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Coal mine fires are insidious, persistent, and as widespread as the occurrence of coal itself, yet their potential
adverse human health impacts have been poorly characterised. We aimed to summarise the existing literature
regarding the health harms associated with coal mine fires and other relevant environmental exposures. We
searched the literature for studies of coal mine fires, their emissions, and any aspect of human health. In the ab-
sence of health evidence specific to coalmine fires, we included studies of domestic coal combustion and outdoor
air pollution from forestfire smoke, forwhich emission profiles are broadly similar. Coalminefires cause physical
hazards and poor air quality. Proximity to the source of pollution and smouldering combustion typical of coal
mine fires increase the risk of community exposure to high concentrations of known toxins such as aerosolised
particles, and products of incomplete combustion. Coal mine fire smoke is likely to have short-term adverse
respiratory impacts. Adverse cardiovascular outcomes and increased mortality are also plausible depending
upon the magnitude of exposure and the number of people affected. There is insufficient evidence to determine
the likelihood of other health outcomes. There are major gaps in the available evidence for health outcomes as-
sociated with exposure to poor air quality for time periods of weeks to months. The incomplete evidence base
hampers actions to mitigate harms in a timely, scientifically-informed manner. The need to further understand
the health impacts of coalmine fires is pressing, particularly as they disproportionately affect vulnerable and dis-
advantaged communities and are likely to becomemore frequent and severe as a consequence of climate change.
Crown Copyright © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fires in subterranean coal deposits are a natural phenomenon, and
many have been burning for millennia, including Australia's Burning
Mountain and Powder River Basin in the United States of America
(USA) (Heffern and Coates, 2004; Krajick, 2005; Stracher et al., 2011).
Coal mine fires are widespread, and currently thousands are burning
Fig. 1.Global distribution of coal mine fires (note: thefigure does not indicate the density of coa
where data and surveillance of coal mine fires is less robust).
Adapted from Stracher et al., 2011.
throughout the world, especially in India, China, and the USA (Fig. 1)
(Stracher, 2007; Stracher and Taylor, 2004). The number of coal fires
has increased dramatically since the Industrial Revolution as a result
of human activity such as mining, land clearing, and anthropogenic cli-
mate change (Stracher, 2007).Whilst coal fires may originate distant to
coalmines, themajority of the available literature, case studies and gov-
ernment reports focus on coal mine fires. The impacts of coal mine fires
l fires in affected regions and is likely to understate the distribution in developing countries



Fig. 2. Densely populated communities reside amongst the JCF fires in Eastern India that
have been burning for almost a century.
Photo: Johnny Haglund.

Fig. 4.An aerial view of the smoke plume that coveredMorwell and surrounding towns in
regional Victoria, Australia during the Hazelwood coal mine fire in 2014.
Photo: Mike Keating.
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may be considered in health, environmental and economic terms
(Finkelman and Stracher, 2010; Stracher, 2007; Stracher and Taylor,
2004). Whilst the environmental and economic harms associated with
coalminefires have been somewhat elucidated, thepotential health im-
pacts have received less attention.

The need for evidence to guide the public health response to coal
mine fires is clear and has been demonstrated empirically across three
global case studies: the Jharia Coal Fields (JCF) in Eastern India, the
town of Centralia in Pennsylvania, USA, and the Hazelwood coal mine
fire in regional Australia. The JCF fires are an extreme case where fires
span 450 kilometer (km)2 and have been burning for almost a century
in the immediate proximity of densely populated communities
(Prakash, 2007; Sarkar et al., 2007) (Fig. 2). Whilst the population
level impact of harms resulting from the air pollution liberated from
these fires has never been determined, the physical threats are starkly
evident in the countless disappearances of individuals and homes
through unstable ground over the years (Magnier, 2012; Michalski
et al., 1997). To date, efforts to relocate communities nearby the JCF
fires have been fragmented and hindered by a lack of clear evidence-
based imperative to do so (Magnier, 2012). The Centralia mine fire in
Pennsylvania has been burning since 1962. Despite repeated unsuccess-
ful efforts to extinguish thefire, it extended to the coal seamunderneath
the town, leading to recurrent land subsidence and episodes of CO poi-
soning (Fig. 3) (DeKok, 1986). Eventually the town was relocated
Fig. 3. Subsidence along the abandoned Route 61 highway due to the underground coal
mine fire in Centralia, USA.
Photo: Angela Parriott.
between 1985 and 1991, with only a few residents remaining today
(Krajick, 2005; Stracher and Taylor, 2004). The US government has
since been heavily criticised for the lack of decisive, timely action for
the residents of Centralia (DeKok, 1986). A more recent case study is
that of the 2014 Hazelwood coal mine fire in Australia, which lasted
sixweeks and caused unprecedented episodes of air pollution in nearby
towns (Fig. 4). As outlinedby a parliamentary enquiry into the response,
the lack of available evidence outlining the short- and long-term harms
associated with coal fire smoke exposure considerably hindered the
public health response to the Hazelwood mine fire (Parliament of
Victoria, 2014).

The public health importance of air pollution is well established and
is supported by robust evidence concerning the health harms associated
with ambient particulate air pollution and source-specific indoor and
outdoor air pollution, such as that resulting from forest and peat fires
and domestic coal combustion (Lim et al., 2013; Liu et al., 2015; Pope
and Dockery, 2006; Zhang and Smith, 2007). The health harms associat-
ed with coal mine fires have received comparatively less attention. In
light of the global distribution of coal mine fires, their increasing occur-
rence and their predominance in impoverished and disadvantaged
communities, there is a clear need and opportunity for further research
to guide decision makers in mitigating health harms at a population
level. A very similar spectrum of toxic components to those described
for coal fires has also been described for other forms of indoor and out-
door solid fuel combustion including forest fire, bushfire, and peat fire
smoke, and from indoor domestic coal fires (Alves et al., 2011; Betha
et al., 2013; De Vos et al., 2009;Melendez-Perez et al., 2014). It is there-
fore plausible that the health harms associatedwith coalmine firesmay
be comparable to those observed with forest fire smoke and domestic
coal combustion, if the various exposure dynamics are accounted for, in-
cluding the substrate consumed, combustion conditions, the varying
concentration of potentially toxic trace elements in the substrate, the
duration and intensity of exposure, and the characteristics of the popu-
lation exposed. Belowwe review and summarise the available evidence
concerning the health impacts associatedwith coal mine fires, highlight
gaps in the evidence, and drawuponfindings of the health impacts from
comparable exposures.

2. Method

We initially searched the literature for the highest level of evidence
available about the characteristics of coal fire emissions and impacts of
coal mine fires on any aspect of human health and wellbeing, including
publically available university and government reports. Due to the pau-
city of health evidence specific to coal mine fire smoke, we expanded
the search criteria to include indoor and outdoor smoke from the
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domestic use of coal and outdoor air pollution from forest and peat fires.
Although there is large variation in the intensity and duration of expo-
surewithin and between these sources, the composition of smoke dem-
onstrates a similar spectrum of chemical compounds to coal mine fires
as the process of incomplete combustion of a solid, hydrocarbon-
based fuel source is common to these sources. Emissions include carbon
dioxide (CO2); Particulate Matter (PM); products of incomplete com-
bustion including hydrocarbons, aldehydes and polycyclic aromatic
hydrocarbons (PAH); and trace elements such as sulphur, arsenic,
lead, and mercury (Alves et al., 2011; Betha et al., 2013; Finley et al.,
2009; Sigler et al., 2003; Zhang et al., 2008).

