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Abstract
Numerical models can be a powerful tool helping to understand the role biogeochemical processes play in 
local and global systems and how this role may be altered in a changing climate. With respect to sea-ice 
biogeochemical models, our knowledge is severely limited by our poor confidence in numerical model 
parameterisations representing those processes. Improving model parameterisations requires communication 
between observers and modellers to guide model development and improve the acquisition and presentation 
of observations. In addition to more observations, modellers need conceptual and quantitative descriptions of 
the processes controlling, for example: primary production and diversity of algal functional types in sea ice, ice 
algal growth, release from sea ice, heterotrophic remineralisation, transfer and emission of gases (e.g., DMS, 
CH4, BrO), incorporation of seawater components in growing sea ice (including Fe, organic and inorganic 
carbon, and major salts) and subsequent release; CO2 dynamics (including CaCO3 precipitation), flushing and 
supply of nutrients to sea-ice ecosystems; and radiative transfer through sea ice. These issues can be addressed 
by focused observations, as well as controlled laboratory and field experiments that target specific processes. 
The guidelines provided here should help modellers and observers improve the integration of measurements 
and modelling efforts and advance toward the common goal of understanding biogeochemical processes in 
sea ice and their current and future impacts on environmental systems.

1. Introduction
Understanding how sea-ice processes contribute to marine biogeochemistry is essential to accurately predict 
past, present, and future climate change responses of marine ecosystems in both the polar and global oceans. 
Sea-ice biogeochemical processes occur on very small spatial scales, confined to brine inclusions that are 
micrometers to centimeters in diameter within sea ice only a few meters thick. However, the horizontal scale 
is large, substance concentrations within the ice can be orders of magnitude larger than in the ocean, and at 
some times and locations sea-ice primary production can dominate the vertically integrated production. The 
dynamics of the sea-ice ecosystem directly affect those of the underlying waters down to the seafloor (Bluhm 
and Gradinger, 2008; Leu et al., 2015), but also affect the integrity of the ice, including porosity and radiative 
transfer (e.g., Krembs et al., 2011; Ewert and Deming, 2013). Through interactions and exchanges with both 
the overlying atmosphere and the underlying water, sea-ice biogeochemical processes may impact larger areas. 
Models of the entire Earth typically include sea ice but do not resolve the biogeochemical processes related 
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to sea ice. Hence, the net effects on the climate system are far from clear. Contributions to the formation 
and emission of organic aerosols and greenhouse gases and effects on the carbon budget have also not been 
quantified yet. Ice algae likely have some measurable effect on regional scales but contribute little on a global 
scale (Kelley and Gosink, 1979; Legendre et al., 1992; Bluhm and Gradinger, 2008).

Developing numerical models of sea-ice biogeochemical processes is even more challenging than parallel 
efforts in the pelagic realm. The mixed solid-fluid sea-ice environment is distinctly different from the fluid 
pelagic regime, and both observational and modelling challenges are unique. Defining the fluid dynamics 
within the constrained sea-ice matrix is difficult, and there is a lack of non-destructive or remote sensing 
techniques for studying the sea-ice system (Garçon et al., 2014; Miller et al., 2015), i.e., satellite remote 
sensing techniques are not capable of measuring most properties within the sea-ice matrix.

Modelling sea-ice biogeochemistry is a relatively new field, but several reviews on physical and biogeochemical 
processes in sea ice are now available to initiate and guide model developments (Thomas and Dieckmann, 
2010; Loose et al., 2011a; Vancoppenolle et al., 2013b; Vihma et al., 2013; Arrigo, 2014; Leu et al., 2015). 
These reviews confirm that the documentation of many sea-ice biogeochemical and small-scale physical 
processes is improving; however, their parameterisation in models is still relatively undeveloped. While there 
are many biogeochemical processes in sea ice worthy of investigation in support of a wide variety of goals, 
we, as sea-ice biogeochemical modellers, have identified a few processes of particular importance that require 
further field and laboratory studies: 1) incorporation and release of ice algal communities and nutrients  
(e.g., how is the ice algal community first established?); 2) controls and limits to primary production; 
and 3) the processes controlling the absorption and release of radiatively active substances, such as CO2, 
dimethylsulphide (DMS), and aerosols.

Many different types of observations are necessary to increase our understanding of sea-ice biogeochemical 
processes and allow us to incorporate them in models. Observations are also essential for the evaluation of 
biogeochemical models, including testing a model’s sensitivity and skill (e.g., Deal et al., 2014). Global model 
systems create their own internal dynamics and cannot be expected to simulate a quantity exactly at all times 
and all places. Thus, the validation of these models is different than, for example, a limited area model that 
is constrained by forcing and boundary conditions (e.g., Oreskes et al., 1994), and their predictive capabilities 
are limited (e.g., Notz, 2014; Swart et al., 2015). Nontheless, new and improved observations as well as 
ongoing research and analysis have led to improved climate models allowing for a better understanding of 
how climate processes work (Flato et al., 2013).

In spite of common goals and some mutual understanding of each other’s needs, communication between 
observers and modellers needs to improve in order to reach those goals (Figure 1). It is clear that models or 
observations, taken alone, are not sufficient to improve global understanding of sea-ice biogeochemical processes 
and their impact on the large-scale climate system. Modellers need observations to evaluate and improve the 
models. The converse is also true: different types of models can help identify: 1) which processes are relevant 
for specific scientific questions; and 2) which are the likely spatial and temporal scales of variability of these 
processes. In this sense, models can be used as guides for future field campaigns, their locations, timing and 
the variables to measure. However, many barriers have hampered smooth communication between the two 
communities, including terminology and data formatting issues.

Figure 1 
Conversation between a global 
climate modeller and an observer.

The choice of two polar animals 
together on one ice floe, when 
they do not co-occur in nature, is 
intended to represent the need for 
modellers and observers to meet 
at the same table, regardless of 
background.
doi: 10.12952/journal.elementa.000084.f001
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This paper is written from a modeller’s perspective, albeit including insights from observers. We acknowledge 
that there are few people working at the extremes, who either only make observations or only do modelling, 
and that most researchers fall somewhere in between, using whatever tools they think are needed to address 
their research questions. However, it is also true that we tend to emphasize tools with which we are already 
comfortable, requiring higher levels of motivation to adopt new approaches. This paper is an effort to improve 
collaborations that will expand all of our tool kits, proposing ways to improve synergies between observing and 
modelling, while keeping in mind that the question is not, “How can the measurements improve our models?”, 
but rather, “How can we use our models combined with your measurements to improve our understanding 
of the important biogeochemical processes occurring in sea ice?”

2. A need to maximize effective integration of observations and numerical 
models in sea-ice biogeochemistry
Sea ice acts as an interface, a reservoir, and a modifier in biogeochemical cycles, and observational data 
requirements may extend from the interior of the sea ice itself into both the atmosphere and the underlying 
water. Accordingly, observations of sea-ice biogeochemical processes must be a multidisciplinary effort. Also, 
model development should be a highly interactive process between modellers and observers. Evaluation, 
i.e., comparison of model output with observations to determine any bias between them, is an integral 
part of model development. However, long before evaluating a model, parameterisations based on process 
descriptions need to be developed. The conceptual description of processes is in many cases still a limiting 
factor in biogeochemical models, either because the process is not well known or because its complexity makes 
it computationally too expensive and challenging to validate. If the knowledge of the process is insufficient, 
the resulting parameterisation can be highly uncertain. Also, a specific process in a complex system rarely acts 
in isolation, though exactly that type of data is needed for validation. The kind of observations needed, and 
hence the effort required from the observer, varies with the model type and resolution, and with the question 
we seek to answer (Table 1). Whereas global and regional models require data sets covering all seasons and 
most of the model domain, preferably available as gridded datasets, one-dimensional vertical models focusing 
on representations of a seasonal cycle call for a long, data-rich (many types of measurements) time series at 
a specific location or from drift stations (e.g., as in the projects known by their acronyms SHEBA, ISPOL, 
CASES, SIMBA; Perovich et al., 1999; Lannuzel et al., 2008; Miller et al., 2011; Lewis et al., 2011). To 
develop specific parameterisations short, data-rich process studies with high temporal resolution, as well as 
controlled experiments, are also extremely useful (Section 3.1).

