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Abstract
Progressive loss of pulmonary function leads to early morbidity and mortality in Duchenne muscular dystrophy (DMD) due to both 

expiratory impairment with ineffective airway clearance, and inspiratory impairment leading to nocturnal and daytime hypoventilation and 

respiratory failure. Glucocorticoid steroids have become a mainstay of DMD therapy with well-documented efficacy on muscle strength 

and respiratory function. However, the side-effect profile restricts their long-term use, particularly in non-ambulant patients. Idebenone 

improves secondary mitochondrial dysfunction caused by dystrophin deficiency, intracellular calcium accumulation and increased 

reactive oxygen species (ROS). Idebenone-mediated improved bioenergetics leads to enhanced adenosine triphosphate (ATP) production 

and reduced ROS. Based on this rationale, idebenone has been investigated clinically for efficacy on reducing respiratory function decline 

in exploratory phase II (DELPHI) and confirmatory phase III (DELOS) trials. Idebenone significantly reduced the loss of respiratory function 

in 8–18-year-old DMD patients who were not using concomitant glucocorticoids. These results indicate that idebenone can modify the 

natural course of respiratory disease progression in DMD, which is relevant in clinical practice where loss of respiratory function continues 

to be a predominant cause of early morbidity and mortality in DMD. 
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Respiratory Function Loss and Respiratory 
Endpoints in DMD
Duchenne muscular dystrophy (DMD) is the most common and 

devastating type of muscular dystrophy. Lack of the protein dystrophin 

causes severe and progressive myofibre degeneration, general 

muscle weakness and wasting. With increasing age, DMD patients 

are confronted with loss of ambulation, loss of upper limb function, 

cardiac dysfunction and dependence on mechanical airway clearance 

and mechanical assisted ventilation representing irreversible and life-

changing events of disease progression. Although early diagnosis and 

multi-stage disease management regimes (e.g. Bushby et al.)1,2 increase 

quality of life and life expectancy, the disease is still associated with early 

morbidity and mortality. In DMD, progressive weakness of the chest wall 

muscles precedes weakness of the diaphragm (used predominantly 

for inspiratory function) and leads to restrictive lung volume changes 

measured as reduced total lung capacity and forced vital capacity 

(FVC).3–7 Initially, this loss of lung volume results from the inability to pull 

up the respiratory system to total lung capacity and to push it down to 

residual volume. In later disease stages, additional restrictions occur as 

a result of progressing muscle fibrosis and changes in lung and chest 

wall recoil, thoracic wall compliance and spinal deformities (i.e. scoliosis).

In the late first decade the earliest signs of respiratory impairment manifest 

by reduced static airway pressures (maximal expiratory and inspiratory 

pressures). The gradual loss of respiratory function in DMD measured by 

spirometry usually begins early in the second decade and progresses to 

restrictive pulmonary syndrome, impaired respiratory secretion clearance, 

life-threatening pulmonary infections due to ineffective cough, nocturnal 

and daytime hypoventilation, obstructive apnoeas and eventually 

respiratory failure during the late second or third decade of life.3,8–10 
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In the absence of obstructive pulmonary disease, FVC (measured in 

litres), peak expiratory flow (PEF, measured in l/minute), and forced 

expiratory volume in 1 second (FEV1, measured in litres) are major inter-

related spirometry measures reflecting both inspiratory and expiratory 

muscle force impairment and restrictive lung volume changes due 

to neuromuscular weakness. In DMD both inspiratory and expiratory 

respiratory weakness is indicated by abnormal flow-volume curves 

(see Figure 1). 

FVC is used to assess respiratory muscle involvement in many 

neuromuscular diseases, such as DMD. One may infer the presence of a 

restrictive ventilatory defect due to neuromuscular weakness when the 

FVC is reduced and the FEV1/FVC ratio is normal or increased. Previous 

studies have shown excellent test–retest reliability of FVC among  

DMD subjects. However, a limitation of FVC as a respiratory endpoint 

in DMD is that it is potentially affected by thoracic wall compliance/

fibrosis and thoracic deformities resulting from progressive scoliosis. 

