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Abstract. The fluid flow between a pair of coaxial circular cylinders generated by the uniform
rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor
and Dean type instabilities. The flow can be characterised by two parameters: a measure
of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor
number. Neutral curves associated with each instability can be constructed but it has been
suggested that these curves do not cross but rather posses ‘kinks’. Our work is based in the
small gap, large wavenumber limit and considers the simultaneous onset of Taylor and Dean
instabilities. The two linear instabilities interact at exponentially small orders and a consistent,
matched asymptotic solution is found across the whole annular domain, identifying five regions
of interest: two boundary adjustment regions and three internal critical points. We construct
necessary conditions for the concurrent onset of the linear Taylor and Dean instabilities and
show that neutral curve crossing is possible.

1. Introduction

The flow of a viscous fluid in the annular gap between two coaxial circular cylinders has been
extensively studied analytically, numerically and experimentally for over a century. In particular,
the flow generated by the uniform rotation of the inner cylinder and its subsequent instability to
Taylor cells is familiar to all students of fluid mechanics. A wide-ranging review of the Couette-
Taylor problem, its study and background, is given by Tagg [1]. The imposition of an azimuthal
pressure gradient within the Couette geometry, although hard to realise in practice, provides
an excellent model for curved channel flow and can itself be susceptible to linear perturbations
and the cellular Dean instability. In this paper, we study the simultaneous onset of Taylor and
Dean instabilities in the small gap, large wavenumber limit.

The composite Taylor-Dean problem has been discussed extensively in the literature and the
linear eigenvalue equations governing perturbations to the unperturbed azimuthal flow in the
limit of a small annular gap are well known. They have been studied by, among others, Di Prima
[2], Hall [3] and Kachoyan [4]. The eigenvalue problem is determined by three parameters: the
axial wavenumber k of the perturbations; a measure of the relative dominance of the effects of
rotation and pressure, β; and a Taylor number T̂ . For each value of β there exists a critical
Taylor number T̂c; for T̂ > T̂c the nature of the instability depends upon the values of β and k.
When the principal destabilising effect is rotation the instability will be akin to an isolated Taylor
instability close to the inner cylinder. Conversely, when the main destabilising effect is pressure,



a Dean-like instability will be observed in the main flow and away from the boundaries. At
sufficiently large β there exists a range of wavenumbers for which linear perturbations of neither
pure Taylor nor Dean type exist but rather time-periodic solutions are the dominant instability.

Taylor-Dean flow in the annulus is not easy to construct physically due the difficulty in
maintaining azimuthal symmetry. However, the two distinct driving mechanisms of the flow
are found together in many practical applications; e.g. an electrogalvanizing line in the steel-
making industry or rotating drum filters in paper- and board-making processes (see [5]). The
Taylor-Dean configuration is usually emulated in the laboratory using a partially-filled annulus
to produce a combination of Couette and curved Poiseuille flow. There has been considerable
interest in the diverse patterns that can be formed from this apparatus, including the coexistence
of different states, and Laure & Mutabazi [6] provide a brief background to this work.

Kachoyan [4] considered the eigenvalue problem for general values of β and determined neutral
curves associated with both the Taylor-like and Dean-like instabilities for several values of β.
Of particular interest is when β > 1 and the pressure gradient acts against rotation. Kachoyan
observed that, for β = β0 ' 1.275, the leading order critical Taylor numbers agree at the limit of
very large wavenumbers. As β is increased beyond β0 the neutral curves associated with the two
types of instability appear to cross at finite values of k. But, upon closer numerical examination
Kachoyan concluded that the neutral curves did not intersect but rather there was a “kink” in
each neutral curve.

We are concerned with large wavenumber perturbations in small-gap Taylor-Dean flow and
consider the concurrent onset of linear Taylor and Dean instabilities at the same critical Taylor
number. Our objective is to explore the kinking behaviour suggested by Kachoyan and to
place it upon a firm rational footing. The two possible modes of instability are not treated
in isolation but are shown to interact in a subtle way, linked at exponentially small orders by
a WKB analysis. A consistent, matched asymptotic solution to the perturbation equations
for the velocities, Taylor number and inverse wavenumber is found across the whole annular
domain. Internal critical points result in the appearance of oscillatory solutions. We find that it
is possible for neutral curve crossing to occur at discrete values of β but the accuracy required
in calculations to observe such a phenomenon is not realisable.