2.1. Search strategy

We searched peer-reviewed articles using PubMed, Cochrane
Library, ScienceDirect, Web of Science, GreenFILE, ProQuest, and Scopus
electronic databases. Searcheswere conducted fromMarch to July 2015.
The following search terms were used: ‘coal mine fire’, ‘coal fire’, ‘coal
combustion’ and any of the following: ‘health’, ‘morbidity’, ‘hospital’,
‘respiratory’, ‘asthma,’ ‘cardiac,’ ‘cardiovascular,’ or ‘mortality.’ In the ab-
sence of literature pertaining specifically to coal mine fires, the follow-
ing search terms were applied: ‘domestic coal’ or ‘forest fire;’ ‘wildfire’
or ‘bushfire;’ and any of the following: ‘health’, ‘morbidity’, ‘hospital’,
‘respiratory’, ‘asthma,’ ‘cardiac,’ ‘cardiovascular,’ or ‘mortality.’ The title
and abstracts of retrieved papers were reviewed and the exclusion
criteria applied. A ‘snowballing’ technique was employed, whereby rel-
evant citations listed in review papers were followed up. Additionally, a
supplementary search of key authors in the field of coal fires was
conducted.

Publications were excluded if they were not available in full-text, if
they assessed exposure only and not the associated health outcome,
or were not available in English. No date limitation of published work
was applied. Retrieved publications were stored in an EndNote Library.
Duplications were identified by manual search and discarded. Studies
were summarised based on study setting; design; exposure characteri-
sation; and outcome assessment, key findings, and strength of associa-
tion if available. Limitations of studies, including likelihood of bias,
were considered.

3. Results

We found 193 studies and 68 were discarded because they did not
meet the inclusion criteria. Of the 125 studies included in this review,
26 were descriptive case studies of coal mine fires, two related to expo-
sure to coal-fired boilers, 43 to domestic coal use, and 54 to forest fire
smoke exposure. In the absence of peer-reviewed literature, 12 reports
fromgrey literaturewere included. Grey literature refers to reports from
universities, government, and other reputable organisations produced
external to academic and commercial channels. The vast majority of
coal mine fire research addressed the composition, toxicology and epi-
demiology of smoke exposure. A small number of papers addressed
physical injuries.

3.1. Components of outdoor smoke and their known health impacts

Pollutants generated by coal combustion are similar to that generat-
ed from domestic solid fuel combustion and outdoor biomass fires.
Pollutants may be broadly categorised as gases, PM, volatile organic
compounds, and trace elements and many are known to be deleterious
to human health, such as CO, PAHs, benzene, arsenic, fluorine, mercury,
selenium, formaldehyde, nitrogen and sulphur-based compounds, and
particles with an aerodynamic diameter less than 10 μm (PM10)
(Table 1) (Betha et al., 2013; De Vos et al., 2009; Ezzati and Kammen,
2002; Finkelman, 2004; Finkelman and Stracher, 2010; Hower et al.,
2009; Melendez-Perez et al., 2014; Stracher, 2007; Stracher and Taylor,
2004; Zhang et al., 2008).
PM is the most important component of outdoor smoke for which
there is a large evidence base that outlines the detrimental population
health impacts associated with PM exposure. In particular, fine particu-
lar matter with an aerodynamic diameter less than 2.5 μm (PM2.5) are
able to penetrate deeply within the alveoli and are thought to have
the greatest role in affecting human health, in particular respiratory
and cardiovascular morbidity (Pope and Dockery, 2006).

3.2. Coal mine fires and their emissions

Producing a detailed description of the emissions generated by coal
mine fires is problematic for many reasons. First, the composition of
coal, and the pollutants liberated during combustion, varies geographi-
cally (Finkelman, 2004; Finkelman and Gross, 1999). Second, the nature
of coal fire emissions varies with the nature of combustion (Zhang et al.,
2008). Coalminefires tend to burn less efficiently and for longer periods
than a coal-burning power plant, resulting in the release of awide range
of partially oxidised by-products including benzene, toluene, and xy-
lene. Finally, the emission profile of coal combustion varies spatially
and temporally. Modelling themanner in which emissions flux through
soil and overburden into the ambient air, alongwith themeteorological
conditions that impact this, is challenging and further sophistication of
models is required to determine the potential exposure of communities
residing nearby coal mine fires (Engle et al., 2013; O'Keefe et al., 2010).

There have been few studies that have characterised the emissions
generated from coal mine fires, the majority of which are abandoned
coal mines in Kentucky and Wyoming, USA (Engle et al., 2012; Hower
et al., 2009; Hower et al., 2011; Hower et al., 2013; O'Keefe et al.,
2010; O'Keefe et al., 2011). These studies have characterised up to 62
different compounds in the coal fire emissions (Hower et al., 2013).
The concentration of emissions at vent surfaces varies substantially for
all compounds that are potentially harmful to human health. Maximal
concentrations recorded at vent surfaces across studies for the following
compounds is as follows: CO (N27 000 parts permillion (ppm)),mercu-
ry (N2100 μg/m3), benzene (N400 parts per billion (ppb)), toluene
(N397 ppb) and, greenhouse gas CO2 (N17% v/v) (Engle et al., 2012;
Hower et al., 2009; Hower et al., 2011; Hower et al., 2013; O'Keefe
et al., 2011; Pone et al., 2007). Furthermore, study of the soot and subli-
mates associated with these coal mine fires demonstrates the presence
of a range of nano- and ultrafine minerals including harmful trace ele-
ments such as selenium, arsenic, and mercury (Pone et al., 2007; Silva
et al., 2011; Silva et al., 2012). At the global scale it has been estimated
that CO2 emissions resulting from coal mine fires vary from
12 kg CO2e yr−1 m−2 to 8200 kg CO2e yr−1 m−2 and that the annual
CO2 emissions from coal fires in the US is approximately 1.4 × 107 to
2.9 × 108 tonne per year (Carras et al., 2009; O'Keefe et al., 2010). How-
ever, further sophistication of modelling is required to fully appreciate
the contribution of coal fires to greenhouse gas emissions and other at-
mospheric pollutants (Engle et al., 2013; Engle et al., 2011).

Extrapolating the impact of these documented emissions on human
health is difficult, as these emissions vary significantlywith the intensity
of spontaneous combustion andwithmeteorological conditions, in par-
ticular temperature (Carras et al., 2009; Hower et al., 2009; Hower et al.,
2011; Hower et al., 2013). Additionally, many of these emissions are
documented at surface vents of fires distant from communities, and as
such understanding the probable exposure to communities or residents
and the associated health impacts is challenging. The relevance of these
emissions on humanhealthwill depend upon the nature inwhich emis-
sionsflux from coalfire vents, theproximity of exposed communities, as
well as the duration of exposure. Despite these limitations, available
studies support that coal fires are a source of locally dangerous levels
of CO, benzene, mercury, and other gases, as well as a significant con-
tributor to greenhouse gas emissions, which may indirectly impact
health through climate change (Carras et al., 2009; Department of the
Environment and Heritage, 2015; Engle et al., 2011; O'Keefe et al.,
2010; The WHO European Centre for Environment and Health, 2010).