FEV1 typically follows the decline measured in FVC. In the absence 

of obstructive pulmonary disease such as asthma, FEV1 is also an 

indicator of respiratory impairment due to neuromuscular weakness of 

combined inspiratory and expiratory weakness. 

In DMD patients who do not exhibit bronchial obstruction, PEF reflects 

expiratory muscle force.5 Abnormal respiratory mechanics in DMD are 

not limited to the lung and chest wall and may also involve the upper 

airways.6 Therefore, respiratory strength in DMD (assessed by PEF) is a 

measure not only of expiratory strength but also inspiratory effort and 

upper airway resistance, which are both abnormal in DMD.11,12 There is 

a theoretical possibility that PEF may be more sensitive to a treatment 

intervention than FVC due to the impact of fibrosis and chest wall 

deformities on FVC. All three of these measures – PEF, FVC and FEV1 – 

can be obtained with high reliability in DMD patients older than ~8 years.

As respiratory function tests are influenced by body growth and age, 

these measures are typically normalised to height-matched (PEF)13 or 

height- and age-matched (FVC and FEV1)
14 normative populations and 

expressed as ‘per cent predicted’ values (PEF%p, FVC%p, FEV1%p).

Recent care guidelines recommend changes in DMD disease 

management as soon as patients fall below certain thresholds in 

FVC.2,15–17 For example, preoperative training prior to surgical procedures 

and post-operative use of non-invasive ventilation should be strongly 

considered for patients with FVC <50 %p, and is necessary for patients 

with FVC <30  %p. Various levels of impairment of FVC have been 

reported to be prognostically associated with an increased risk of 

respiratory complications and death in DMD.15,18 

A similar method of categorising the severity of lung function 

impairment based on the FEV1%p values has been described.19 These 

severity scores can be associated with performance, such as ability to 

work and function in daily life, morbidity and prognosis.20–23 A drop of 

FEV1%p to below 40 % was found to be a sensitive indicator of sleep 

hypoventilation in DMD.24 Thus, reduction in the rate of progression 

of FEV1%p would be of direct clinical value to a patient with DMD in 

terms of slowing pulmonary disease progression and decreasing the 

likelihood of developing carbon dioxide retention. 

More recently, peak cough flow (PCF) measures are obtained as part 

of standard of care. When PCF falls below 160 l/minute, cough is no 

longer effective enough to provide adequate mucociliary clearance.25–27 

According to published standard of care considerations, manual and 

mechanically assisted cough techniques are necessary when either 

respiratory infection is present and PCF is <270 l/minute, or in the 

absence of a respiratory infection when PCF is <160 l/minute. One of  

the challenges in PCF measures tends to be reduced reliability of testing 

in children and the difficulty of performing the test.25 

In summary, PEF, FVC and FEV1 are three inter-related pulmonary 

parameters and reflect both inspiratory and expiratory muscle 

force impairment, and restrictive lung volume changes indicated by 

abnormal flow-volume curves in DMD. The %-predicted values control 

for maturational changes longitudinally. PEF%p, FVC%p and FEV1%p 

are also highly correlated in DMD and are all indicators of restrictive 

pulmonary disease due to neuromuscular weakness and are the most 

reliably assessed respiratory measures in this disease. Finally, natural 

history studies show that these are the only three respiratory function 

endpoints with consistent declines across the second decade in DMD 

from age 10–18 years.28,29

 