The current lack of field observations and the time lags between field programs limit our understanding 
of what processes need to be included in models. In that respect, sea-ice biogeochemistry lags behind 
oceanographic research, which is now benefiting from many decades of shipboard work and dramatic recent 
advances in tools for collecting data at high temporal and spatial resolutions (e.g., Gruber et al., 2010). Sea-ice 
biogeochemistry is not only a relatively new area of research, but the costs and challenges associated with 
sampling biogeochemistry within sea ice are substantial.

Generally, coordinated development of field programs hugely facilitates the collaboration between 
modellers and observers and involves writing proposals together, which in turn requires a common language 
and identification of common goals. Some large, interdisciplinary studies of the sea-ice environment have 
attempted to integrate observational and modelling needs from the beginning of the project design, but in 
the end, the results have not been integrated as well as hoped. More recently, however, several examples have 
generated constructive outcomes (e.g., projects known as BEST, SIMBA, INTERICE IV and Barrow 2009; 
Gibson and Spitz, 2011; Vancoppenolle et al., 2011; Moreau et al., 2014). An Arctic example of a project 
that has made progress towards coordinated collaboration between modellers and observers is the Forum for 
Arctic Modelling and Observational Synthesis (FAMOS, http://web.whoi.edu/famos/), which has evolved 
from the Arctic Ocean Model Intercomparison Project (AOMIP) and now includes marine biogeochemistry 
(Popova et al., 2012; Steiner et al., 2014, 2015).

Optimal collaboration between observers and modellers involves numerous feedbacks: 1) models inform 
the observational strategy; 2) observations are conducted and used to improve the models; and 3) new and 
improved models are rerun and used for data synthesis, interpretation, updated basin-scale and/or global 
estimates, and identifying/refining research questions (loop back to step 1). Many past projects have made the 
mistake of attempting to fully represent this multi-step process within a single research proposal, which typically 
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Table 1. Observational requirements for different model types

Model type Example science questions Information required from observers

Conceptual models How do exchanges occur between 
sea ice and the surrounding 
systems? What nutrient sources 
or pathways are available to 
sea-ice communities?

Identification of required pools (e.g., required nutrient 
sources or detrital components, organism functional types 
(OFTs))

How does the system work? Qualitative interaction between groups and pools

Localized process models How do exchanges occur between 
sea ice and the surrounding 
systems?

Observations from one location (field or laboratory)

What controls sea-ice primary 
and secondary production?

High temporal resolution (hours–daily), particularly for 
transition times (freezing, melting)

What controls fluid transport in 
sea ice?

High vertical resolution (1–10 cm for sea ice, 1–5 m for the 
upper ocean)

How do processes occurring 
within surface brine skims and 
snow impact ice-air fluxes?

Details of community structure (OFTs)

Can we quantify the rate of 
incorporation of particles 
associated with frazil ice into 
sea ice?

Measurements of rates, particularly for unresolved pools 
(e.g., bacterial consumption)

Context: ancillary data (physical and environmental 
variables)

Regional models Questions address balances of 
feedbacks and potential impacts 
of interactions between processes:

Spatially averaged quantities (range of 1–10 km2) including 
information on spatial variability

What is the contribution 
of sea-ice algae to the annual 
primary production in a 
particular area?

Some vertical averaging (10–100 cm for sea ice, 5–25 m for 
the upper ocean)

How does ice-algal production 
affect the update or emission of 
climate active gases (e.g., Deal 
et al., 2011; Jin et al., 2012)?

Medium temporal resolution (days–months)

How does brine rejection from 
sea ice contribute to carbon 
dioxide sequestration in the deep 
ocean?

Coarser grouping of pools

How do sea-ice processes 
contribute and respond to ocean 
acidification?

Context: ancillary data (physical and environmental)

Global (climate) models Questions address potential 
big-picture relevance of processes:

Spatially and temporally averaged quantities (10–100 km2)
including variance to determine uncertainty

Will a decrease in sea-ice extent 
increase or decrease primary 
production in polar waters  
(e.g., Vancoppenolle et al., 2013a)

Some vertical averaging (10–100 cm for sea ice, 5–25 m for 
the upper ocean)

Does gas exchange in ice-covered 
regions affect the global carbon 
budget (e.g., Steiner et al., 2013)?

Lower temporal resolution (months–seasons)

To what extent does brine 
rejection from sea ice contribute 
to carbon dioxide sequestration in 
the deep ocean?

Coarse grouping of pools (OFTs might have to include 
adaptive behaviour)

Context: ancillary data (large scale physical and 
environmental conditions)

doi: 10. 12952/journal.elementa.000084.t001
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must outline a plan that will take no longer than 3-4 years. However, because combining interdisciplinary 
modelling and observations is time consuming and, most importantly, iterative, the combined effort can easily 
extend beyond a typical funding framework (Figure 2). Therefore projects need to build on each other, both 
from the modellers’ and the observers’ perspectives.

This article focuses on the observational needs of sea-ice biogeochemical model development, but some 
basic guidelines apply to all modeller-observer collaborations throughout the earth sciences. For example, 
recommendations on the observational needs of climate models in polar regions, prepared by the Polar Climate 
Working Group (Kay et al., 2012) and a short note on observational needs for sea-ice models (Massonet and 
Jahn, 2012) also apply to sea-ice biogeochemical models. The fundamental starting point is that modellers 
and observers are both scientists. They share the same conceptual model and must understand each other’s 
activities, and hence, they must develop a common language. Other points are:

1)	 quantities and units need to be consistently defined when comparing model fields and observations;
2)	 observed data need to be assessed for representativeness of the respective model output (data producers 

and users need to be “scale aware” in time and space);
3)	 gridded datasets need to meet commonly used standards for formatting meta-data to facilitate large 

scale model evaluation;
4)	 while regridding is often necessary to create difference maps, comparisons should be made on the original 

grid when possible; and
5)	 observations need to address key uncertainties affecting existing parameterisations or to help identify 

important processes that are not considered.

Kay et al. (2012) also articulated key uncertainties in integrating observations and model development. An 
expanded list of uncertainties that need to be identified and, if possible, quantified includes:

•	 uncertainties of analytical methods, including instrumental detection limits, accuracy, and variability;
•	 retrieval algorithm uncertainty;
•	 inconsistency in definitions;
•	 measurement reproducibility;
•	 inconsistencies between sampling and analytical methods;
•	 spatial variability (patchiness);
•	 temporal variability; and
•	 model internal variability.

Some of these uncertainties (a, b) can be reduced with technical and mathematical advances, which we will 
leave to the engineers, analytical chemists, and mathematicians. Other uncertainties (c, d, e) can be significantly 
reduced via concerted efforts on the part of observers (see for example Miller et al., 2015). Items f and g can 
theoretically be addressed by refining temporal and spatial resolution of the observations, but might be too 
difficult in practice. Some factors defy control and must simply be acknowledged (d, h).