Table 1
Major constituents of smoke from biomass, peat and coal combustion and associated health impacts.
Adapted from Naeher et al. (2007), Agency for Toxic Substances and Disease Registry (2007), (2012), Bencko et al. (1980), Bolling et al. (2009), Carras et al. (2009), Chen et al. (2014),
Finkelman and Gross (1999), Johnston and Bowman (2014), Liu et al. (2015), Melendez-Perez et al. (2014), Mirza (2003), Pope and Dockery (2006), Reid JS et al. (2005), Saarnio et al.
(2010), Youssouf et al. (2014), and Zhang and Smith (2007).

Constituent Health impacts

Particulate matter Particulate matter primarily comprises organic and elemental carbon components along with smaller contributions from
inorganic species. Smaller sized particles (PM10, 2.5) are able to reach the alveoli and have the greatest potential to cause
cardiovascular and respiratory harm. There is substantial evidence that particulate matter is associated with a wide range of
adverse health outcomes, in particular all-cause mortality, cardiovascular and respiratory morbidity, inflammation, oxidative
stress, and pro-coagulation.

Inorganic acids
Carbon monoxide Carbon monoxide is produced through incomplete combustion produced more abundantly from smouldering than flaming

combustion. Carbon monoxide is a neurotoxin that impairs the oxygen carrying capability of haemoglobin. Symptoms and
signs of acute carbon monoxide poisoning include headache, nausea, weakness, mental confusion, visual disturbances, chest
pain, dyspnea, palpitations, cardiac arrhythmias, myocardial ischemia, pulmonary edema, seizures, loss of consciousness,
coma and death. Exposure to carbon monoxide below the concentration at which poisoning occurs is associated with
exacerbations of asthma in children, increased risk of congestive cardiac failure, ischemic heart disease, myocardial
infarction, stroke, neurological impairment, and cognitive changes

Ozone Ozone is formed photo-chemically near the top of smoke plumes in sunlight conditions. Ozone is a secondary pollutant
formed chemically from the cycling of nitrogen oxide species in the atmosphere. It is more likely to be an important
co-pollutant at locations distant from, rather than adjacent to, the source of combustion. Ozone is associated with
exacerbations of respiratory diseases.

Nitrogen and sulphur-based compounds Both nitrogen and sulphur-based compounds are produced in proportion to their content in the burning substrate and the
combustion efficiency of the fire. Smouldering combustion tends to produce reduced nitrogen compounds such as ammonia,
whereas flaming combustion produces oxides of nitrogen. These compounds are respiratory irritants.

Carbon dioxide, methane Greenhouse gases including carbon dioxide and methane contribute to climate change. Indirectly, climate change is
associated with an increased occurrence of malnutrition and nutritional-related diseases as a result of food insecurity,
infectious disease outbreaks and illness, and injury secondary to extreme weather events.

Hydrocarbons
Examples
Polycyclic aromatic hydrocarbons — such
as benzo(a)pyrene; benzene

Produced by incomplete combustion. These may be saturated, unsaturated, monoaromatic, or polycyclic aromatics. Some,
such as benzo[a]pyrene, are mutagenic and carcinogenic. Butadiene, an unsaturated hydrocarbon is an irritant and
neurotoxic.
This group includes semi-volatile and volatile organic compounds such as benzene, naphthalene, and toluene. They are
respiratory tract irritants. Benzene and naphthalene are classified as carcinogens. Acute toxic exposure to benzene
(concentrations of 10 000–20 000 ppm) may be fatal. Exposure to lower concentrations of benzene (700–3000 ppm) have
been documented to cause drowsiness, dizziness, tachycardia, headaches, tremor, arrhythmias, confusion, and
unconsciousness

Oxygenated organic molecules
Aldehydes Some aldehydes such as acrolein are extremely irritating to mucous membranes of the human body. Others, such as

formaldehyde, are carcinogenic. Some reduce the ability of scavenger cells in the lungs to engulf foreign bacteria.
Organic alcohols and acids These include methanol and acetic acid, which are irritants and are teratogenic.
Phenols Examples include catechol and cresol. These are known to be irritants, mutagenic, carcinogenic, and teratogenic.
Quinones Quinones such as hydroxyquinone are irritants, allergenic, cause oxidative stress and inflammation, and are possibly

carcinogenic.
Free radicals Free radicals, such as semiquinones, are abundantly produced but most undergo condensation within a few seconds. Some

may persist for up to 20 min and some may remain in organic material. They cause oxidative stress, inflammation, and are
possibly carcinogenic.

Trace elements Trace elements may occur in gaseous form or be attached to particulate matter. Health harms arising from trace elements
liberated during coal combustion have been well documented for arsenic, beryllium, fluorine, selenium, and mercury. Other
trace elements liberated during coal combustion which may be harmful to human health include boron, chromium,
vanadium, manganese, nickel, copper, zinc, aluminium, germanium, lead, molybdenum, cadmium, antimony, tin, and
thallium

Arsenic Skin lesions; gastrointestinal illness: neurotoxicity; nephrotoxicity; bladder, lung, and skin cancer
Beryllium Immune dysfunction, respiratory disease, skin disease, and lymphatic/haematological illness
Fluorine Dental and skeletal fluorosis
Mercury Neurotoxic, lung and prostate cancer
Selenium Hair and nail loss, paraesthesia, nausea, and dizziness
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Looking at the global case studies, the data outlining emissions asso-
ciated with the JCF fires in India and Centralia mine fire in the USA are
limited. A single study exploring the air quality surrounding the JCF in
India, reported that the 24-hour average concentration of PM10 was as
high as 780 μg/m3 in work areas and 170 μg/m3 in the ambient air
(Ghose and Majee, 2007). These values considerably exceed the World
Health Organisation standards of 50 μg/m3 per day (World Health
Organisation, 2005). Field studies of the Centralia mine fire in the USA
have reported varied CO levels between 2200–7500 ppm measured
near vents and boreholes (Department of Environmental Protection
Pennsylvania, 2015; Stracher et al., 2004). There does not appear to be
any publically available data outlining the concentrations of PM10 or
PM2.5 in Centralia. Although 24-hour total suspended particulate con-
centrations, which are a relatively poor surrogate of PM10 concentra-
tions that are not regulated, have been recorded in the range of 7–
39 μg/m3 (Department of Environmental Protection Pennsylvania,
2015).

