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Abstract. Climate change is expected to directly alter the composition of communities and
the functioning of ecosystems across the globe. Improving our understanding of links between
biodiversity and ecosystem functioning across large spatial scales and rapid global change is a
major priority to help identify management responses that will retain diverse, functioning
systems. Here we address this challenge by linking projected changes in plant community
composition and functional attributes (height, leaf area, seed mass) under climate change
across Tasmania, Australia. Using correlative community-level modeling, we found that
projected changes in plant community composition were not consistently related to projected
changes in community mean trait values. In contrast, we identified specific mechanisms
through which alternative combinations of projected functional and compositional change
across Tasmania could be realized, including loss/replacement of functionally similar species
(lowland grasslands/grassy woodlands) and loss of a small number of functionally unique
species (lowland forests). Importantly, we demonstrate how these linked projections of change
in community composition and functional attributes can be utilized to inform specific
management actions that may assist in maintaining diverse, functioning ecosystems under
climate change.

Key words: biodiversity; climate change; dissimilarity; ecosystem function; management actions;
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INTRODUCTION

Climate change is likely to dramatically alter many

ecosystems around the world, in terms of the composi-

tion of species occurring in each area, as well as the

magnitude and variation of important ecosystem func-

tions. Substantial research has focused on applying

models to project outcomes for biodiversity under

climate change across large regions, indicating poten-

tially large shifts in the distributions of species and the

composition of communities (McMahon et al. 2011,

Bellard et al. 2012). Separate research has investigated

the potential implications of altered community compo-

sition on ecosystem functioning, primarily through

local-scale experimental and observational studies (Car-

dinale et al. 2012, Hooper et al. 2012). This work has

shown that loss of compositional or functional diversity

can directly alter ecosystem functioning, particularly

when considering multiple functions over longer time

periods (Isbell et al. 2011).

Local-scale research into the potential consequences

for ecosystem functioning of biodiversity loss, brought

about through drivers such as climate change, has been

valuable in clarifying the magnitude of these effects and

the mechanisms by which they are expressed (Traill et al.

2010). However, an important challenge remains in

understanding and predicting links between changes in

biodiversity and ecosystem functioning across large

regions under rapid climate change (Cardinale et al.

2012). Extending this science to larger scales is

particularly important for it to be useful in informing

policy and management decisions relevant to maintain-

ing diverse functioning ecosystems into the future, such

as where best to invest resources into conservation or

management actions (Pressey et al. 2007).

There are a number of approaches that have begun to

address this issue of linking changes in biodiversity and

ecosystem functioning across large regions. For exam-

ple, relationships between the current diversity of forest

communities and primary productivity have been

assessed using large numbers of forestry plots over

national scales (Paquette and Messier 2011, Ruiz-Benito

et al. 2014). A substantial body of research has also

focused on understanding the relationships between

functional traits and community compositional change

along environmental gradients (Diaz et al. 1998, Weiher

et al. 1998, Thuiller et al. 2004, Shipley et al. 2006,

Suding et al. 2008, Cornwell and Ackerly 2009, Laughlin

et al. 2012). These approaches have improved our

understanding of links between biodiversity, functional

Manuscript received 11 December 2014; revised 4 March
2015; accepted 24 March 2015. Corresponding Editor: J.
Franklin.

4 E-mail: Karel.Mokany@csiro.au

2132



traits, and ecosystem functioning across larger spatial

scales, yet they have limited capacity to directly inform
likely outcomes and appropriate management responses

under a rapidly changing climate.
A relatively small number of studies have attempted

to meet this challenge by predicting concomitant change
in biodiversity outcomes and ecosystem functioning

under climate change scenarios. A simple approach to
achieving this objective has been to link projected
changes in the distributions of individual species with

information on the functional attributes of those species,
to inform potential changes in the functional composi-

tion and diversity of the assemblages obtained when the
species-level predictions are ‘‘stacked’’ (Thuiller et al.

2006, Buisson et al. 2013, Gallagher et al. 2013, Terrier
et al. 2013). Alternatively, current community-level

functional attributes have been modeled in response to
key environmental variables and projected into the

future (Dubuis et al. 2013). These studies highlight the
potential utility in combining information on biodiver-

sity composition and functional traits, yet they have
provided limited assessment of the concordance between

likely compositional and functional change in commu-
nities under climate change (Thuiller et al. 2006).