Modellers particularly need to know uncertainties to constrain the ranges in parameter sensitivity studies  
(see below). It is important to know not only how large each of these uncertainties is, but also how the 
uncertainty was determined. For example, Stow et al. (2009) (their Figure 1) schematically indicate the skill 
of coupled marine biological-physical models by representing the relationships between model predictions, 

Figure 2 
Typical reviews of a grant 
proposal combining modelling 
and observations with reviewers 
from mixed backgrounds.

doi: 10.12952/journal.elementa.000084.f002
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observations, and the “true” state of the system with areas of uncertainty around them. The higher the 
overlap of those areas, the higher the skill. Some uncertainty ranges can be provided reasonably accurately  
(e.g., instrumental precision), whereas others can be calculated from regional or temporal averages (some 
modellers prefer to receive observational data as raw as possible to avoid inconsistencies in error definitions).

3. How modellers use observations to develop models
Before going into more detailed recommendations, we describe how sea-ice biogeochemical modellers use 
observations in developing models. Models in general are representations of selected components of the 
natural system and can take multiple forms; e.g., theoretical constructions, schematic descriptions or numerical 
equations. A biogeochemical model can be made up of several components, which we refer to as modules. 
Here we use the development of a numerical ice algae-pelagic ecosystem module as an example; a parallel 
process would be applied for developing other biogeochemical modules, carbon or sulphur cycling, pollutant 
transport, etc. The fundamental purpose of a numerical model is to represent the essential behavior of a 
natural system with simplified numerical formulations (equations). Figure 3A shows a photographic image 
of a natural sympagic-pelagic-benthic ecosystem, which we use as a starting point. Based on the observations 
of this natural system, scientists (both modellers and observers) construct a theoretical framework based on 
concepts; e.g., which are the main pools, how do they interact, and what is their relationship to the physical 
environment (e.g., ice algae form a distinct pool, ice algae grow at the bottom of the ice, ice algae are eaten 
by zooplankton, some ice algae die and sink to the bottom, etc., Figure 3B). From this conceptual model, a 
model schematic can be created, which represents the identified pools and their interactions in form of boxes 
and arrows (Figure 3C). From this model schematic, parameterisations are proposed or can be derived and 
expressed in the form of numerical equations (selected examples are given in Figure 3D). Variables represent 
the pools (boxes), and functional dependencies on time represent the interactions between the pools (arrows). 
The number of boxes and arrows determines the complexity of the model (e.g., Gentleman, 2002; Denman, 
2003; Le Quéré et al., 2005). The functional dependencies contain parameters which can in turn depend 
on single or multiple variables (bio-geochemical or physical). Once the numerical model is formulated and 
executed, the model output is compared with observations (preferably different observations from those used 
to develop the parameterisations) to evaluate the model’s performance. Based on the outcome some model 
parameters might need to be better constrained (the model needs to be “tuned”). To finalize a version of 
a model or a single module, multiple revisions to each stage might be necessary and new observations can 
instigate revisions at all stages leading to a revised model version. The uncertainties associated with parameter 
values can be the largest contributor to the total uncertainty of the model output, particularly if the external 
forcing is well constrained. Hence specific observations to refine individual equations might be required.

Figure 3 
From observations to numerical 
models.

The example given moves from a) 
Observed sea ice ecosystem (photo 
courtesy of Andrew Thurber, 
Oregon State University); to 
b) conceptual model of the sea  
ice-pelagic-benthic ecosystem; to 
c) schematic of a numerical sea 
ice-pelagic-benthic ecosystem 
model; and finally to d) numerical 
expressions (equations). HTL 
indicates higher trophic levels.
doi: 10.12952/journal.elementa.000084.f003
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Moving from conceptual models to numerical parameterisations requires generalized quantification of 
processes, something which is lacking for many sea-ice biogeochemical processes. One example is the finding 
that melting sea ice enriched in iron and organic matter contributes to pelagic ice-edge phytoplankton blooms 
in the surface ocean (Lancelot et al., 2009; Lannuzel et al., 2013; Wang et al., 2014). While mesocosm 
experiments confirm the process, field observations remain unclear on the specific mechanism and thus 
on the large-scale importance of such ice-associated iron fertilization. This lack of either a mechanism or a 
generalized rate term directly linking ice melt to pelagic primary production constitutes a significant hurdle 
in model development and limits our ability to resolve the complexity of Southern Ocean ecosystems.

Sea-ice ecosystem modellers have benefited from the availability of pelagic ecosystem models, which can 
be adapted to create a first-order sea-ice ecosystem model by assuming that the biogeochemical processes 
are the same in both systems. This approach has been suggested by Tedesco and Vichi (2014) to encourage 
ecosystem modellers of polar regions to add a new sea-ice ecosystem component to their modelling frameworks. 
However, while this assumption of comparability may be true for the structural relationships between some 
processes (e.g., nutrient uptake, photosynthesis, respiration, remineralization, excretion), the rates of these 
processes can be different, either universally (sea ice versus pelagic) or regionally. Some processes may also be 
fundamentally different or exclusive to one environment; e.g., physical transport processes are very different 
in these two mediums.

Finally, model evaluation and skill assessment (Stow et al., 2009) are required both to develop models 
and to know the level of confidence we can have in the results. Biogeochemical models produce three kinds 
of data that can be evaluated via comparison with observations (Franks, 2002): 1) prognostic model variables  
(Figure 3C, model boxes; i.e., concentrations); 2) rates/fluxes (Figure 3C, model arrows; e.g., growth, mortality); 
and 3) derived or secondary quantities (diagnostic variables, e.g., chlorophyll-a (Chla) in nitrogen-based 
ecosystem models). Evaluation and skill assessment can be performed using any of those quantities for which 
observations are available.

3.1. Model types
Different types of models have different data requirements for both model development and evaluation. The 
specific questions addressed determine both type and complexity of the model, which in turn determine the 
required observations. We propose that, in a general sense, every process can be written as an equation and 
hence models can address any question, given that the required observations can be made. Putting the steps 
into a sequence, the first is to articulate the question one wants to answer, and the second is to design the 
model and the required sampling program. The most significant limitations, therefore, are generally on the 
observational side; e.g., can the parameters, fluxes, etc. be measured? The observational needs for the validation 
and, to a certain extent, development for each type of model, as well as some example science questions are 
given in Table 1.

Conceptual models are theoretical constructions made of concepts, used to help understand a system 
(natural or not), to which every scientist (modeller and observer) contributes (Figure 3B). Numerical 
implementations of such a common, conceptual model then form a numerical model. Conceptual models 
need information on pools, fluxes, community structure, and behavior. In addition conceptual models require 
coincident descriptions of the physical environment, along with the biogeochemistry and some ideas about 
how they are connected. A process might be deemed unimportant or insufficiently known to be included. 
When a conceptual model is used to guide the development of a numerical model, we also need to take 
into account that a greater number of parameters causes more uncertainties and requires more computation 
time. These disadvantages need to be weighed against the gain from including a process (e.g., including a 
process can also help reduce the uncertainty in a parameter by providing a physical or biogeochemical basis 
for variability that is measurable or specified by known quantities). If too many parameters are uncertain, the 
model loses predictive capabilities, although it can still be a useful tool for investigating uncertain processes.

0-D/1-D models focused on process studies are designed to develop parameterisations, and require a 
quantitative understanding of the processes in question, in addition to a conceptual framework. These models 
require site-specific variables, rates and the variations in both over time from field or laboratory experiments, 
preferably with multiple replicates to constrain uncertainty ranges. These models cannot reproduce processes 
that are not understood quantitatively at least to some extent. Linking 0-D/1-D model development with 
laboratory experiments can be particularly productive. Taking the example question “Can we quantify the 
rate of incorporation of particles (biogenic or lithogenic) associated with frazil ice into sea ice?”, the model 
development can run in parallel with the experiments. The laboratory settings and observations (e.g., air 
temperature, mixing, growth rate, crystal size, presence of living organisms, etc.) can be tuned in the model 
to evaluate which individual parameters exert the most control over the scavenging process, and then the 
laboratory settings can be varied to test the predictions from the model.