The only publically available data concerning community exposure
to coal mine fire emissions is that of the 2014 Hazelwood coal mine
fire in Victoria, Australia. The fire caused severe episodes of air pollution
inMorwell, a town of 14 000 people, wheremost residential areas were
situated within 5 km of the burning coal face, some being as close as
500 m (Fig. 4) (Australian Bureau of Statistics, 2013b). Concentrations
in excess of Australian and international air quality guidelines for
PM2.5, carbon monoxide (CO), PAH (benzo[a]pyrene), and benzene
were recorded in residential areas during the fire period. PM2.5

exceeded 24-hour average guidelines of 25 μg/m3 on 21 days during
the fire, with the highest peak recorded at 800 μg/m3 (Environment
Protection Authority Victoria, 2015). CO levels exceeded 8-hour average
guidelines of 9 ppm on seven days during the early weeks of the fire
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while benzene measurements exceeded the United States Agency for
Toxic Substances and Disease Registry 24-hour average standard of
9 ppb on three occasions, with measurements ranging from 9.2–
14 ppb (Parliament of Victoria, 2014). Peaks in the concentration
of benzo[a]pyrene during the coal mine fire period resulted in the annual
guideline for PAHs (as benzo[a]pyrene equivalents) of 0.3 ng/m3 to be
breached by 0.1 ng/m3. Ozone, nitric dioxide, sulphur dioxide, and
trace metal concentrations remained within regulatory guidelines
(Environment Protection Authority Victoria, 2015). Moderate eleva-
tions of PM2.5 were also documented in towns up to 15 km away in
the surrounding valley, an area inhabited by an additional 58 000
people (Australian Bureau of Statistics, 2013a, 2013b; Environment
Protection Authority Victoria, 2015).
3.3. Evaluating the health impacts associated with coal mine fires — the
challenges

The existing evidence exploring coal mine fires and their associated
impacts, in particular health impacts, is extremely limited. For this rea-
son, we draw upon evidence outlining the health impacts associated
with comparable exposures for which the spectrum of emissions is
broadly similar — indoor air pollution from domestic coal use and out-
door air pollution from forest and peat fires. A very similar spectrum
of toxic components to those described above for coal fires, has also
been described for forestfire, bushfire, and peatfire smoke, and from in-
door domestic coal fires. For example, coal, peat, and forest fires can all
liberate metals derived from the soil and this will vary by location
(Betha et al., 2013; Melendez-Perez et al., 2014). Further, as inefficient
combustion occurs in all these settings, a similar suite of products of in-
complete combustion is generated (Table 1). Domestic coal combustion
is useful as a comparable exposure as the substrate is themost similar to
that burned in outdoor coal fires. However, indoor domestic exposure is
likely to be of greater magnitude and is usually chronic in nature. Out-
door exposures from forest fires are more comparable to coal mine
fires in terms of duration and intensity of the smoke event. However,
there is huge variation between individual fires. Forest fire emissions
vary depending on the substrate burned (wood, leaves, peat), the condi-
tions of combustion, such as oxygen availability and fuel moisture, and
the distance from the location of the fire asmany components continue
to undergo further chemical reactions after generation (Betha et al.,
2013; De Vos et al., 2009; Melendez-Perez et al., 2014).
Fig. 5. The air pollution pyramid is a framework commonly used to describe the spectrum of he
the severity of outcomes and the proportion of people affected by them.
Despite the merits in drawing upon these analogous exposures,
we recognise that characterising the population health impacts fol-
lowing an air pollution event will vary based on a number of vari-
ables, including the size and characteristics of the population
exposed, local health infrastructure, the geochemistry of the sub-
strate consumed, the combustion conditions of the fire, the duration
and intensity of exposure. The air pollution pyramid provides a con-
ceptual framework of the relative order and severity of health im-
pacts following population level exposure to air pollution (Fig. 5).
In the absence of coal mine fire-specific literature, we feel that it is
appropriate to draw upon these comparable exposures to highlight
the existing gaps in data, as well to extrapolate the possible health
impacts associated with coal mine fires to inform decision makers
in the intervening period until coal mine fire-specific epidemiologi-
cal findings are available. Individual studies exploring the health im-
pacts associated with domestic coal combustion and forest fire
smoke exposure are presented in Tables 2 and 3 respectively.
Below, we summarise the range of health impacts reported in the lit-
erature, from symptoms of illness to morbidity and mortality associ-
ated with exposure to fire smoke.
3.4. Symptoms of illness

3.4.1. Evidence from coal mine fires
There are no peer-reviewed publications specifically assessing the

individual or public health impacts associated with air pollution liberat-
ed from coal mine fires. However, some non-peer-reviewed govern-
ment and university reports evaluating health impacts of the 2014
Australian Hazelwood coal mine fire are available (Barnett, 2014;
Brook, 2014; Flander and English, 2014; Parliament of Victoria, 2014).
As a part of a parliamentary inquiry into the circumstances of the fire,
the state health department submitted an evaluation of impacts on
health services during the period of the fire (Brook, 2014). This report
described a substantial increase in utilisation of a nurse-led telephone
health advisory service and in visits to general practices and other pri-
mary care services in the region during the fire period. Conditions for
which there was an increased consultation demand included irritation
of the eyes and throat; respiratory symptoms such as coughing; anxiety
related to the smoke and ash; and a range of other concerns including
headaches, nausea or vomiting, blurred vision, and requests for CO test-
ing (Brook, 2014).
alth impacts from exposure to air pollution. It illustrates the inverse relationship between



Table 2
Summary of studies exploring the association between health outcomes and domestic coal combustion in China.
Format adapted from Liu et al. (2015).

Health outcome Total
number of
studies

Number of studies
that observed a
positive association

Number of studies
that did not observe
a positive association

Studies that observed a
positive association

Studies that did not
observe a positive
association

Fluorosis 7 7 0 Ando et al. (1998), Chen et al. (1993), Dai et al.
(2007), Luo et al. (2011), Watanabe et al. (2000),
Wu et al. (2004), and Zhang and Cao (1996)

–

Arsenosis 2 2 0 Shraim et al. (2003), and Zheng et al. (2005) –
Respiratory symptoms 4 4 0 Liu et al. (2013), Pope and Xu (1993), Qian et al.

(2004), and Salo et al. (2004)
–

Asthma and chronic obstructive
pulmonary disease

2 2 0 Tao et al. (1992), and Zheng et al. (2002) –

Reduced lung function 2 2 0 Tao et al. (1992), and Xu et al. (1991) –
Lung cancer 5 4 1 Dai et al. (1996), Kleinerman et al. (2002),

Liu et al. (1991), and Luo et al. (1996)
Ko et al. (1997)

Esophageal cancer 1 1 0 Pan et al. (1999) –
Delayed childhood development 1 1 0 Tang et al. (2008) –
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3.4.2. Evidence from analogous exposures
Similar symptoms have been reported following exposure to indoor

air pollution from domestic coal use (Liu et al., 2013; Qian et al., 2004;
Salo et al., 2004) and forest fire smoke (Kolbe and Gilchrist, 2009;
Kunii et al., 2002; Shusterman et al., 1993).

3.4.3. Conclusion
The constituents of smoke are known to be irritants to mucosal sur-

faces and, as such, it is biologically plausible that similar symptoms are
Table 3
Summary of studies exploring the association between health outcomes and forest fire smoke
Format adapted from Liu et al. (2015).