Glucocorticoid Steroids –  
A Delicate Benefit–Risk Balance
There is agreement that patients with DMD generally benefit from 

glucocorticoid treatment,30 the therapeutic objective of which is to slow 

the decline in muscle strength and stabilise respiratory function. The 

effect of glucocorticoids on muscle strength has been shown to prolong 

ambulation31,32 and continued treatment after the patient becomes non-

ambulatory has shown reduction in the risk of progressive scoliosis 

and stabilisation of respiratory test variables.33,34 These and the results 

of other clinical trials support the use of glucocorticoids,35 which have 

become the mainstay of disease management in DMD.1,2

However, the mode of action of steroids in DMD still is not entirely resolved 

and their chronic administration is associated with well-described significant 

risks, such as growth retardation, bone demineralisation and increased 

fracture risk, obesity, insulin resistance and hyperglycaemia, cutaneaous 

complications (acne, striae), arterial hypertension, cardiomyopathy, cataracts 

and important behavioral changes, such as increased anxiety and anger,1,36 

which especially after the loss of ambulation, can negatively affect the 

benefit–risk balance of glucocorticoid use. Furthermore, while there  

are emerging data concerning benefits of long-term administration of steroids 

for preservation of upper limb and respiratory function,32,37 the effectiveness 

and risks of specific glucocorticoid treatment regiments in preventing 

scoliosis, maintaining upper limb function and stabilising respiratory function 

in the older non-ambulant patients with DMD has not been studied in 

Schematic flow-volume curve of healthy individual (red) and Duchenne muscular 
dystrophy (DMD) patient (blue) measuring reduced peak expiratory flow (PEF), forced 
vital capacity (FVC) and forced expiratory volume in 1 second (FEV1). A. Flow-volume 
curve of an 18-year-old DMD patient (B) and age-matched subject with normal lung 
function (C). Figures (B) and (C) courtesy of Dr Oscar H Mayer, Division of Pulmonology, 
Children’s Hospital of Philadelphia (US).

Figure 1: Respiratory Function Decline in DMD
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controlled trials. At any time, approximately 40 % of DMD patients are either 

glucocorticoid-naïve or have discontinued treatment,32 due to glucocorticoid 

side effects and partial treatment effect, and this proportion even increases 

in the later post-ambulatory phase. Therefore, many patients are left without 

pharmacological treatment options at around the age when patients become 

non-ambulatory and the decline in respiratory function becomes clinically 

relevant. In summary, there is an unmet medical need for the management of 

respiratory function deterioration in DMD patients not taking glucocorticoids 

or in patients who do not respond to glucocorticoid treatment.

Rationale for Idebenone as Treatment 
Approach for DMD
There is an increasing body of literature (see Table 1)41–55 indicating that 

dystrophin deficiency causes sarcolemmal fragility and intracellular 

Ca2+ dysregulation, which generally leads to mitochondrial dysfunction, 

a reduction in resting adenosine triphosphate (ATP) levels, an increased 

production of cell-damaging reactive oxygen species (ROS) and 

ultimately mitochondrial damage.38–40 

The combination of primary dystrophin deficiency and secondary 

mitochondrial dysfunction and impaired muscle cell regeneration, 

degeneration and cell death is shown in Figure 2A. Muscle membrane 

injury caused by dystrophin deficiency leads to increased calcium 

influx and intracellular calcium accumulation. Thus, the primary 

pathogenesis results in increased ROS and damage to and dysfunction 

of mitochondria with subsequent depletion of mitochondria over time. 

Recently, Complex I function was shown to be deficient in mitochondria 

from the mdx mouse and ATP production was ameliorated by 

stimulating Complex II.54 As direct evidence of a mitochondrial role in 

the pathogenesis of muscular dystrophy, mitochondrial biogenesis has 

been demonstrated to ameliorate the pathology and improve function 

in the dystrophin deficient mdx mouse model. Specifically, Selsby and 

colleagues56 showed that over-expression of peroxisome-proliferator 

receptor γ coactivator 1α (PGC-1α), resulted in increased utrophin and 

slow type I myosin heavy chain fibre expression, as well as elevated 

mitochondrial protein expression and increased expression of oxidative 

genes. These PGC-1α over-expressing mdx limb muscles were better able 

to maintain force during eccentric lengthening contractions compared 

with control limbs and demonstrated reduced disease-related muscle 

injury as measured by decreased areas of necrotic fibres and centrally 

nucleated fibres. In addition, it has long been known that mitochondrial 

depletion is associated with greater disease progression in DMD.57,58

Based on these findings, mitochondrial activation via stimulation of 

Complex II- or Complex III-mediated electron flux might be a therapeutic 

approach to overcome mitochondrial dysfunction in dystrophin-

deficient muscle.