Often information about an individual process is distributed among several individual studies and papers. 
If there are many such studies, synthesis or review papers summarizing the observed results and conceptual 
models are extremely valuable to the modelling community.
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To develop equations, observed turnover times or rates are generally more useful than measured variable 
concentrations. In cases where fluxes are not directly measured but estimated from changing concentrations, 
the expertise observers bring to the estimation of these fluxes is invaluable in developing meaningful 
representations in models.

Regional models or regionally focused global models need spatially averaged variables and rates, including 
information on spatial and temporal (seasonal, inter-annual) variability. Often a specific time of the year is 
particularly important for a process, but is severely underrepresented in the observations (e.g., the autumn 
period of sea-ice formation or the final stages of sea-ice melt during the spring-summer transition). Because 
observational data are often unevenly distributed in space and time, data products (i.e., climatologies) used 
to evaluate model output can be biased. For example, repeat surveys generally follow some spatial pathway 
several weeks in different years, and the temporal vs. spatial control over the observed variations is rarely clear. 
Hence, a description of the potential biases is important for modellers using these products.

Matching model output at a specific location with an individual observation at the same location and 
time of year is particularly difficult if the variability in the observations is high and the number of data points 
per grid cell is small. Essentially, regional model output provides values representative of each simulated grid 
cell, averaging over the spatial variability within the grid cell. If the variability within the grid cell is greater 
than the differences in averages between grid cells, a single data point will not be useful in evaluating the 
model. On the other hand, time series measurements from single sites can provide valuable information to 
help evaluate regional models, giving insight into the annual cycle, vertical profiles, and interannual variability 
(e.g., Doney et al., 2009).

Global climate models and Earth system models (ESMs) contain fully coupled atmosphere, ocean, sea 
ice, and land components, with ESMs also including interactive biogeochemical modules for all components. 
While much of the parameterisation development happens within the models described above, evaluating 
global model performance (e.g., Flato et al., 2013) requires spatially and temporally averaged variables and 
rates, including information on uncertainty. Multi-model simulations are also commonly used for evaluating 
climate model projections (see 3), in Section 3.2, below). The model spread in multi-model simulations is 
indicative of uncertainties associated with natural internal variability of the climate system and structural and 
parametric uncertainty in the climate models considered (Sillmann et al., 2013). Comparing the multi-model 
spread with the uncertainty ranges in the observations allows us to further assess the robustness of the model 
projections.

3.2. Model development tools and observations
Often, sufficient observations for thorough model evaluation are lacking, or the nature of the model does 
not allow point-to-point evaluation. In these cases, at least three classes of tools are available for further 
model development.

Model sensitivity studies assess the impact of specific processes or parameters on the whole system and 
evaluate the variables to which the system is most sensitive. Testing the sensitivity of a parameter over a 
certain range allows for an estimate of the importance of a certain process compared to another and can 
identify parameters that need to receive focused observational attention to reduce the overall uncertainty of 
the system. The parameter range for a sensitivity study is set by the range of the measurements or an estimate 
of the uncertainty in the parameter, which are thus important to report.

Ecosystem modellers also use tools such as standard optimization algorithms (e.g., Ward et al., 2010), 
weak constraint and assimilation parameter estimation (e.g., Losa et al., 2004; Simon and Bertino, 2012), 
and Bayesian models (e.g., Malve et al., 2007; Jones et al., 2010; Weir et al., 2013) to tune parameters in 
systems that are only weakly constrained by observed data. These parameter estimations generally improve 
with better a priori information; i.e., our estimates and assumptions of how ecosystem variables may be linked. 
Accordingly, these optimization tools improve as our conceptual models improve.

Model intercomparisons are useful to identify robust processes and features and determine model 
uncertainty. Detailed model intercomparison exercises involving polar biogeochemical models are limited 
due to many developmental gaps, measurement-based uncertainties, and low model resolutions, which 
prevent simulation or reproduction of specific patterns at specific points in space and time. Alternatively, 
model intercomparisons can focus on features that are characteristic of the investigation area, such as the 
deep chlorophyll maximum in the Arctic Ocean (Steiner et al., 2015). These intercomparisons require an 
observational data set for evaluation (Table 1), as well as an appropriate forcing data set (atmospheric and 
oceanic environmental variables for at least the time period of the observations in sufficient resolution for 
the process time scale in question; e.g., diel, seasonal).

4. Relevant variables: Status and open questions
Sea-ice biogeochemistry is highly important on the local scale and plays a key role in polar elemental cycling 
with potentially large-scale impacts that need to be understood (Shepson et al., 2012). The development 
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of sea-ice biogeochemical models is relatively recent, and many processes are ‘undermodelled’ (i.e., only 
limited or no modelling efforts to describe the process have been undertaken). While our observational 
data base of sea-ice biogeochemical variables is slowly increasing, many processes are insufficiently known 
to warrant implementation in models, and for the processes that are included in models, the magnitudes 
of the applied parameters are not well constrained. A selection of commonly used biological parameters in 
state-of-the-art sea-ice biogeochemical models indicates the large uncertainties and lack of standardization 
for these parameter values (Table 2). While the available models of sea-ice biogeochemistry frequently use 
the same or similar values for their parameters (e.g., C:N or Chla:N ratios; nutrient half saturation constants; 
temperature coefficients for growth, respiration and remineralisation), this communality is not necessarily 
indicative of general agreement and sufficient knowledge. A more detailed list of parameters used to date 
is beyond the scope of this paper. Instead, we choose to highlight areas that we think are most critically in 
need of additional observations.

4.1. Ice algal incorporation and release
There is an urgent need for research on the mechanisms by which microbes (algae, bacteria, and protozoa) 
are incorporated into forming sea ice, as well as potential vertical displacement during ice growth (“upward 
growth”). Typically, we lack observations from autumn (Leu et al., 2015), due to numerous logistical 
challenges, and algal incorporation into new sea ice has been included in sea-ice biogeochemical models 
only very simplistically (e.g., specification of initial Chla concentration at ice formation; Lavoie et al., 2009). 
Even though theories on algal entrapment are over 30 years old (e.g., Garrison et al., 1983, 1990, 2003), the 
processes are still not well understood or quantified. Most of the published work is based on sea-ice formation 
experiments (e.g., Giannelli et al., 2001; Aslam et al., 2012; Eronen-Rasimus et al., 2014; Zhou et al., 2014; 
Jørgensen et al., 2015), although some field-based data are now emerging ( Janssens et al., 2015). Recent 
studies have demonstrated selective incorporation of large cells in forming sea ice, which could be favored 
by production of extracellular polysacharide substances (EPS or exopolymers); (Gradinger and Ikävalko, 
1998; Riedel et al., 2007; Rózanska et al., 2008; Becquevort et al., 2009; Janssens et al., 2015) and bacteria 
may be incorporated into forming sea ice via attachment to algae or larger detrital material (Grossmann and 
Dieckmann, 1994; Weissenberger and Grossmann, 1998; Riedel et al., 2007; Meiners et al., 2008). However, 
the degree of stickiness of sea-ice algae remains largely unexplored and this information is of limited help in 
developing parameterizations for particle entrapment in ice during the fall. Quantitative measurements are 
needed to parameterize the relationships between ice growth rate, ice texture, cell sizes and numbers of cells, 
and exopolymer concentrations. Efforts to ultimately understand the processes by which cells are incorporated 

Table 2. Values for common biological parameters of state-of-the-art sea-ice models

Model reference

Mean Chla 
specific attenuation 
coefficient 

Photosynthetic 
efficiency

Half-saturation 
constant for Si 
uptake

Maximum ice 
algae growth 
rate

Chla:C ratio

a* a 0 hS r0 θ 0chl

m2(mg Chla)−1 mg C (mg Chla)−1 

(µE m−2)−1
mmol Si m−3 day−1 -

Arrigo et al. (1993, 1997) - - - 1.44 -

Lavoie et al. (2005); Pogson et al.
(2011)

0.02 8.3e−6 – 33.3e−6 4.0 computed -

Nishi and Tabeta (2008) - - 7.0 2.0 0.05

Jin et al. (2006, 2007, 2012); Deal 
et al. (2011); Ji et al. (2013)

- - 4.0 1.44 0.033

Tedesco et al. (2010, 2012); Tedesco 
and Vichi (2014)

0.001 1.8e−6 – 3.8e−6 0.1a 1.5 – 2.0 dynamic

Sibert et al. (2010, 2011) - 16.6e−6 - 0.08 0.1

Dupont (2012) - - - 1.5 -

Elliott et al. (2012) 0.03 - 4.0 1.5 -

Saenz and Arrigo (2012, 2014) - - 60 0.81 0.0286

Moreau et al. (2015); Vancoppenolle 
and Tedesco (2015)

- - - 0.86 – 1.56 0.01 – 0.05

a in units mmol Si m−2

doi: 10.12952/journal.elementa.000084.t002
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into newly-forming ice would be most efficient if autumn-based field studies, laboratory experiments, and 
modelling were combined.