Health outcome Total
number
of studies

Number of studies
that observed a
positive association

Number of studies
that did not observe a
positive association

Stu

Reduced birth weight 2 1 1 Ho
Asthma 12 11 1 De

Du
Joh
Joh
et
Vis

Other respiratory
conditions

26 25 1 Che
Du
et
(20
(20
et
et
(20
Rap
Sch
Tha
Vis

Cardiovascular conditions 11 6 5 Aze
Joh
et

Systemic inflammation 2 2 0 Hu
Medication use
(respiratory and
anxiolytic-hypnotic)

4 4 0 Caa
Joh

Mortality 10 8 2 An
Joh
et
and

a Inverse association.
evident following coal mine fire smoke exposure compared to other
sources of air pollution (Naeher et al., 2007).

3.5. Carbon monoxide poisoning

3.5.1. Evidence from coal mine fires
There are no peer-reviewed studies exploring the association be-

tween exposure to coal mine fire smoke and CO poisoning. However,
coal fires have been demonstrated to produce significant CO emissions.
exposure.

dies that observed a positive association Studies that did not observe a
positive association

lstius et al. (2012) Prass et al. (2012)
lfino et al. (2008), Dohrenwend et al. (2013),
clos et al. (1990), Henderson et al. (2011),
nston et al. (2002), Johnston et al. (2007),
nston et al. (2006), Martin et al. (2013), Morgan
al. (2010), Rappold et al. (2011), and
wanathan et al. (2006)

Smith et. al. (1996)

n et al. (2006), Dohrenwend et al. (2013),
clos et al. (1990), Emmanuel (2000), Hanigan
al. (2008), Henderson et al. (2011), Ignotti et al.
10), Johnston et al. (2007), Kolbe and Gilchrist
09), Kunii et al. (2002), Kunzli et al. (2006), Lee
al. (2009), de Mendonca et al. (2006), Mirabelli
al. (2009), Moore et al. (2006), Morgan et al.
10), Mott et al. (2002), Mott et al. (2005),
pold et al. (2011), Rappold et al. (2012),
ranz et al. (2010), Shusterman et al. (1993),
m et al. (2009), Thelen et al. (2013), and
wanathan et al. (2006)

Azevedo et al. (2010)

vedo et al. (2010), Haikerwal et al. (2015),
nston et al. (2007), Lee et al. (2009),a Rappold
al. (2011), and Rappold et al. (2012)

Duclos et. al. (1990), Hanigan
et al. (2008), Henderson et al.
(2011), Moore et al. (2006), and
Morgan et al. (2010)

ttunen et al. (2012), and Tan et al. (2000) –
mano-Isorna et al. (2011), Elliott et al. (2013),
nston et al. (2006), and Vora et al. (2011)

–

alitis et al. (2011), Faustini et al. (2015),
nston et al. (2011), Morgan et al. (2010), Nunes
al. (2013), Sahani et al. (2014), Sastry (2002),
Shaposhnikov et al. (2014)

Hanninen et al. (2009), and Vedal
and Dutton (2006)
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Annual CO emissions generated by the Ruth Mullins fire in the USA
have been documented at 21 ± 1.8 tonne per annum (O'Keefe
et al., 2010). Government reports have demonstrated elevated ambient
CO concentrations in association with coal mine fires including the
Australian Hazelwood coal mine fire in 2014, during which several
firefighters required treatment for CO poisoning (Parliament of Victoria,
2014). A community health assessment centre established during the
fire tested 1879 residents for elevated blood carboxyhaemaglobin, a
marker of exposure to CO.Of these, 3% (n=53)met the screening criteria
for referral to hospital for further assessment for CO exposure. However,
information was not provided about their final diagnosis (Brook, 2014).
Centralia residents were also subject to empirical reports of repeated
episodes of exposure to CO within their homes, with many relying on
CO monitors or canaries to monitor this risk (DeKok, 1986). However,
the nature of this exposure has not been quantified in any grey or peer-
reviewed literature.

3.5.2. Evidence from analogous exposures
While CO exposure is a well-recognised occupational hazard for fire

fighters (Reinhardt and Ottmar, 2004), and elevations of CO above
accepted ambient guidelines have only occasionally been described in
forest and peat fires in community settings (Reisen and Brown, 2006),
no studies have reported CO toxicity in residents of communities affected
by forest fire smoke. In contrast, CO exposure is a well-established risk of
any combustion occurring in conditions of poor ventilation. Indoor coal
combustion for example, has been associated with numerous cases of
CO poisoning, including fatalities (Zhang and Smith, 2007).

3.5.3. Conclusion
CO usually dissipates quickly in outdoor settings. However, coal

mine fires are often subterranean, where burning conditions are rela-
tively anaerobic and likely to favour CO production. Thus, elevated
ambient CO exposure in surrounding areas could be a greater risk for
non-occupational exposure to coal mine smoke, than for other kinds of
landscape fires. This is supported by observations of harmful elevations
in atmospheric CO during the Centralia and Hazelwood coal mine fires
(DeKok, 1986; Environment Protection Authority Victoria, 2015).

3.6. Toxicity from exposure to trace elements

3.6.1. Evidence from coal mine fires
The concentration of trace elements, such as arsenic and selenium, in

coal varies geographically (Finkelman and Gross, 1999). For example,
concentrations of up to 2000mg/kg of fluorine, 35 000mg/kg of arsenic
and 8000mg/kg of seleniumhave been documented in certain seams of
Chinese coal, which is problematic due to their widespread domestic
use (Zheng et al., 1999). To date, there are no studies that explore the
health impacts associated with liberation of trace elements resulting
from coal mine fires.

3.6.2. Evidence from analogous exposures
Liberation of trace elements such as mercury has been documented

in association with forest and peat fires, but no studies have explored
potential health impacts associated with this (Betha et al., 2013). How-
ever, commercial combustion of coal enriched in beryllium and arsenic
has been demonstrated to cause immune dysfunction in exposed indi-
viduals (Bencko et al., 1980; Benckoet al., 1988). Domestic coal combus-
tion in China has been associated with endemics of arsenosis, fluorosis,
and selenosis, owing, in part, to the enrichment of much of China's sur-
face coal in these trace elements (Dai et al., 2012; Finkelman et al.,
1999). In epidemiological studies fluorosis, which causes skeletal and
dental dysplasia, has been linked with domestic coal combustion with
the association being influenced by the fluorine-content of the clay
used as a coal-burning additive and in briquette-making, method and
duration of burning, and the ventilation of the home (Ando et al.,
1998; Chen et al., 2014; Chen et al., 1993; Dai et al., 2007; Dai et al.,
2012; Dai et al., 2004; Luo et al., 2011; Watanabe et al., 2000; Wu
et al., 2004; Zhang and Cao, 1996; Zheng et al., 1999; Zheng et al.,
2007). Indoor combustion of coal with arsenic concentrations in excess
of 100mg/kg has been associatedwith symptoms of arsenosis, affecting
the central nervous system, digestive system, and skin (Chen et al.,
2014; Dai et al., 2012; Liu et al., 2002; Shraim et al., 2003; Zheng et al.,
1999; Zheng et al., 2005). Deforestation and exposure of selenium-rich
coal in the 1960s, which was subsequently exploited by local residents
for domestic use, has been implicated in selenosis endemics. Character-
istic selenosis symptoms, include hair and nail loss, paraesthesia, nau-
sea, and dizziness (Chen et al., 2014; Zheng et al., 1999).