Idebenone is a synthetic short-chain benzoquinone, chemically 

derived but clearly distinct from CoQ10 in its subcellular distribution 

and pharmacological action due to its shorter carbon-tail and terminal 

hydroxyl group resulting in higher hydrophilicity and the potential 

to cross membranes.59,60 Idebenone has been reported to utilise and 

activate Complex I-independent metabolic pathways61–64 by the transfer 

of energy equivalents from the cytosol directly into the mitochondrial 

electron transport chain (ETC). Upon entering the cell, idebenone 

is efficiently reduced by the cytoplasmic enzyme NADH-quinone 

oxidoreductase 1 (NQO1) and the resulting reduced form of idebenone 

Table 1: Mitochondrial Pathology in 
Dystrophin Deficient Muscle

• Increased intracellular Ca2+ Dunn and Radda41 

Culligan and Ohlendieck42

• Functional aberration in key intracellular 

energy systems 

• Depressed oxygen consumption rate 

• Reduced OXPHOS capacity 

• Decreased mitochondrial respiration rate

Scholte et al.43 

Lucas-Heron et al.44 

Even et al.45 Sperl et al.46 

Kuznetsov et al.47 

Passaquin et al.48 

Onopiuk et al.49 

Godin et al.50 

Schuh et al.51 

Percival et al.52

• Reduction in resting ATP levels Cole et al.53 

Rybalka et al.54

• Reduced mitochondrial Complex I function 

• Decreased Complex I subunit content

Godin et al.50 

Percival et al.52 

Rybalka et al.54

• Mitochondria from dystrophic muscle are 

swollen and more susceptible to damage 

• Increased fragility of inner and outer 

mitochondrial membrane 

Millay et al.55 

Rybalka et al.54

ATP = adenosine triphosphate; OXPHOS = oxidative phosphorylation.

A. Schematic diagram of the mitochondrial dysfunction caused by dystrophin 
deficiency. Cytoplasmic calcium overload causes mitochondrial dysfunction, reduces 
cellular energy production and increases the production of reactive oxygen species 
(ROS) both of which are counteracted by idebenone. B, C. Dual mode of action of 
idebenone: Idebenone (Ide) is reduced by the cytoplasmic enzyme NQO1 (NAD(P)
H:quinone oxidoreductase or NAD(P)H dehydrogenase, quinone 1; UniProt P15559) and 
can cross the mitochondrial membrane. B. Reduced idebenone can detoxify (ROS) by 
donating electrons (red spheres) to produce non-toxic reaction products. C. Idebenone 
can also donate electrons directly to complex III of the mitochondrial electron transport 
chain, which restores electron flow, proton pumping activity of complexes III and IV 
and adenosine triphosphate (ATP) production by complex V (the ATP synthase). Both 
processes are dependent on a continuous reduction by NQO1 and repeated shuttling of 
idebenone between the cytosol and mitochondria.
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enters the mitochondria where it transfers its electrons to Complex 

III. This mechanism thereby bypasses complex I-dependent electron 

flow and as a result is able to produce ATP even in situations where 

Complex I is dysfunctional.60,62,63 Separately, idebenone has been reported 

to be a powerful inhibitor of ROS formation.61,65,66 The mode of action of 

idebenone is illustrated in Figure 2B, C. 