Here we apply a macroecological modeling perspec-
tive to assess the relationship between projected change

in community composition and community-level func-
tional attributes for all vascular plants across Tasmania,

Australia, under predicted climate change. We highlight
that the relationship between climate-induced change in
community composition and functional attributes will

depend on the representation of functional traits within
each community and the functional attributes of species

lost or gained from each community (Fig. 1). For plants
in Tasmania, we apply fine-resolution spatial projections

to demonstrate how differences in the magnitude of
projected compositional and functional change can

provide new insight into likely outcomes for natural
communities under climate change and better inform

management aimed at maintaining diverse functioning
ecosystems.

METHODS

Study region

Our study region is the island state of Tasmania,

Australia (428010 S; 1468360 E) see Appendix A. This
region comprises an area of ;68 000 km2, of which 77%
is natural vegetation (TASVEG 2009) and 45% is
protected for conservation (CAPAD 2010). Our analy-

ses were carried out on a 250-m resolution spatial grid
over this region, as defined by the Australian GEO-

DATA 9 Second Digital Elevation Model (GEODATA
2008).

Environmental data

To derive and project the models in this study, we
utilized spatially complete environmental data across the

study region. We applied the 250 m digital elevation

model of the study region in ANUCLIM (Xu and

Hutchinson 2010) to obtain climate data (precipitation,

evaporation, temperature, radiation (adjusted for slope

and aspect), and bioclimatic variables (plant growth

indices) across the 1 157 587 grid cells of the spatial grid

(averages for the period 1976–2005); see Appendix B.

We also applied a range of spatial geological (mean

geological age, weathering index) and soil (depth,

nutrients, bulk density, water holding capacity) data

layers, obtained from various sources (McKenzie et al.

2000, Western and McKenzie 2004, Raymond 2009,

Wilford 2012, Williams et al. 2012).

Plant community composition data

To model plant community mean attributes, we

utilized the same data on plant community composition

in Tasmania as in Mokany et al. (2012). Specifically, the

plant species composition of 175 grid cells across

Tasmania (Appendix A) was obtained by aggregating

562 772 occurrence point records of native plant species

(2051 species, from 1970 to 2010) (Tasmanian Natural

Values Atlas) to 250-m grid cells, then a sampling

function applied (Mokany et al. 2012) to select those

grid cells with sufficient records to be deemed a

‘‘community sample.’’ The cells occur across all regions

of Tasmania (Appendix A) and span the full range of

major environmental characteristics in the region,

including the full altitudinal and precipitation ranges

as well as representative substrate in each region.

Although there is a slight bias in the 175 grid cells being

more commonly in lower elevation, drier, and warmer

locations (Appendix A), this is not expected to influence

our results, given the modeling approaches that we

apply. In total, 1220 plant species were recorded in the

175 grid cells with community composition data.

FIG. 1. Hypothesized implications of different combina-
tions of community functional and compositional change.
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Functional trait data collation

We collated functional trait data (maximum height,
maximum leaf length, maximum leaf width, mean seed

mass) for as many of the 1220 species occurring in the
175 focal grid cells as possible. These traits were chosen

because they represent the three primary axes of plant
functional trait variation (Westoby [1998]; with leaf size

applied here instead of specific leaf area) and for which
data are readily available for a large number of species.

Data on leaf length and width were collated for the
smallest lamina for compound leaves and ferns, with

length and width for all species combined to calculate a
single ‘‘leaf area’’ trait, by assuming elliptically shaped

leaves for every species. Trait data were collated from a
variety of published material (Reid et al. 1999, Harden

2000, Jordan 2001, Maslin and Tame 2001, McGlone et
al. 2010), and field collection by the authors. We

obtained height data for 1086 species (89%), leaf data
for 924 species (76%), and seed data for 578 species
(47%), which equates to having trait information for

95%, 81%, and 55% of occurrence records across the 175
grid cells for height, leaf size and seed mass, respectively.

Where trait information could not be obtained for
recorded species, we estimated species traits by applying

the mean value across all species in the nearest
taxonomic group (i.e., genus, family). Community mean

trait values calculated using only recorded trait data
showed reasonably strong correlation to those calculat-

ed using the combined recorded and interpolated trait
data (Appendix C). However, the potential bias in trait

data being recorded more regularly for species that are
taller, and that have larger leaves and larger seeds,

warrants application of the interpolated traits in
calculating community mean trait values, as seen in

the tendency for community mean trait values including
interpolated traits to be typically lower than those based

only on the recorded traits (Appendix C).