Ingestion of food that has been dried over open fire pits containing
coal enriched in toxic trace elements is an important pathway of expo-
sure and could be responsible for greater individual intake than directly
inhaling polluted air (Chaoke et al., 1997; Dai et al., 2007; Dai et al.,
2012; Dai et al., 2004; Finkelman et al., 1999; Luo et al., 2011; Zhang
and Smith, 2007; Zheng et al., 2007). Selenosis is also linked to the use
of coal ash as a fertiliser and subsequent consumption of selenium-
rich crops (Chen et al., 2014; Dai et al., 2012).

3.6.3. Conclusion
Toxicity from trace elements released by the domestic combustion

of coal have been measured in settings where coal is enriched in the el-
ements of concern, individual exposure is chronic, and occurs through
multiple pathways in addition to inhalation of polluted air. While
these conditions will not necessarily apply to many coal mine fires,
there are examples, such as the JCF fires in India, where large residential
communities continue to live in close proximity to indefinitely burning
mine fires and experience chronic exposure to coal smoke (Fig. 2). Risk
of toxicity from trace elements should be considered in situationswhere
the coal deposit is enriched in elements of concern, and exposure to the
fire emissions is ongoing.

3.7. Respiratory morbidity

3.7.1. Evidence from coal mine fires
Peer-reviewed literature exploring this association following coal

mine fire exposure is lacking.

3.7.2. Evidence from analogous exposures
The vast literature on indoor and outdoor particulate air pollution

from all sources clearly demonstrates adverse impacts on the develop-
ment and functioning of the respiratory system in children and adults.
This includes the development of new cases of lung disease as well as
exacerbation of existing conditions (Dockery and Ware, 2015; Liu
et al., 2015; Upadhyay et al., 2014). Additionally, the evidence
concerning indoor pollution from domestic coal combustion and respi-
ratory morbidity is strong (Table 2). In adults, exposure has been asso-
ciated with a range of adverse respiratory outcomes, including
increased likelihood of respiratory symptoms, impaired lung function,
and respiratory conditions such as chronic obstructive pulmonary dis-
ease (COPD) (Pope and Xu, 1993; Tao et al., 1992; Xu et al., 1991). Chil-
dren are particularly vulnerable to the health effects associated with
exposure to domestic coal combustion. These include an increased risk
of developing a range of respiratory symptoms, infections, and asthma
(Liu et al., 2013; Qian et al., 2004; Salo et al., 2004; Smith et al., 2000;
Zheng et al., 2002).

Similarly, the evidence surrounding the impact of forest fire smoke on
adverse respiratory health is robust, particularly for asthma which has
been the subject of considerable research (Table 3). Studies have consis-
tently reported associations between exposure to forest fire smoke and
exacerbations of asthma, as measured through onset of symptoms, med-
ication use, Emergency Department presentations, and hospital admis-
sions (Delfino et al., 2008; Dohrenwend et al., 2013; Duclos et al., 1990;
Henderson et al., 2011; Johnston et al., 2002; Johnston et al., 2006;
Martin et al., 2013; Morgan et al., 2010; Vora et al., 2011).
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The association between forest fire smoke exposure and respiratory
outcomes apart from asthma is also well established, including in-
creased respiratory symptoms, increased use of respiratory medication,
increased likelihood of physician and EmergencyDepartment visits, and
hospital admissions for respiratory disease. Diseases associated with
short-term increases in fire smoke exposure, include pneumonia,
acute bronchitis, and COPD (Caamano-Isorna et al., 2011; Chen et al.,
2006; De Mendonça et al., 2006; Elliott et al., 2013; Emmanuel, 2000;
Henderson et al., 2011; Lee et al., 2009; Martin et al., 2013; Moore
et al., 2006; Rappold et al., 2011; Schranz et al., 2010; Tham et al.,
2009; Thelen et al., 2013; Visawanathan et al., 2006). Those with a his-
tory of asthma, or pre-existing cardiopulmonary disease, aremore likely
to report symptoms (Kolbe andGilchrist, 2009; Kunii et al., 2002; Kunzli
et al., 2006; Mirabelli et al., 2009; Mott et al., 2005; Mott et al., 2002).

3.7.3. Conclusion
The evidence base supporting an association between exposure to

both indoor air pollution from domestic coal combustion and outdoor
air pollution from forest fire smoke is strong. It is therefore very likely
that exposure to coalminefire smokewould be associatedwith respira-
tory morbidity at the population level, particularly in susceptible
individuals.

3.8. Cardiovascular morbidity

3.8.1. Evidence from coal mine fires
There are no studies exploring the impact of air pollution resulting

from coal mine fires on cardiovascular morbidity.

3.8.2. Evidence from analogous exposures
The wider literature concerning exposure to outdoor particulate air

pollution from any source conclusively demonstrates both short and
long-term associations with heart disease including sub-clinical chang-
es in autonomic function, admissions to hospital for dysrhythmias, heart
failure, ischaemic heart disease, and cardiovascularmortality (Pope and
Dockery, 2006). Whilst there are no studies exploring the association
between domestic coal combustion and cardiovascular morbidity, the
literature exploring this association following episodic forest fire
smoke exposure reports mixed results. The finding of an association ap-
pears to vary with the exposure metric used (Azevedo et al., 2010), the
subpopulation examined (Azevedo et al., 2010; Johnston et al., 2007),
and the cardiovascular endpoint measured. Cardiac arrest, ischaemic
heart disease, and heart failure appear to be the outcomes most com-
monly reported to be associated with episodic fire smoke pollution
events (Dennekamp et al., 2015; Haikerwal et al., 2015; Rappold et al.,
2012; Rappold et al., 2011). However, publication bias is likely to be a
factor in all fire smoke studies and contribute to an under-estimation
of the true association between exposure and outcome, but we cannot
evaluate the size of this effect.

3.8.3. Conclusion
While studies of the specific setting of coal mine fires are lacking,

there is strong evidence from the wider literature that short and long-
term exposure to elevated concentrations of PM is associated with
worsening of heart disease. It is plausible that coal mine fire emission
could contribute to worsening cardiovascular outcomes. However, the
size of the impacts can be small and not always measurable in small
populations.

3.9. Immune system impairment

3.9.1. Evidence from coal mine fires
There are no published studies that have explored the associa-

tion between coal mine fire smoke exposure and immune system
impairment.
3.9.2. Evidence from analogous exposures
Whilst the wider PM literature demonstrates an association be-

tween exposure to fine PM and systemic inflammation, few studies
have explored the association between domestic coal combustion and
immune function and tend to be either relatively dated or written in
languages other than English. Zhang et al. (2007) summarises that six
studies have demonstrated that domestic coal smoke exposure is asso-
ciated with reductions in serum immunoglobulin G content, peripheral
T-lymphocyte activity, interleukin-2 induction activity, and natural kill-
er cell activity. This suggests that domestic coal smoke exposure is asso-
ciated with an increased risk of developing infections and illnesses as a
result of immunocompromise (Zhang and Smith, 2007). Indeed, in-
creased respiratory infections have been clearly associated with indoor
smoke exposure from the use of solid fuels, including coal (Po et al.,
2011; Shen et al., 2009). Additionally, brief exposure to biomass
smoke has also been associated with short-term changes in inflamma-
tory markers (Huttunen et al., 2012; Tan et al., 2000).