Idebenone significantly increased the daily running distance of mdx 

mice and reduced cardiac inflammation and fibrosis in a long-term 

blinded placebo-controlled study.67 Idebenone also ameliorated cardiac 

diastolic dysfunction and reduced mortality from systolic cardiac pump 

failure in this model. Considering the generally accepted limitation of 

the mdx mouse as an animal model for DMD, these potential benefits 

on skeletal muscle degeneration, endurance, and cardiac function 

would need to be confirmed in patients with DMD. 

Clinical Development of Idebenone as a 
Treatment Option for DMD
Two randomised, placebo-controlled clinical trials were conducted to 

assess the efficacy and safety of idebenone on respiratory function 

outcomes in DMD (see Table 2). DELPHI was a phase II, single-centre 

study,68 while DELOS was an international, multicentre phase III study.69

The exploratory phase II DELPHI study reported a better outcome on 

PEF%p in the idebenone-treated group compared with the placebo 

group when all patients (irrespective of their concomitant glucocorticoid 

use) were analysed.68 However, in a post-hoc analysis is was found that 

the treatment effect of idebenone on respiratory function outcomes was 

considerably larger in patients not using concomitant glucocorticoids.70 

This could be explained by the protective effect of glucocorticoids, 

challenging a formal demonstration of an additive effect on top of 

steroids within the limitations of a human clinical trial. Although the 

number of patients in the subgroup of patients not using glucocorticoids 

was too small to allow a firm conclusion, the expected influence of 

concomitant glucocorticoid use was considered in the planning of the 

confirmatory phase III DELOS study. 

The study objective of DELOS was to test whether idebenone could 

slow the decline in respiratory function in patients with DMD not 

taking concomitant glucocorticoids.69 The 64 patients (age 10–18 years) 

randomised to idebenone (n=31) or placebo (n=33) treatment had 

washed out from previous glucocorticoid use prior to enrolment and 

did not use glucocorticoids for the treatment of the underlying disease 

during the 12-month follow-up period. The study met its primary endpoint 

demonstrating a statistically significant and clinically relevant treatment 

effect on PEF%p from baseline to month 12, which was supported by 

the consistency in results obtained for lung volume parameters (FVC%p, 

FEV1%p) at the 6- and 12-month time-points measured by hospital-based 

spirometry or at home using a hand-held ASMA-1 device (see Figure 3). 

Table 2: Overview of the DELPHI and  
DELOS Trials and Baseline Characteristics  
of Enrolled Patients 

Study Phase II – DELPHI1 Phase III – DELOS2

First patient in 

Last patient out

October 2005 

August 2007

July 2009 

January 2014

Treatment group Idebenone Placebo Idebenone Placebo

Patients (n) randomised  
and treated (ITT population)

13 8 31 33 

Patients (n) without 
concomitant  
glucocorticoid use

5 
 

3 
 

31 
 

33 
 

Age (years) 13.4 ± 2.1 10.8 ± 1.9 13.5 ± 2.7 15.0 ± 2.5

Non-ambulatory patients 6 (46 %) 6 (75 %) 28 (90.3 %) 31 (93.9 %)

Baseline characteristics for patients not using concomitant 
glucocorticoids*

PEF%p 55.0 ± 24.6 52.0 ± 27.1 53.5 ± 10.3 54.2 ± 13.2

FVC%p 61.8 ± 24.8 51.7 ± 15.5 55.3 ± 15.8 50.4 ± 20.0

FEV1%p 66.8 ± 26.1 57.0 ± 16.5 53.6 ± 16.1 49.5 ± 20.6

Data are mean ± SD; 1Buyse et al., 2011; Buyse et al., 2013; 2Buyse et al., 2015. *Data 
are from hospital-based spirometry. FEV1%p = forced expiratory volume in 1 second 
per cent predicted; FVC%p = forced vital capacity; ITT = intent to treat; PEF%p = peak 
expiratory flow per cent predicted. 