Modeling community mean trait values

For each of the 175 focal grid cells containing
compositional data, we calculated community mean

values for each of the three traits (height, leaf area, seed
mass) by combining the compositional and trait data for

each species and then averaging the values across the
species occurring in each grid cell. We then generated

models of plant community mean traits using the
generalized regression and spatial prediction package

(GRASP: Lehmann et al. 2003) in R (R Development
Core Team 2014). GRASP applies a generalized

additive modeling (GAM) framework, and for the
current implementation we used a Gaussian link

function with three degrees of freedom for each
independent variable. We developed models of commu-

nity mean trait values using GAMs to account for
nonlinearity in the relationships with environmental
variables and a lack of existing knowledge on the likely

nature of these relationships. We applied an interactive
backward variable selection process, using a range of

environmental variables that we hypothesized could be

important in influencing plant community mean traits in

the study region (Appendix B). Candidate environmen-

tal variables were gradually omitted based on model

Bayesian information criterion values, variable signifi-

cance, variable contribution to deviance reduction, and

a priori expectations of their relative importance. The

predictive power of the final models was evaluated using

a repeated (n ¼ 100) random split-sample cross-

validation procedure, with 70% of the data used for

model training and the remaining 30% used to evaluate

predictions, based on Spearman rank correlation be-

tween observed and predicted values (as in Dubuis et al.

2013). Plant community mean traits for each cell on the

spatial grid of the region were predicted using the final

model and the environmental variables for every grid

cell.

Modeling compositional dissimilarity

We applied generalized dissimilarity modeling (Fer-

rier et al. 2007) to model pairwise plant community

compositional dissimilarity (Sørensen’s dissimilarity) as

a function of environmental variables and the commu-

nity mean trait values for the three functional traits

(height, leaf area, seed mass). Incorporating community

mean trait values as explanatory variables into the

model accounts for the physiological drivers that may

precipitate compositional turnover, which are not

otherwise reflected in the environmental predictor

variables. We applied the same five environmental

variables as previously used to model plant community

compositional dissimilarity in Tasmania (Mokany et al.

2012), as well as the three community mean trait values,

with the significance of all variables assessed through a

permutation test (1000 repetitions). We applied the same

repeated split-sample approach to cross-validation for

our model of compositional dissimilarity as was used for

the models of community mean trait values, with data

from 70% of sites used to train the GDMs, and the

remaining 30% of sites used to evaluate the subsequent

predictions of compositional dissimilarity. Spatial pro-

jections of the compositional dissimilarity model were

generated by applying the spatially complete environ-

mental layers and the model projections for community

mean trait values.

Climate change projections

For the climate change analyses, we applied bias-

adjusted, fine-scale (0.18), dynamically down-scaled

climate projections for 2100 from the Climate Futures

for Tasmania project (Corney et al. 2010, Grose et al.

2010), using the CSIRO-Mk3.5 general circulation

model and A2 emissions scenario. This projected climate

future represents a worst-case scenario for plant

biodiversity in Tasmania (greatest warming: þ3.28C).

The climate projections were further down-scaled

statistically in the present analysis to 250-m grid

resolution using ANUCLIM v6.1 (Xu and Hutchinson
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2010), with radiation corrected for slope and aspect. We

then projected the models of plant community mean
traits and compositional dissimilarity under the project-

ed future environmental conditions.

RESULTS

The final models of community mean plant height,

leaf area, and seed mass all contained five explanatory
variables, although these differed between the models

(Table 1; see Appendix D). The model of community
mean plant height explained 56.7% of the deviance, with

the most important explanatory variable being C3

mesophyll plant growth index (Table 1; see Appendix

D). The model of community mean leaf area explained
36.7% of the deviance, with the most important

explanatory variables being the maximum temperature
of the warmest period, and the precipitation : potential

evapotranspiration (PET) ratio (Table 1; Appendix D).
The model of community mean seed mass explained

49.3% of the deviance, with the most important
explanatory variable being the precipitation : PET ratio