3.9.3. Conclusion
There is evidence of systemic inflammation following brief biomass

and domestic coal exposure and this is a plausible outcome from coal
fire smoke exposure. However, caution is needed as the relative expo-
sure from indoor coal smoke exposure could be far greater than outdoor
smoke exposure, for which the evidence based is much more limited.

3.10. Perinatal outcomes

3.10.1. Evidence from coal mine fires
To date, there are no studies exploring the impact of coal mine fire

smoke exposure in utero on perinatal and early childhood outcomes.

3.10.2. Evidence from analogous exposures
Exposure to ambient air pollution from commercial coal combustion

has been associated with an increase in umbilical PAH-DNA adduct
levels (a marker of ambient exposure to PAHs) and decrements in one
ormore developmental quotients (Tang et al., 2008). Perinatal exposure
to forest and peat fire smoke has been demonstrated to be significantly
associatedwith an increased likelihood of perinatal and childhoodmor-
tality, along with reductions in birth weight following second and third
trimester exposure (Holstius et al., 2012; Jayachandran, 2009). A single
study found no significant association between in utero exposure to for-
est fires (as determined by number of hotspots per region) and birth
weight (Prass et al., 2012). The relationship between the number of sat-
ellite hotspots and smoke exposure, as measured by Prass et al. (2012),
is not known. Additionally, this study did not address seasonal variation
of birth weight and is likely to be subject to bias.

3.10.3. Conclusion
While studies of outdoor air pollution suggested that adverse peri-

natal outcomes might plausibly be associated with maternal exposure
to coal mine fire smoke, the evidence based is inadequate to comment.

3.11. Cancer

3.11.1. Evidence from coal mine fires
There are no peer-reviewed studies exploring the association be-

tween exposure to coal mine fire smoke and malignancy.

3.11.2. Evidence from analogous exposures
Both ambient and indoor air pollution are classified as group 1 car-

cinogens (International Agency for Research on Cancer, 2006). The asso-
ciation between indoor coal combustion and lung cancer has been
demonstrated in a number of studies (Dai et al., 1996; Kleinerman
et al., 2002; Liu et al., 1991; Luo et al., 1996). A meta-analysis of the lit-
erature exploring the association between indoor air pollution and lung
cancer in China by Zhao et al. (2006) confirmed that domestic coal use
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for heating and cookingwas associatedwith a two-fold increased risk of
lung cancer (Zhao et al., 2006). Individual studies have demonstrated
women to be at higher risk of lung cancer secondary to domestic coal
use, as a function of increased time spent indoors (Liu et al., 1991).
The geographical variation of trace elements in coal utilised for domes-
tic purposes also appears important in the causal pathway. In XuanWei
County, China, the enrichment of coal in fine silica (b10 μm) has been
implicated in the elevated lung cancer mortality observed in non-
smoking women in this region. In particular, the combined interaction
of silica and volatile organic matter (termed the silica–volatile interac-
tion) has been implicated in the aetiology of lung cancer in this region
(Dai et al., 2008; Large et al., 2009).

Although less extensively studied than lung cancer, a nested case–
control in China found that any exposure to coal for domestic heating
and cooking was associated with a doubling of the risk of esophageal
cancer (Pan et al., 1999). Roth et al. (1998) suggested that the aetiology
of esophageal cancer may result from contamination of foodstuffs with
carcinogen-causing products of incomplete coal combustion in addition
to direct respiration of airborne pollutants (Roth et al., 1998).

3.11.3. Conclusion
As cancer is a long-term outcome resulting from the interaction of

many genetic and environmental risk factors and long-term exposure
to carcinogens, the relevance of the above findings for coal mine fire
smoke exposure is not clear.

3.12. Mortality

3.12.1. Evidence from coal mine fires
The association between coal mine fire smoke exposure andmortal-

ity has not been examined in any peer-reviewed publications. However,
analyses of mortality trends at the time of the Australian Hazelwood
coal mine fire (2014) are outlined in two publically available university
reports (Barnett, 2014; Flander and English, 2014). The first of which
was a rapid analysis ofmortality conducted by Barnett (2014), a univer-
sity based researcher at the request of a community group. This Bayes-
ian analysis adjusted for long-term trends and seasonal cycles in deaths,
and monthly maximum temperature. The main finding was an 82%
chance that deaths in the 70 000 people living in the surrounding re-
gion, increased by 10% during the fire period (Relative Risk 1.10, 95%
Credible Interval 0.89, 1.34) (Barnett, 2014). A second university report
by Flander and English (2014) found that during the year of the Hazel-
wood coal mine fire (2014) there were 9.2 additional monthly deaths
than expected for February–March in the region surrounding the fire,
based on predictive modelling of mortality data from the previous five
years. However, this analysis did not adjust for important covariates
such as ambient temperature. Wide confidence intervals around these
estimates including the null meant the findings were inconclusive
(Flander and English, 2014). Many factors may have contributed to
the observed increase in deaths in the region, mine fire smoke being
one of these. However, for both analyses an increase in deaths was ob-
served in more distant communities in the region rather than in the
town most severely exposed to the smoke. Other contributing factors
could have included usual background fluctuations or coincidental hot
weather.

3.12.2. Evidence from analogous exposures
The wider literature exploring the effects of PM and domestic coal

smoke, and to a lesser extent forest fires, supports an association of in-
creased all-cause and cardiopulmonary mortality, for which no safe
threshold of exposure has been determined (Pope and Dockery,
2006). Empirical studies of exposure to domestic coal smoke have dem-
onstrated associations with deaths from pneumonia (Shen et al., 2009)
and lung cancer (Mumford et al., 1987).We did not find empirical stud-
ies that have examined cardiovascular mortality despite this being the
main driver of global modelled estimates of mortality attributable to
domestic solid fuels (Lim et al., 2013). Mortality from outdoor coal
smoke resulting from domestic combustion has been evaluated in
Europe. In the UK and Ireland, coal was a common source of home
heating up until the 1990s and this led to episodes of severe outdoor
pollution from coal smoke during the winter months. One of the more
famous examples was the London Fog of 1952 in which 12 000 excess
deaths due to both acute and persisting effects of the fog occurred
(Bell and Davis, 2001). However air quality before, during and after
the London episode was considerably worse than that typically docu-
mented for coal mine fires. More recently, reductions in mortality
have been observed in association with progressive bans of the use of
coal for domestic heating in Ireland during the 1990s. Respiratory mor-
tality declined by 17%, 9% and 3% following the 1990, 1995, and 1998
bans respectively (Dockery et al., 2013).

Although there have been fewer studies of the association between
forest fire smoke and mortality the evidence is emerging for associa-
tions with all-cause (non-trauma) mortality with generally similar
effect sizes reported to urban background PM. The evidence for associa-
tionswith cause-specific (e.g. respiratory or cardiovascularmortality) is
emerging but studies are fewer and the results have been less consistent
(Analitis et al., 2011; Faustini et al., 2015; Jayachandran, 2009; Johnston
et al., 2011; Nunes et al., 2013; Sahani et al., 2014; Sastry, 2002;
Shaposhnikov et al., 2014).