The release of ice algae from sea ice is an important link between the sea-ice, pelagic and benthic ecosystems. 
Ice algal export under frequently changing conditions depends on numerous factors in complex ways (Michel 
et al., 1996, 2002; Krembs et al., 2001; Lavoie et al., 2005; Vancoppenolle et al., 2007, 2010; Tison et al., 
2008, 2010; Krembs et al., 2011; Arrigo, 2014) and may contribute to the spatio-temporal patchiness of 
biogeochemical variables in sea ice ( Juhl and Krembs, 2010). However, most models currently formulate ice 
algal release simply as proportional to bottom ice melt rate, which is determined by thermodynamics. All of 
the processes contributing to ice algal release to the water column warrant further testing in order to develop 
and critically evaluate model parameterisations. Many of the questions relating to entrapment, incorporation, 
and release of cells also apply to other biogeochemical parameters.

4.2. Controls on primary production in sea ice
Primary production in sea ice generally depends on a multitude of factors; e.g., which species accumulates 
or colonizes the ice during its formation (see above), and how they survive in winter and grow in other 
seasons (depending on ambient ecological conditions such as temperature, salinity, space, light, and nutrient 
availability). One of the most immediate questions is, what limits primary production? At the base of the 
ice, algal growth appears to be controlled by the interplay between light and nutrient supply. The controlling 
factors are less clear in brine inclusions higher up in the ice.

4.2.1. Light
Although ice algae are adapted to low light levels (e.g., Arrigo et al., 2010), the specific levels at which primary 
production ceases or at which different types of ice algae start to grow within the ice are poorly constrained 
(Gosselin et al., 1985; Cota and Sullivan, 1990; Kirst and Wiencke, 1995; Gradinger, 2009; Leu et al., 2015). 
Nonetheless, the available light has a major effect on the onset of and maximum in ice algal growth (Watanabe 
et al., 2015). In addition, the characteristics of both the ice and the overlying snow dramatically influence the 
amount and nature of the light available to sea-ice algae (e.g., Mundy et al., 2007; Light et al., 2008; Frey 
et al., 2011; Castro-Morales et al., 2014; Katlein et al., 2014; Leu et al., 2015).

While one reason for biases in modelled sea-ice primary production is likely that the models do not 
simulate the amount of light appropriately, it is also possible that modellers do not assign the proper light 
parameter (usually the value of the initial slope of the photosynthesis-irradiance curve) to the group(s) of 
algae they are modelling. In observational studies in the Arctic (Leu et al., 2015), light appears to be the 
main limiting factor at the beginning of the growth season, and nutrients become limiting at a later stage, a 
pattern which has been represented in the models developed for sea ice in the Arctic (Lavoie et al., 2005). 
However, improvements in the representation of light transmission lead to distinct improvements in the 
modelled light availability affecting onset and continuation of ice algal growth (e.g., Lecomte et al., 2011; 
Pogson et al., 2011; Vihma et al., 2013; Abraham et al., 2015).

The interplay between light and nutrient control on the sea-ice communities depends not only on seasonal, 
but also on spatial parameters (i.e., at a given time, surface, interior, and bottom communities are limited by 
different factors). Sea-ice biogeochemical models that only include undifferentiated algal biomass confined 
to the bottom of the ice cannot accommodate such relationships. For example, improved light conditions 
during snow melt can also affect ice communities within the upper ice matrix or in gap layers (Arrigo, 2014). 
Therefore, model parameterizations might be required to allow growth further up in the ice (Tedesco et al., 
2010; Pogson et al., 2011; Duarte et al., 2015).

Improved high quality observations of radiation in relation to snow and ice properties and distributions 
are essential to ultimately parameterize light availability in sea-ice models. New types of instrumented 
platforms, such as ice-tethered profilers (Laney and Sosik, 2014) and autonomous submarines (Nicolaus et al., 
2013), now provide valuable information of the light available under sea ice. Despite the absence of direct 
measurements in the ice column, these measurements allow for some estimates of the light field within the 
ice, if light absorption in the ice algal layer can be accounted for.

4.2.2. Nutrients
Complete exhaustion of all four macro-nutrients (nitrate, silicate, phosphate, and ammonium) has been 
documented in sea ice, but is usually limited to sections cut off from potential resupply from the underlying 
water (Thomas and Dieckmann, 2002). For ice algae, some studies report nitrogen (e.g., Cota et al., 1987; 
Gosselin et al., 1997) or phosphate (Becquevort et al., 2009) limitation, but most studies highlight silicate 
limitation (e.g., Gosselin et al., 1990; Smith et al., 1990), because of its lower remineralisation efficiency 
(Lizotte, 2003). Hence, some models chose to use silicate as the prime nutrient for ice algal regulation (Lavoie 
et al., 2005; Tedesco and Vichi, 2014). This generalization assumes that diatoms are the key functional group 
for ice algae. If different phytoplankton species without silica walls (e.g., dinoflagellates, as recently observed 
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to dominate interior austral summer sea-ice, Torstensson et al., 2015) are included, this simplification is no 
longer applicable. The choice of the limiting nutrient might also be location-dependent; e.g., nitrogen might be 
more appropriate in low nutrient regimes like the Beaufort Sea (Lavoie et al., 2010). Nutrients are provided to 
sea-ice communities through exchange with the seawater by convection at the ice/water interface, infiltration 
into the snow pack, and/or by brine transport within the ice. Models tend to use different approaches to 
represent nutrient supply, depending on their complexity (e.g., Vancoppenolle et al., 2010).

Measurements are also still lacking as to how much primary production can be sustained by remineralized 
nutrients within closed brine pockets (Fripiat et al., 2014) and to what degree ice algae and bacteria compete or 
cooperate. Even though information on heterotrophic activity in sea ice is available (Deming, 2010; Bowman, 
2015), at this point bacterial remineralization rates are treated as constants or vary only with temperature in 
most, if not all, models. Input is needed from observers to evaluate the validity of these approaches. To our 
knowledge, viruses have not yet been implemented in any sea-ice model, and more quantitative information 
about their role in sea ice is still needed (Deming, 2010).

The micronutrient iron and its dynamics in sea ice have widespread implications for pelagic productivity, 
particularly in the Southern Ocean, and presents a special case for sea-ice biogeochemical modellers (van der 
Merwe et al., 2009, 2011; Aguilar-Islas et al., 2008; Lannuzel et al., 2007, 2010, 2014; de Jong et al., 2013; 
Kanna et al., 2014; Wang et al., 2014; Janssens et al., 2015). The mechanisms of Fe incorporation into sea ice 
still need to be quantified, as well as the potential coupling between Fe and organic matter, the magnitude 
of the estimated fluxes in relation to the timescale of the measurements, the residence time of the Fe once 
released into seawater, and whether the particulate Fe in sea ice is bio-available.