(Table 1; Appendix D). Spearman correlations (q)
between observed and predicted community mean trait
values from the cross-validation procedure indicated

moderate to strong support for the models of commu-
nity mean plant height (q¼ 0.651), leaf area (q¼ 0.464),

and seed mass (q ¼ 0.575).
Spatial projection of the community mean plant

height model across current environments showed the
largest values in moist lowland areas currently occupied

by tall eucalypt forest (i.e., excluding the moist, but
oligotrophic, regions of southwest Tasmania), and the

smallest values in high-altitude alpine areas (Fig. 2a). A
similar pattern was observed in the spatial projection of

the model for community mean leaf area, with

communities having the largest leaves (on average)

occurring in moist lowland areas (Fig. 2d). In contrast,
spatial projection of the community mean seed mass

model showed the largest values in high-rainfall lowland
habitats of western Tasmania (Fig. 2g). When projecting

the models of plant community mean traits to the year
2100 under climate change (Fig. 2b, e, h), there were

relatively consistent changes from current projected
patterns. Habitats at higher elevation in central Tasma-

nia were projected to have the largest increases in
community mean plant height (Fig. 2c), leaf area (Fig.

2f ), and seed mass (Fig. 2i ) under climate change,
whereas habitats in lower elevation and coastal areas

had the largest reductions in these mean trait values
(Fig. 2c, f, i ).

The final model of plant community compositional

dissimilarity contained eight significant predictor vari-
ables, which together explained 59.2% of the deviance (P

, 0.001) (Table 2; see Appendix E). The most important
environmental variable explaining compositional dis-

similarity was the precipitation : PET ratio, whereas the
most important trait predictor was community mean

seed mass (Table 2; Appendix E). Community compo-
sitional turnover was predicted to be greatest at low

values of each of the community mean trait measures,
with the slope of the response functions decreasing with

increases in community mean trait values (Appendix E:
Fig. E2). Spearman correlations (q) between observed

and predicted compositional dissimilarity from the
cross-validation analysis indicated strong support for

the GDM model of compositional dissimilarity (q ¼
0.763). When the model of compositional dissimilarity

was projected under climate change, the largest changes
in plant community composition from now until 2100

were projected for the highest elevation habitats of

TABLE 1. Variable contribution to the generalized additive models for plant community mean
traits across Tasmania, Australia, and the significance of the smooth function for each variable.

Response variable
and predictor variables

All-variable model
deviance lost (%)

Single-variable model
deviance explained (%)

Community mean plant height

Minimum temperature coldest period 11.1*** 15.8***
January solar radiation 4.6** 22.6***
C3 mesophyll plant growth index 13.7*** 22.3***
Soil bulk density 4.4* 12.3***
Mean geological age 5.6* 11.7***

Community mean leaf area

Precipitation : PET ratio 6.0** 14.6***
Temperature isothermality 4.5* 7.0**
Maximum temperature warmest period 12.1*** 8.2**
C3 microphyll plant growth index 4.8** 6.8**
Elevation variation (SD) 4.2* 7.2**

Community mean seed mass

Annual precipitation 4.6** 19.7***
Precipitation : PET ratio 8.7*** 18.5***
January solar radiation 8.9*** 9.5***
C3 mesophyll plant growth index 6.4*** 10.0***
Substrate weathering index 5.0** 7.4**

Note: PET is potential evapotranspiration.
* P , 0.05 ** P , 0.01; *** P , 0.001.
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FIG. 2. Projections of plant community mean (a, b, c) height, (d, e, f ) leaf area, and (g, h, i ) seed mass across Tasmania under
(a, d, g) current climate, (b, e, h) the climate in 2100 under climate change (CSIRO mk3.5, A2 emissions scenario), and (c, f, i ) the
projected resultant change in each community mean attribute under climate change.

TABLE 2. Variable contribution to the generalized dissimilarity model for plant community
compositional dissimilarity across Tasmania, Australia.

Predictor variable
All-variable model
deviance lost (%)

Single-variable model
deviance explained (%)

Precipitation : PET ratio 4.8*** 42.2***
Minimum temperature coldest period 1.8*** 16.5***
Temperature isothermality 0.9*** 22.5***
January solar radiation 0.4** 28.0***
Geographic distance 0.7*** 16.0***
Community mean height 0.9*** 14.6***
Community mean leaf area 0.7** 13.9***
Community mean seed mass 2.4*** 14.1***

Note: The full model was fit to all 15 225 site pairs, with 59.2% deviance explained (P , 0.001)
and an intercept of 0.556.

** P , 0.01; *** P , 0.001; PET is potential evapotranspiration.
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Tasmania, with moderate turnover in coastal areas and
relatively small change in community composition

projected for low-elevation inland areas (Fig. 3).