3.12.3. Conclusion
The evidence base concerning analogous exposures suggest that in-

creased all-cause mortality following coal mine fire smoke exposure is
possible, andwill dependupon the duration andmagnitude of exposure
and the population characteristics of those exposed.

4. Discussion

The existing evidence exploring coal mine fires and their associated
impacts, in particular health impacts, is extremely limited. Analogous
exposures for which there is a more robust evidence base, including in-
door and outdoor pollution from domestic coal combustion and forest
fires, suggest that exposure to coalfire smoke exposure is likely to be as-
sociated with increased population risks of mortality and respiratory
and cardiovascular morbidity, depending upon the size of the popula-
tion exposed and the magnitude of the exposure. Coal fire smoke has
the potential to adversely affect perinatal and childhood development
and contribute to an increased risk of lung and esophageal malignancy.
Referring to these analogous exposures in the absence of literature spe-
cifically exploring the health effects associated with coal mine fires pro-
vides some insight into the probable health impacts, but the relative
merits and limitations of these exposures must be considered. Public
health impacts of coal smoke exposure will vary according to the
duration and magnitude of exposure, combustion conditions, the toxic
profile of the smoke, and the underlying health status of the people
affected.

Domestic coal combustion is the most comparable exposure to coal
mine fire smoke. However, anticipating potential health impacts that
may result from coal mine fire from domestic coal combustion is prob-
lematic as the profile of emissions, duration, and intensity of exposure
are likely to vary significantly. The indoor concentration of PM generat-
ed from domestic coal combustion is much greater than ambient con-
centrations and indoor exposure is likely to persist for many years, or
even a lifetime (Zhang et al., 2008). Long-term exposure to air pollution
has greater health impacts than short-term exposures and as such,
health outcomes associated with coal mine fire emissions may be less
likely than that for domestic coal combustion, especially for longer
term outcomes such as cancer (Dai et al., 1996; Kleinerman et al.,
2002; Pope and Dockery, 2006).

The evidence from forest and peat fires is likely to bemore compara-
ble in terms of exposure intensity and duration. However, it is difficult
to generalise as the duration of human exposure to mine fire emissions
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is highly variable. Emissions from some coal mine fires, such as
Australia's Hazelwood Mine (2014), are controlled within weeks,
while others, such as India's JCF complex, continue to cause chronic
human exposure more akin to that of domestic coal use. Although, in
forest fires, the substrate is biomass rather than fossilised fuel in the
form of coal, the general spectrum of species emitted from forest and
peat fires is also likely to be broadly similar as all include products of in-
complete combustion such as CO, aerosolised PM, and trace elements.

Additional limitations apply to the included publications, including
the heterogeneous methodology of assigning exposure to forest fire
smoke and domestic coal combustion. The limited number of studies
exploring the health impacts associated with coal mine fires is likely
to be for many reasons. The presence of associated gross environmental
impacts may deflect attention from the health impacts; coal fires pre-
dominately occur in low income countries with more limited health
and research infrastructure; the associated health problems may be
subtle, masked by other health issues in these populations; or the fires
are rare (Finkelman and Stracher, 2010). The absence of studies that
demonstrate no association between coal fire smoke exposure and ad-
verse health outcomesmay simply reflect publication bias or lack of ep-
idemiological research, rather than a lack of an association. Some of the
largest coal fires affect poor andmarginalised communities in India and
China, where there could be less available research capacity or political
will to investigate.

Coal mine fires are costly. The ability of a country to mount an ade-
quate response to mitigate the hazards of coal mine fires is constrained
by its economic resources and often relocation of communities is eco-
nomically favourable to extinguishing a coal fire (Whitehouse and
Mulyana, 2004). For example, after an initial $US 4 million was spent
on unsuccessful efforts to extinguish the Centralia mine fire, a further
$US 42 million was allocated to relocate the 1100 residents and busi-
nesses (Stracher and Taylor, 2004). The Hazelwood mine fire in
Australia, which lasted just six weeks, was estimated to have cost ap-
proximately $AU 100 million, of which $AU 32.5 million was absorbed
in firefighting efforts and $AU 3 million in temporary relocation assis-
tance for residents (Parliament of Victoria, 2014). In India,where dense-
ly populated communities reside amongst the JCF fires that have been
burning for almost a century, the government proposed $US 1.4 billion
to relocate 90 000 residents to new settlements in 1996. However, as
of 2012, only 1150 families have relocated, reportedly due to construc-
tion delays and local resistance to moving (Magnier, 2012). Indirect
costs associated with coal fires are even more difficult to quantify.
They include environmental degradation and the potential contribution
to climate change, along with the health and social impacts of the fires
(Parliament of Victoria, 2014; Whitehouse and Mulyana, 2004). Many
of theworst coal fires in theworld occur in impoverished and disadvan-
taged areas where the public health response capacity is limited. Fur-
ther, as low income countries are most vulnerable to the effects of
climate change, and climate change is likely to precipitate an increase
in the occurrence and severity of coal fires, it is these countries that
will continue to be the most vulnerable to the indirect health and envi-
ronmental effects of coal fires (Fried et al., 2008; Mirza, 2003).

It clear that the lack of evidence surrounding the health impacts as-
sociated with coal mine fires hinders the ability of governments and
public health officials to mitigate the impacts of coal mine fire events
in a timely, scientifically-informed manner. This was highlighted in
the review of the public health response to the Hazelwood mine fire
in Australia, which was criticised for the delayed relocation advice for
vulnerable subpopulations and the provision of mixed health messages
(Parliament of Victoria, 2014). Research is particularly needed in the de-
velopment of exposure assessment tools and biomarkers including
study of coal mine fire emissions where communities are actually
exposed rather than at surface vents, and refinement of exposure
modelling; studies of the effects of coal smoke on a range of perinatal,
childhood, respiratory, cardiovascular and immune system outcomes;
defining vulnerable subpopulation groups; assessing the impacts of at
different exposure time periods including periods of days to months;
and assessing the effectiveness interventions in mitigating adverse
health outcomes (Fullerton et al., 2008; Parliament of Victoria, 2014).

5. Conclusion

Coal mine fires represent a significant threat to human health. How-
ever, the extent of this threat is largely unquantified. Potential outcomes
can only be extrapolated from studies exploring other, theoretically
similar, air pollution events. Analogous exposures suggest that any ex-
posure to coal mine fire smoke is likely to be associated with increased
risks of adverse respiratory health outcomes. Adverse cardiovascular
outcomes, increased mortality and other population impacts described
for forest fire smoke exposure are also potentially important outcomes
depending upon the magnitude of exposure and the number of people
affected. While evidence for the domestic use of coal suggests that
chronic exposure could contribute to increased risks of malignancy
and toxicity from trace elements, there are major gaps in the available
evidence for health outcomes associatedwith exposure to poor air qual-
ity for time periods of weeks to months. Such paucity of data severely
limits the ability of governments and public health officials to mitigate
the impacts of coal mine fire events in a timely, scientifically-based
manner. The need to further understand the health impacts of coal
mine fires is pressing, as they disproportionately affect vulnerable and
disadvantaged communities.
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