The modelling studies by Lancelot et al. (2009) and Wang et al. (2014) represent Fe dynamics in sea ice 
without including biological or chemical processes within the ice. The Fe uptake values had to be tuned, 
based on the limited observations of distributions available. Both studies highlight the necessity to include 
Fe transport by sea ice to adequately simulate open ocean primary production in the Southern Ocean and 
illustrate well how models can be used to test hypotheses from field studies and further promote observations.

Nutrient transport and supply processes in sea ice are ideal subjects for combined field, laboratory, and 
model studies, and much progress has been made in support of modelling nutrient transport within sea ice 
(Untersteiner, 1968; Golden et al., 1998; Becquevort et al., 2009; Notz and Worster, 2009; Vancoppenolle 
et al., 2010; Wang et al., 2014)

4.2.3. Other factors
Representative measurements of Chla:C ratios for sea-ice communities are required to properly estimate total 
carbon biomass (e.g., Tedesco et al., 2012). We acknowledge that Chla is not always a good proxy for algal 
biomass, especially when light is limiting, and more information on how the Chla:C ratio varies with light 
conditions would be beneficial. Measurements of elemental (i.e., C:N:P) ratios in sea ice, another key ratio 
needed to understand the relationships between production parameters, are needed, particularly to decide 
whether the ratios should be held constant or varied with environmental conditions in a model. Information 
on the timing and conditions of grazing on ice algal biomass is also insufficient (Krembs et al., 2000; Lavoie 
et al., 2005; Watanabe et al., 2015). In addition, we need a better conceptual understanding of the ways in 
which shorter ice seasons may restrict the sea-ice algal bloom period (Lavoie et al., 2010; Tedesco and Vichi, 
2014). It is also not clear how pH (including anthropogenic ocean acidification processes; AMAP, 2013) 
may affect ice algal primary production.

4.2.4. Functional Types (FT) versus species
The simplest sea-ice ecosystem models consider only one group of algae (i.e., diatoms) and often only one 
limiting nutrient. However, observations show that a variety of photosynthesizers and sea-ice heterotrophs 
are normally present in sea ice (e.g., Deming, 2010; Pedrós-Alió et al., 2015; Bowman, 2015). Although 
computational costs may encourage simplistic representations, an expansion in ecosystem complexity might 
be needed to represent the various communities growing at different locations within sea ice and through the 
seasonal progression (Tedesco and Vichi, 2014), and to assess how those communities contribute to fluxes of 
climatically active gases and aerosols. Models of the formation of platelet ice are slowly emerging (Wongpan 
et al., 2015), but more complete descriptions of both platelet (Arrigo et al., 2010) and under-ice strand 
communities (Arrigo, 2014) are also needed to advance models of total sea-ice primary production. While 
modellers have a tendency to oversimplify the system, observers often provide details at a level that cannot 
be addressed by models. Presenting the community composition in terms of functional groups would aid the 
development of meaningful models. Functional groups identify organisms serving the same ecological and 
physiological roles in a certain environment. These roles are represented in models using the same parameters. 
A common, useful trait of functional groups in models is cell size, which can be efficiently analyzed by flow 
cytometers, whereas more time-consuming microscopy often provides a level of detail that is not useful in 
model development. Traits include calcification and DMS production.
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4.3. Fluxes of climatically active gases and aerosols
The porous nature of sea ice provides a habitat for ice algae as well as a pathway for exchange of organic 
matter, nutrients, and gases with the seawater below and the atmosphere above through air-ice and ocean-ice 
gas exchange, brine drainage, and seawater entrainment (Loose et al., 2011a). The physical, biological, and 
chemical pathways (and their rates) by which sea ice affects the distribution of biogenic gases (such as CO2, 
O2, CH4, halogens and DMS) between the ocean and the atmosphere are of interest to modellers studying 
the global carbon cycle and climate change.

4.3.1. Gas flux parameterisations
A number of field programs have measured gas fluxes above sea ice in both the Arctic and Southern Oceans 
(Semiletov et al., 2004; Zemmelink et al., 2006, 2008; Nomura et al., 2010a, 2010b, 2012, 2013; Else et al., 
2011; Miller et al., 2011; Papakyriakou and Miller, 2011; Sejr et al., 2011; Geilfus et al., 2012, 2013, 2014, 2015; 
Muller et al., 2012; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Fransson 
et al., 2015), but formulating gas exchange in ice-ocean biogeochemical models is not straightforward. In 
the absence of specific gas-exchange parameterisations for the sea-ice environment, some sea-ice researchers 
have used parameterizations developed for open water conditions (e.g., Trevena and Jones, 2012). How-
ever, as noted by Rutgers van der Loeff et al. (2014), applying open water approaches to ice-atmosphere 
fluxes causes scaling problems. For example, many ocean-atmosphere gas exchange coefficients have been 
determined under conditions of large fetches and therefore are not applicable to brine-air exchange. A number 
of studies have begun to develop parameterizations for ice-air gas exchange (Loose et al., 2011b; Crabeck 
et al., 2014; Sørensen et al., 2014), but the universality of those formulations is still unclear. In a recent study 
Moreau et al. (2014) modelled the ice-atmosphere gas fluxes as a diffusive process, which requires more 
information about the molecular diffusion coefficients for gases within the sea-ice column. Large variations 
in measured ice-atmosphere gas fluxes and differences between the values from eddy covariance and chamber 
measurements (Miller et al., 2015) make it difficult for modellers to constrain their parameterisations or 
even the environmental factors contributing to the flux. For example, the placement of a flux chamber blocks 
wind pumping, which is likely an important factor driving fluxes in undisturbed environments (Bowling and 
Massman, 2011), whereas eddy covariance measurements have a much larger footprint (several hundred m2) 
and include the effects of larger scale ice variability, including potential cracks (Moreau et al., 2015), as well 
as boundary layer processes, such as those occurring within the snow cover. Direct air-ice gas exchanges are 
generally lower than air-sea exchanges, but Loose et al. (2009) and Else et al. (2011) found that in a mixed 
ice-water environment, fluxes are much higher than over open water. Models generally do not represent 
this flux enhancement in broken, mobile sea ice and generally scale down fluxes estimated from open-water 
parameters by the ice area fraction (Steiner et al., 2013). Until a comprehensive conceptual understanding 
of the origins of sea ice-air gas fluxes and generalized flux parameters (e.g., gas transfer velocity, diffusivity) 
covering the variety of sea-ice environments and conditions are available, estimates of the spatial and temporal 
variability in gas fluxes from sea ice and seawater in ice-covered environments (e.g., Nomura et al., 2013) are 
useful for determining whether model results are within expected ranges.

4.3.2 DMS and other organic aerosols with sources in sea ice
The climatically active gas dimethylsulfide (DMS), contributes to organic aerosol production and cloud 
formation in the marine boundary layer (Quinn and Bates, 2011; Levasseur, 2013). The DMS precursor, 
dimethylsulfoniopropionate (DMSP), acts as an osmolyte and can be produced in large amounts by sea-ice 
algae exposed to high salinities (Trevena and Jones, 2006). In areas where terrestrial open-water sources of 
atmospheric aerosols are limited, sea-ice DMS emissions might be an important contributor to the total aerosol 
production (Levasseur, 2013). However, large areas of both polar oceans remain unexplored in terms of DMS 
cycling and fluxes. Although additional measurements of DMS concentrations in sea ice will be valuable, more 
importantly, modellers need the rates at which DMS is produced and degraded by the sea-ice community as 
well as DMS fluxes to the atmosphere to fully develop and adequately evaluate DMS biogeochemical models 
for ice-covered seas. Sensitivity studies of DMS models (e.g., Jodwalis et al., 2000; Steiner and Denman, 2008; 
Elliott et al., 2012) applied to sea ice may suggest which processes are key to governing DMS emissions in 
and around sea ice and can contribute to designing field and laboratory investigations.