We examined the relationships between projected
change in community mean trait values under climate

change (Fig. 2c, f, i ) and projected change in plant
community composition (Fig. 3) by extracting values

from these projections for 10 000 random grid cells. This

analysis identified positive relationships between pro-
jected absolute change in all community mean traits and

predicted community compositional dissimilarity to
2100 (Fig. 4). Relationships between projected change

in community composition and community mean trait

values under climate change were strongest for leaf area
(Fig. 4b; r2¼0.35), moderate for seed mass (Fig. 4c; r2¼
0.20), and weakest for plant height (Fig. 4a; r2 ¼ 0.02).

Relationships between actual projected change in the
values of community mean traits and composition are

provided in Appendix F: Fig. F1.

To assess the relationship between multiple-trait
community mean attributes and predicted composition-

al change to 2100, we combined the projected absolute
change for each of the three community mean traits by

weighting each equally and normalizing values to a

range of no projected change (0) to the highest projected
change (1). There was a strong positive relationship

between predicted compositional dissimilarity and nor-
malized predicted change in all community mean

attributes (Fig. 5a; r2 ¼ 0.40). We projected the relative

difference between normalized predicted change in all
community mean attributes and predicted composition-

al dissimilarity to 2100 under climate change across
Tasmania (Fig. 5b). This analysis indicated that lowland

areas of central Tasmania (the Midlands) had moderate

projected compositional change but low projected

functional change; lowland areas in the southwest and

northeast had moderate projected compositional change

but high projected functional change; while areas at

higher elevation were projected to experience high levels

FIG. 3. The projected change in plant community compo-
sition (Sørensen’s dissimilarity) across Tasmania from 2010 to
2100 under climate change (CSIRO mk3.5, A2 emissions
scenario).

FIG. 4. The relationship between the predicted change in
plant community composition (2010 to 2100) under climate
change (CSIRO mk3.5, A2 emissions scenario) and the
predicted absolute change (2010 to 2100) in plant community
mean (a) height; (b) leaf area, and (c) seed mass for 10 000
randomly selected locations across Tasmania. Lines are for
model II simple linear regression.
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of both compositional and functional change under

climate change (Fig. 5b).

DISCUSSION

Understanding changes in composition and function

Improving our capacity to identify management
responses to climate change that achieve desired

outcomes for both biodiversity and ecosystem function-
ing across large regions requires better linking of

projected outcomes for these two aspects of natural
systems (Cardinale et al. 2012). Here we have shown

how combining compositional and functional projec-
tions under climate change can improve our under-

standing of how communities are likely to change into
the future (Fig. 1). Importantly, our results for

Tasmanian plant communities emphasize that the
degrees of compositional and functional change pro-

jected for a given area under climate change are often
not equivalent.

Our macroecological models indicate strong funda-
mental relationships between plant community mean

trait properties and key environmental gradients in
Tasmania (Table 1; Appendix D). The strong environ-
mental dependence of plant community mean traits and

relatively high explanatory power of the macroecolog-
ical models provides some confidence in the projection

of community mean trait values over space and over
time under climate change (Dubuis et al. 2013) (Fig. 2).

In addition, previous research suggests that these
community-level trait properties are likely to be strongly

related to important ecosystem functions, such as
primary productivity (plant height and leaf area; Chapin

2003), carbon storage (plant height; de Bello et al. 2010),
response to disturbance (seed mass; Tautenhahn et al.

2008), provision of habitat for animals (plant height;
Tews et al. 2004), and herbivory (leaf area; Carmona et

al. 2011).
Combining the projections of plant compositional and

functional change under climate change provides new
insight into how communities are likely to change into

the future. For example, we project the largest
reductions in community mean plant height (up to
�5.8 m) for areas in southeastern Tasmania currently

occupied by tall, wet eucalypt forests (Fig. 2a–c). Given
the low compositional change projected in these areas

(Fig. 3), substantial reductions in mean plant height
could be expressed through loss or reduced extent of a

small number of canopy or rain forest understory tree
species under warmer conditions and probably increased

drought and fire frequency (Williamson et al. 2014).
Concomitant projected increases in mean plant height

(up to þ4.1 m; see Fig. 2a–c) and high compositional
turnover (Fig. 3) in alpine heath and herbaceous

communities of high-altitude Tasmania (Fig. 2a–c)
could be realized through replacement of many resident

low-statured, cold-adapted species by invading tree and
shrub species under less extreme low temperatures

(Kirkpatrick 1997).