Treatment effect (estimated means from Mixed Model for Repeated Measures [MMRM], 
95 % confidence intervals, p values) for respiratory function outcomes at the 6- and 
12-month time-points. Tests were performed by spirometry during hospital visits or 
weekly using a hand-held device (ASMA-1). FEV1%p = forced expiratory volume in 
1 second per cent predicted; FVC%p = forced vital capacity; PEF%p = peak expiratory 
flow per cent predicted.

Figure 3: Outcomes on Respiratory Function 
from the DELOS Trial
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Table 3: Treatment Effect on Respiratory 
Function Parameters for Patients not using 
Concomitant Glucocorticoids Enrolled in 
DELPHI or DELOS (Combined Analysis; 12 
months follow-up time)

Parameter1  
 
 

Idebenone, n=36 
Age2: 13.5 ± 2.6 Y

Placebo, n=36  
Age2: 14.7 ± 2.7 Y

Treatment Effect 
(Estimated Mean, 
95 % Confidence 
Interval)3

PEF%p 

 

 

BL2: 53.7%p ± 12.6 

Change BL to week 523: 

2.32%p  

(–2.48; 7.11)

BL2: 54.0%p ± 14.2 

Change BL to week 523: 

–5.59%p  

(–10.54; –0.63)

7.90%p  

(2.23; 13.57) 

p=0.007 

FVC%p 

 

 

BL2: 56.2%p ± 17.0 

Change BL to week 523: 

–3.05%p  

(–5.99; –0.10)

BL2: 50.5%p ± 19.5 

Change BL to week 523: 

–6.54%p  

(–9.55; –3.53)

3.49%p  

(–0.06; 7.05) 

p=0.054 

FEV1%p 

 

 

BL2: 55.4%p ± 17.9 

Change BL to week 523: 

–1.29%p  

(–5.78; 3.19)

BL2: 50.1%p ± 20.2 

Change BL to week 523: 

–7.34%p  

(–11.89; –2.78)

6.04%p  

(0.64; 11.45) 

p=0.029 

1All data are from hospital-based spirometry measures; 2Descriptive statistics (mean; 
standard deviation [SD]); 3Changes from baseline and differences between the groups 
were estimated using Mixed Model for Repeated Measures (MMRM) with study, treatment, 
visit and treatment by visit interaction as fixed factors and baseline value as a covariate.  
BL = baseline; FEV1%p = forced expiratory volume in 1 second per cent predicted;  
FVC%p = forced vital capacity; PEF%p = peak expiratory flow per cent predicted; Y = years.
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Published natural history data confirm that PEF%p, FVC%p and FEV1%p 

all show a linear decline from age 10 onwards.28,29 The treatment effect 

of idebenone reported in DELOS for patients 10 years and older not 

using concomitant glucocorticoids on PEF%p, FVC%p and FEV1%p  

is equivalent to slowing respiratory decline by at least 1 year, which is 

clinically meaningful. 

The findings on respiratory function parameters in the DELOS study 

were supported by additional clinical observations. Specifically, the 

proportion of patients with reductions in FVC or PCF below clinically 

important thresholds, known to be predictive of imminent ventilatory 

failure, and the reduced number of upper and lower airway tract related 

disease in the idebenone group, are strongly supportive for the clinical 

meaningfulness of the idebenone effect.69

In order to further assess the efficacy of idebenone in delaying the loss 

of respiratory function, data from glucocorticoid non-using patients 

enrolled in DELPHI and DELOS were combined for analysis (see Table 3). 

The combined analysis of all patients enrolled in DELPHI or DELOS 

demonstrated a significant decline in PEF%p from baseline to month 

12 in the placebo group compared with a slight improvement in the 

idebenone group, resulting in a significant difference of 7.90%p in PEF%p 

between treatment groups. Similar combined analyses for FVC%p and 

FEV1%p revealed consistent treatment effects in favour of idebenone.