4.3.3. Other gas-related processes
Gas bubbles in sea ice (e.g., Matsuo and Miyake, 1966; Light et al., 2003) likely form as ice brines become 
supersaturated (Carte, 1961; Lubetkin, 2003). Little is known about their nucleation rates, but Moreau et al. 
(2014) used a modelling sensitivity analysis to show that nucleation rate is important to accurately represent 
argon dynamics. Argon transport due to buoyant rise of gas bubbles (Zhou et al., 2013) has also recently 
been modelled (Moreau et al., 2014, 2015), but additional observations, particularly of the impact on other 
gases, are needed to constrain the model parameterisations.
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In addition, the biological consumption and release of climatically active gases from sea ice is still largely 
unknown. At this point, the role of primary production and respiration in O2 and CO2 dynamics is modelled 
using standard stochiometric Redfield ratios, assuming that biological activities are reasonably well represented 
in models. The role of ikaite (CaCO3) in CO2 dynamics in sea ice (e.g., Geilfus et al., 2013), including the 
rates of precipitation and dissolution (Hu et al., 2014; Papadimitriou et al., 2014) are only beginning to be 
constrained. Finally, the thermodynamic parameterizations used to calculate carbonate chemistry in seawater 
solutions are generally not valid under sea-ice brine conditions (Brown et al., 2014), but until the corrections 
required to apply the constants in sea ice are determined, we are limited to extrapolating the existing seawater 
expressions beyond their empirical limits (e.g., Delille et al., 2007).

In the Arctic, where methane is released as gas bubbles from anoxic shelf sediments (e.g., Shakhova et al., 
2009), sea ice is also an important player in ocean-atmosphere methane fluxes. Methane production also seems 
to be associated with low N:P ratios in the surface waters when sea ice is present (Damm et al., 2010; Kort et 
al., 2012). The mechanisms controlling methane releases to the atmosphere and the rates at which they occur 
need to be identified before their large scale impacts can be estimated with models. Finally, although surface 
brine skims and frost flowers have been implicated in fluxes of numerous sea-ice chemical species (e.g., Ewert 
et al., 2013; Geilfus et al., 2013; Granfors et al., 2013; Bowman et al., 2014), the conditions controlling those 
fluxes, as well as their rates, are still unclear. In particular, the surface of the sea ice can be a strong source of 
tropospheric bromine monoxide (BrO) and other halogens (Rankin et al., 2002). Saline snow and ice surfaces 
(e.g., frost flowers) provide the halides for heterogeneous production of reactive halogen gases, such as BrO 
(Simpson et al., 2015), but the implications for the predictability of bromine explosions are still very uncertain.

5. The necessity of context
5.1. Ancillary measurements and data reporting
A recurring point for modellers, as well as for everyone else, when using and interpreting observed data, is 
the requirement for ancillary measurements to go with biogeochemical data. Modellers’ efforts benefit hugely 
from simultaneous sampling of biogeochemical observations and measurements of the physical properties 
of the sea ice and its bounding media (Eicken et al., 2009; Miller et al., 2015). The rate of change of any 
variable results from both physical and biological processes. Hence, while any observation is valuable, as much 
physical context as possible should be provided (e.g., information on temperature, salinity, ice texture, ice/
snow thickness, irradiance, wind speed and direction, atmospheric boundary layer height, and ocean mixed 
layer depth can provide useful context for the biogeochemical measurements). For example, to parameterize 
nutrient supply mechanisms (i.e., fluxes between water and sea ice) we need to know: mixing coefficients 
and nutrient concentrations in the mixed layer, as well as under-ice roughness; brine volumes and structures 
that affect fluid transport within sea ice and regulate exchanges with under-ice waters; information on snow 
cover and freeboard as required to assess seawater infiltration at the snow/ice interface, and therefore nutrient 
supply to surface communities; and nutrient consumption as controlled by the timing and magnitude of algal 
growth, which in turn depend upon the photosynthetically active radiation (PAR) received and nutrient 
availability (Lavoie et al., 2005; Tedesco et al., 2010; Pogson et al., 2011). Brine salinity and temperature also 
affect the physiological responses of sympagic organisms (Tedesco and Vichi, 2014). Since biogeochemical 
processes, particularly ice algal primary production and inorganic carbon dynamics, can be quite variable 
over the vertical extent of a sea-ice floe, it is important to divide an ice core into sections and report the 
appropriate section averages for the entire core in relation to the total ice thickness (e.g., bottom 5 cm of a 
76 cm ice core). To address spatial heterogeneity, multiple ice cores (at least duplicate) should be analyzed 
from a single ice floe or within a specific area (Miller et al., 2015). Finally, fundamental differences in ice 
structure related to the circumstances under which sea ice forms and its subsequent history (see Section 5.3) 
also limit transferability of sea-ice ecosystem models between different types of ice. Hence, it is important 
that biogeochemical sea-ice observations include explicit information on the location and as much insight 
as possible into the history of the ice.

Common data sheets can help create consistent observational data sets that include the necessary ancillary 
data. Several such sheets have been developed by the Antarctic Sea-ice Processes and Climate (ASPeCt) 
expert group and are available from the Australian Antarctic Data Centre (http://data.aad.gov.au/aadc/
seaice/). These data forms include fields for general information about the sampling station and sea-ice 
environment, as well as detailed information on temperature, salinity, and the particular variables of interest, 
in consistent units and with common depth resolution. Even if it is not possible to fill out every column of 
the data template, the use of such a template greatly facilitates later observational data intercomparison and 
inclusion of the data in modelling efforts.

Finally, a note on units is required. Although it is best to use standardized units when reporting data, we 
acknowledge this issue to be a tricky one, as unit conversions must not involve unreasonable assumptions. 
Examples of inappropriate unit conversions include reporting data averaged over longer periods than the 
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measurements (e.g., using units month−1 or year−1 for gas fluxes only measured cover a couple of days 
or weeks), and conversions between Chla, cell numbers, and carbon content for mixed communities. Any 
assumptions used in averaging and upscaling the values always need to be stated, explicitly.

5.2. Fast ice versus pack ice
Currently, the available 1D sea-ice models do not consider biogeochemical differences between types of sea 
ice (i.e., fast versus pack ice, first-year versus multi-year ice). This is because to date, most of the models have 
been applied to coastal, landfast ice locations, because biogeochemical time series are available for this type 
of ice. While fast ice forms and melts in the same place, and thus the associated sympagic community can 
be considered typical of the area, pack ice is transported by winds and currents, and the associated biological 
community is not necessarily representative of the location where the ice was sampled (Garrison et al., 2005). 
In addition, fast ice is mostly undeformed and dominated by columnar ice, whereas pack ice can be very highly 
deformed and be a more complex mixture of columnar and granular ice, as well as gap layers, ridges, and keels.

Biological growth is mostly limited to the bottommost part of land-fast columnar ice, where higher 
temperatures and permeability allow exchange with the underlying waters. Hence, most 1D models include 
only one biological layer at the bottom, the thickness of which is either static (i.e., prescribed; Arrigo et al., 
1993; Lavoie et al., 2005; Nishi and Tabeta, 2005; Jin et al., 2006) or dynamic (i.e., a function of permeability; 
Tedesco et al., 2010). However, deformation processes in pack ice (ridging and rafting) redistribute the biomass 
as well as nutrients within the sea-ice column (Horner et al., 1992; Gradinger et al., 2010; Meiners et al., 
2012; Vancoppenolle et al., 2013b), and the potential for algal production higher up in pack ice, as well as 
the difference in permeability between granular and columnar ice, may be very important for gas exchange 
and aerosol production. Thus, the history of the ice may ultimately define exchange rates, yet there is no 
information available on how to model vertically distributed biomass. Ridged ice is particularly difficult to 
access and sample representatively, and therefore, is still severely undersampled. As we incorporate sea-ice 
biogeochemistry in 3D-numerical models (e.g., Deal et al., 2011; Dupont, 2012), the relationship between 
ice structure, which varies on large scales, and sea-ice biogeochemical processes needs to be quantified.