Combining functional and compositional projections to

inform management

Although assessing likely changes in each community

mean trait individually is informative, an overall
understanding of community-level functional outcomes

can be achieved by synthesizing across multiple traits or
multiple ecosystem functions (de Bello et al. 2010, Isbell

et al. 2011). Here we applied a relatively simple
approach to calculating the overall level of projected

change across community mean height, leaf area, and
seed mass combined. Our index of overall community

functional change has some limitations, given that the
same magnitude of change could be achieved through

different combinations of change in the individual traits.
However, reducing this multidimensional issue to a

single index enables us to compare overall projected
functional and compositional change. This analysis

indicated that for some areas, particularly high-elevation
habitats, the levels of functional and compositional
change expected under climate change are equivalent,

and typically high (Fig. 5). Given this projected
substantial replacement of alpine assemblages by func-

tionally distinct lower-elevation species (Fig. 1), man-
agement could focus on ensuring the maintenance of

some high-elevation refugia for alpine taxa, such as by
actively suppressing fire and the spread of lower-

elevation species into focal refugial areas (Keppel et al.
2015). The large projected compositional and functional

changes may also have implications for water yields in
regulated higher-elevation catchments relied upon for

generation of hydroelectricity and provision of water for
irrigated agriculture (Farley et al. 2005, Bennett et al.

2010).
Our analyses indicate that other areas may experience

moderate levels of compositional change, but low levels
of functional change under climate change, particularly

the lowland Midlands of central Tasmania dominated
by native grasslands and grassy woodlands (Fig. 5b). In

these areas, we suggest that the species lost from local
communities under climate change are more likely to be
functionally redundant on a local scale (Rosenfeld

2002), or to be replaced by functionally equivalent
species (Fig. 1). Climate-induced compositional change

in these lowland grassy habitats is likely to be facilitated
by the short generation times of much of the herba-

ceous-dominated flora. The consequences of our pro-
jections for management of these lowland areas may

entail greater emphasis on the conservation of rare plant
species through in situ protection and targeted manage-

ment actions (e.g., grazing, burning) that promote the
persistence of these rare species (Kirkpatrick et al.

2005).
In contrast, many lowland plant communities in

Tasmania are projected to experience high levels of
functional change under climate change, but relatively

modest levels of compositional change (Fig. 5). Given
that the community mean trait projections suggest large

reductions in height, leaf area, and seed mass in these
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areas (Fig. 2), the projected levels of compositional and

functional change could be realized through loss of a

relatively small number of tree or shrub species (Fig. 1).

Should it be deemed desirable to maintain some of the

ecosystem functions currently provided by these systems

into the future (e.g., carbon storage, supply of timber for

forestry), possible management actions could include

translocating native woody species adapted to warmer

conditions from mainland Australia into these commu-

nities (Williamson et al. 2014).

Future research priorities

Here we have presented a relatively simple analysis

combining compositional and functional projections for

Tasmanian plant communities under climate change.

Given the simplicity of our approach, we have inherently

made a number of important assumptions that could be

better addressed in future research. Although our

models of compositional dissimilarity and mean trait

values were based on strong relationships with key

environmental drivers, they are correlative models in

which the compositional and functional aspects interact

through community mean trait values acting as predic-

tors of compositional dissimilarity. There is a strong

need for new generic modeling approaches that better

integrate the processes involved in simultaneous com-

positional and functional change across large regions

and diverse taxa under rapidly changing environments

(Mokany et al. 2013). Our quantification of community

mean trait values could be further improved if more

detailed information became available on species abun-

dances, rather than presence-only data (Garnier et al.

2004), traits for all species (to avoid the need for trait

interpolation), and intraspecific trait variation (Bolnick

et al. 2011). Future research could also incorporate

consideration of uncertainty in projections of commu-

nity mean traits under climate change by considering a

broad range of climate models and scenarios (Beaumont

et al. 2008), as well as accounting for model projection

into novel climate space (Williams and Jackson 2007),

increasingly fire-modified environments, and temporal

lags in community change.

Despite the obvious scope for improving projections

of compositional and functional outcomes under climate

change, our relatively simple analyses highlight the

potential benefits to be gained in combining projections

of these two aspects of natural systems. We have

demonstrated how this combined assessment of likely

compositional and functional change can illuminate

likely outcomes for each of these components, and help

inform management actions that may be appropriate in

maintaining diverse functioning ecosystems into the

future. We strongly advocate extending this and

previous work to better account for the feedbacks

between biodiversity composition and ecosystem func-

tion over large regions and rapidly changing environ-

ments.
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