in the past refer to a stronger

biological carbon pump (Anderson et al., 2009; Sigman et

al., 2010).

6 Conclusions

This study reports on the chemical (biogenic silica, carbon-

ate and POC) and biological (diatoms) composition of ma-

terial exported at ∼ 1 km depth at two sites representative of

two major hydrological regions of the Australian sector of

the Southern Ocean, the SAZ and PFZ. As a result of differ-

ent algal communities, the composition and magnitude of the

sinking particle fluxes was very different between sites, with

higher and BSi-dominated fluxes in the PFZ versus lower and

carbonate-dominated fluxes in the SAZ. Despite these differ-

ences, the POC export reaching the traps was indistinguish-

able between sites (∼ 1 g m−2 yr−1). Seasonality and flux

magnitude was more pronounced in the PFZ. The vigorous

settling of biogenic particles during summer in the PFZ ac-

counted for a large fraction of the annual POC export. These

summer pulses are a major factor responsible for the vari-

ability in carbon sequestration from the atmosphere in this

region. Our results suggest that the development of a group

of bloom-forming diatom species during the growth season

probably led to the formation of algal and/or faecal aggre-

gates. The production and sinking of these aggregates most

likely facilitated the scavenging of other particles in the water

column, and thus the co-sedimentation of the all the compo-

nents of the flux. Fragilariopsis kerguelensis dominated the

diatom sinking assemblage at both sites and was considered

the major biological vector decoupling the carbon and sili-

con cycles in the waters south the SAF. Comparisons of our

data with in situ and satellite primary production estimates

led us to conclude that high BSi accumulation rates in the

sedimentary record should be interpreted as a proxy for iron-

limited diatom assemblages rather than for a stronger biolog-

ical pump.

The Supplement related to this article is available online

at doi:10.5194/bg-12-5309-2015-supplement.
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