5.3. Arctic versus Antarctic sea ice
Many sea-ice ecosystem processes occurring on small scales are the same or at least similar in Arctic and 
Antarctic sea ice. However, there are some general differences in the formation and evolution and, therefore, 
structure of sea ice in the two regions (e.g., Spindler, 1990). The differences derive primarily from the fact 
that the Arctic Ocean is a relatively low-energy environment, surrounded by continents, with large, shallow 
continental shelves, while the Antarctic is a continent with large ice shelves surrounded by a relatively 
high-energy ocean exposed directly to global swell and fetch. As a result, Arctic sea ice has a more columnar 
structure, characteristic of formation in calmer waters, more multi-year ice (though the amount has decreased 
in recent years, e.g., Comiso, 2012) and more deformation dominated by ridging. Antarctic sea ice tends 
to be more granular, characteristic of formation in rougher waters or via snow-ice formation (flooding of 
snow by seawater, followed by refreezing), contains predominantly first-year ice, and deforms predominantly 
by rafting. Melt ponds and sedimentary materials are more common in Arctic ice, while Southern Ocean 
ice tends to have higher snow accumulation, causing surface flooding. Finally, the presence of large glacial 
ice shelves in the Antarctic leads to more frequent formation of platelet ice layers under the sea ice. These 
differences have implications for permeability and fluxes, as well as for sea-ice community distributions within 
the sea-ice column, and limit the application of individual sea-ice biogeochemical models to both the Arctic 
and Antarctic. In order to generate models with sound representation of the important processes at work in 
Arctic versus Antarctic sea ice, we need to better understand the variations due to ridging and rafting, the 
differences in permeability between granular and columnar ice, and the formation of frazil ice.

6. How to successfully collaborate and achieve maximum benefits
A modeller’s wish list tends to include everything, preferably everywhere at every time. We acknowledge that 
this is not possible, but we think it is important to create a general list for an ideal model evaluation exercise 
and encourage observers to follow it within their logistical and funding constraints.
In short, ideal observations in support of sea-ice biogeochemical model development would be:

1)	 multidisciplinary, with physical, biological, and chemical properties measured at the same time and the 
same place to understand causes, effects, and feedbacks;

2)	 comprehensive, with all of the ecological domains (atmospheric, cryospheric, pelagic, and benthic) 
measured when possible, to link them and understand the fluxes between them;
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3)	 spatially and temporally extensive, with long time series that span ice formation, ice melt, and the open 
water season, preferably over a reasonable spatial extent, to gain a holistic understanding; and

4)	 quantitative, as moving from conceptual to numerical models requires quantification of processes and 
rates.

The list tends to shorten considerably if modellers and observers work together from the onset of a program 
to focus on common hypotheses. In such a case, rather than asking how observations can improve models, 
such partnerships would be aiming at combining (even imperfect) models with (very restricted) measurements 
to improve our understanding of specific processes. All modellers and observers likely agree that sampling in 
polar regions is difficult, expensive, and consequently observations are sparse and heterogeneous. Hence, it 
is only logical to ask ourselves: How can we derive the most benefit from what measurements we can make?

Of course, ultimately any observations can usefully contribute to the development of better numerical 
models, as long as the results contribute to conceptual models of how the system works or the data can be 
merged with those from other studies to generate perspectives on temporal and spatial variability. However, 
ideal observations to support sea-ice biogeochemical model development would:

1)	 follow the best practices that have been established by the sea-ice community (e.g., Eicken et al., 2009; 
Miller et al., 2015);

2)	 use common measurement data templates (i.e., those available from http://data.aad.gov.au/aadc/seaice/);
3)	 establish and maintain coordinated databases (e.g., Meiners et al., 2012);
4)	 always provide ranges of uncertainty and detection limits;
5)	 use consistent units and provide the ancillary data necessary to convert between different units;
6)	 express species compositions in terms of organism function in the ecosystem (i.e., functional types), 

and fluxes in terms of meteorological, hydrological, and other physical conditions, while also clearly 
expressing the limitations of those extrapolations;

7)	 sample the entire depth of the ice and record depth-resolved observations.

To enhance successful collaboration, modellers need to acknowledge the hard work and expertise that goes 
into each data point and recognize the limitations of an observed data set, while observers should recognize 
models as tools that can:

1)	 support their results and provide a larger context;
2)	 extend their results beyond the limited area that was sampled;
3)	 produce improved understanding and new knowledge; and
4)	 support planning of more cost-effective expeditions and monitoring pro-grams.

Conversely, to derive maximum benefit from the measurements, modellers need to: 1) specify their needs;  
2) prioritize their needs; 3) discuss feasibility with the observers (material and time constraints, distance from 
laboratories, human resources, berth and laboratory space, etc.); and 4) accept feedback from observers and 
revisit prioritizations. In addition we would like to acknowledge that there are observations that do not directly 
feed into numerical models, but are valuable in this context nonetheless, contributing to the construction of 
the common conceptual model.

7. Summary
In this article, intended for scientists who are studying sea-ice biogeochemistry in the field and in laboratories, 
we have tried to provide a compilation of needs for sea-ice biogeochemical modelling on different temporal 
and spatial scales. Our aim has been to provide a better understanding of what kind of observations modellers 
need and, consequently, how field campaigns should be designed to support modelling efforts and how the 
results should be reported to help modellers get the most from the observations. We acknowledge that the 
dichotomy between observer and modeller is artificial, and a scientist studying sea-ice biogeochemistry can be 
(and ideally would be) both. Indeed, we encourage all polar observing scientists to keep numerical modelling 
in their toolboxes, and every modeller to get into the field as often as is practical.

Our common goal is to improve our understanding of the sea-ice ecosystem, its interactions with 
surrounding media, and its potentially large-scale effects. To achieve this goal we need to pool our resources, 
requiring funding agencies and research groups to join efforts and plan coordinated but cost-effective polar, 
multi-disciplinary campaigns. Frequent exchanges between the observational and modelling communities 
are important so that each party remains up-to-date on the other’s needs and capabilities. There are valuable 
insights to be gained by combining modelling and observational expertise. Most collaborative efforts are 
initiated during workshops, where brainstorming is used as an efficient tool for developing synergies and 
address communication issues. We recommend, that organizers of workshops on the biogeochemistry of 
sea ice, systematically schedule timeslots for explicit discussions between modellers and observers. Planning 
field programs as part of larger, national or international network projects, which include both observers 
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and modellers and have regular (annual or semi-annual) meetings where all participating groups present 
their tools, issues, and preliminary results, seems to be an effective way forward, even if not always feasible. 
In addition, new scientists entering this field should be encouraged to develop observational and modelling 
skills in parallel, and graduate student committees should include representatives from both communities.

Small experiments, both in the field and in laboratories, can be immensely useful, if they focus on a 
particular, critical question and the measurements follow appropriate community standards. In both large 
observational surveys and small-scale experiments, the willingness to learn and understand the needs and 
limitations of each collaborator’s tools is a fundamental component of a successful collaboration.

We conclude that, from a modeller’s perspective, a five-star observer is the one who measures a process of 
most interest repeatedly in several places and for long time periods and has a good global understanding of 
the variability that might drive the process being studied (Figure 4). We leave it to the observers to design 
a five star modeller.
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