The consistency and robustness of the findings for the combined analyses 

is also demonstrated in cumulative response plots where the change 

from baseline to the 12 month (52 week) time-point is displayed for each 

patient (see Figure 4). For all three respiratory function parameters there 

is a clear separation of the curves for idebenone-treated patients from 

those in the placebo group. For PEF%p (see Figure 4A) there were fewer 

patients in the idebenone group who declined compared with placebo 

(50  % of patients in the idebenone group compared to 78  % in the  

placebo group declined in PEF%p). Likewise there were fewer patients in 

the idebenone group who declined in PEF%p by 10%p or more compared 

with the placebo group (12  % of patients in the idebenone group 

compared with 40 % in the placebo group). Similar patterns in favour of 

idebenone are also seen for FVC%p and FEV1%p (see Figure 4B, C). 

Idebenone in the Emerging Landscape of DMD 
Treatment Options
Although best practice guidelines on their dosing regimen are still 

lacking, glucocorticoids have beneficial effects and can slow disease 

progression particularly in younger, still ambulatory patients with DMD 

(e.g. Bushby et al.)1,2 However, not all patients benefit to the same extent 

from glucocorticoids and their benefit–risk profile in older, non-ambulatory 

patients still needs to be established. Therapeutic approaches to 

partially circumvent the effect of nonsense-mutations in the dystrophin 

gene or to partially correct dystrophin expression by exon skipping 

approaches are in advanced clinical investigation. So far, it appears that 

their therapeutic potential is best deployed when applied in younger, 

ambulatory patients with the goal to preserve muscle force and function.  

However, therapeutic options for older, non-ambulatory patients not 

able to use glucocorticoids are currently lacking, which comprises 

approximately 40 % of the entire DMD patient population 10 years and 

older.32 Based on the data from the randomised placebo-controlled studies 

summarised above, idebenone can be considered a suitable extension of 

the emerging landscape of treatment options for DMD. In DELOS, the first-

ever phase III trial in DMD with a positive outcome, significant and clinically 

relevant results for primary and secondary endpoints coherently showed 

that idebenone reduced the loss of respiratory function. Results from the 

DELOS study indicate that patients who previously used glucocorticoids 

for the treatment of the underlying disease but did no longer tolerate their 

use benefit from idebenone to the same extent as patients who never 

took glucocorticoids.69 This is an important observation as it shows that 

glucocorticoids and idebenone could be used sequentially in the same 

patient. Although data from the current trials were obtained primarily 

in patients not using glucocorticoids, there is no reason a priori why 

idebenone could not also be exerting a treatment effect in patients 

using glucocorticoids concomitantly. It remains to be seen whether 

Figure 4: Cumulative Response Plots for the 
Change from Baseline to Week 52 in PEF%p 
(A), FVC%p (B) and FEV1%p (C)

Combined analysis for patients not using concomitant glucocorticoid steroids enrolled 
in DELPHI or DELOS. All data are from spirometry assessments. Idebenone: n=36; 
placebo: n=36. FEV1%p = forced expiratory volume in 1 second percent predicted; 
FVC%p = forced vital capacity; PEF%p = peak expiratory flow percent predicted.
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longer-term administration of idebenone will show incremental benefits 

over glucocorticoid treatment with regard to stabilisation of pulmonary 

function. Likewise, in theory, idebenone treatment might be combined with 

different therapeutic approaches such as exon skipping or stop-codon 

read-through. However, at the current time it is premature to speculate 

about its possible use in conjunction with any such therapy approaches.

Conclusion
Improved patient care with best-practice recommendations and the 

introduction of glucocorticoids has increased the quality of life and 

survival time of patients with DMD. Nevertheless, with increasing age 

loss of respiratory function continues to be a predominant cause of 

early morbidity and mortality. Efficacy data from randomised placebo-

controlled phase II and III trials show that idebenone significantly reduced 

the loss of respiratory function in 8–18-year-old patients who were not 

taking concomitant glucocorticoids. Considering its favourable safety 

and tolerability profile, this oral medication could therefore become the 

first treatment option for patients not using glucocorticoids with the 

possibility to ameliorate a life-threatening complication in the ageing 

population of DMD patients. n
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