2. Problem formulation

Consider an incompressible fluid occupying the region between two coaxial cylinders of radii R1

and R2 (R2 = R1 + d > R1). The outer cylinder is at rest while the inner rotates about its axis
with angular velocity Ω. In addition a constant, azimuthal pressure gradient is applied. There
exists a solution to the Navier-Stokes equations given by

p = −ρκθ + ρ

∫
û2

θr
−1dr, û = ûθeθ =

{
Ar−1 + Br − (2ν)−1κr ln r

}
eθ . (1)

Here p, ρ, û are the pressure, density and velocity fields respectively, (r, θ) the usual polar
co-ordinates, ν the kinematic viscosity, κ a measure of the pressure gradient and A and B are
known constants. We non-dimensionalise lengths with respect to d, radial and axial velocities
by ν

/
2d, time by d2

/
ν, and ûθ by VT + VD (where VT = ΩR1/2 and VD = κd2

/
12ν are typical

velocities associated with Taylor and Dean effects). Then, in the limit of small gap d � 1, the
dimensionless base flow is given by u = V eθ where

V = 2(1 − β)(1 − x) + 6βx(1 − x), (2)

β = VD

/
(VT + VD) and x =

(
r − R1

)/
d is a new, scaled radial variable. The value β = 0

corresponds to Taylor-Couette flow and β = 1 to classical Dean flow. The linearised governing
equations for small axisymmetric perturbations,

(
u(x), v(x), w(x)

)
eikz at neutral stability are

L2u = ε2T̂ V v, Lv = 1
2ε2uV ′, (3)



where ε = k−1, L ≡ ε2
(
d2
/
dx2
)
− 1 and T̂ = 4d3(VT + VD)2

/
ν2R1 is the Taylor number.

We consider high wavenumbers ε � 1 and appropriate scalings of (3) are T = ε4T̂ , v = ε−2v.
This leads to

L2u = TV v, Lv = 1
2uV ′ (4)

subject to boundary conditions u = v = u′ = 0 on the walls x = 0, 1.
The operator L possesses two implicit scales and suggests a WKB analysis. Critical points

arise where TV V ′
/
2 takes values 0 or −1 and these require separate consideration. The latter

case corresponds to two minima of V V ′ where the Rayleigh criterion is most violated and the
onset of instability is expected to occur. The critical points are

x0 =
1

6β

(
4β − 1 +

1 + 2β√
3

)
(V V ′ minimum), x1 =

4β − 1

6β
(V ′ = 0),

x2 =
β − 1

3β
(V = 0), x3 = 0 (V V ′ local minimum). (5)

It is known that the structure at x0 corresponds to the onset of a Dean instability and that x3

corresponds to a Taylor instability at the cylinder wall. At leading order the isolated Taylor
numbers are given by

TD = −2
/
V V ′

∣∣∣
x0

=
9
√

3β

(1 + 2β)2
, TT = −2

/
V V ′

∣∣∣
x3

= − 1

2(4β − 1)(1 − β)
. (6)

Therefore there are five clearly defined regions (shown later in figure 2): one near the wall x = 1
where the boundary conditions must hold; a critical point x0 where the Dean instability appears;
two internal critical points x1, x2 where the WKB solution is no longer appropriate and the wall
zone at x = 0 where the Taylor instability exists.

We are concerned with the simultaneous onset of Taylor and Dean-like instabilities and their
interaction. The question of whether their neutral stability curves cross is equivalent to whether
it is possible to construct a consistent solution across the domain for particular values of the
parameters β, ε and Taylor number, T . Therefore, we require the Taylor numbers TD, TT

correspond at leading order. From (6) we find that β = β0 = (5 + 3
√

3)
/
8 and TD = TT = 4/9.

To match at higher orders we perturb β,

β = β0 + δ, δ � 1, (7)

and construct asymptotic series for the physical quantities of the system in terms of δ.
The critical points x0, x3 lead to layers of widths ε1/2 and ε2/3 respectively and the

corresponding corrections to the Taylor numbers for the isolated modes of instability are O
(
ε
)

and O
(
ε2/3

)
. Comparison of the asymptotic forms of TT , TD therefore suggest an expansion of

ε given by
ε = ε0δ

3/2 + ε1δ
2 + . . . . (8)

Let us now consider the asymptotic series for the velocities u, v and Taylor number T . We shall
see that the various critical points are associated with layers of width O

(
δ3/4

)
, O
(
δ
)

with an

embedded layer of O
(
δ3/2

)
, and O

(
δ9/8

)
and thus we expect that velocities (u, v) can be written:

(u0, v0)+δ1/2(u1, v1)+δ3/4(u2, v2)+δ(u3, v3)+δ9/8(u4, v4)+δ5/4(u5, v5)+δ3/2(u6, v6)+ . . . . (9)

Other orders of u are not forced by the dynamics of the problem and merely reproduce, by
linearity, the main solution. We expand the Taylor number in a similar manner but for later



clarity we present two expansions – one appropriate at x0, the other at x3:

T = T0 + δ1/2T1 + δ3/4T2 + δT3 + δ9/8T4 + δ5/4T5 + δ3/2T6 + . . . ,

= τ0 + δ1/2τ1 + δ3/4τ2 + δτ3 + δ9/8τ4 + δ5/4τ5 + δ3/2τ6 + . . . . (10)

Note that since the Taylor coefficients (and velocities) will be functions of β, Ti is not necessarily
equal to τi. Finally we denote the values of V , V ′ at xj by Vj, V ′

j respectively.

3. A linked flow solution throughout the domain

3.1. The WKB solution in the main flow

Consider the flow away from the critical points of g and the boundary walls. There are two
scales x and εx and we seek a solution of the form

u = uE, v = vE where E ≡ exp

{
ε−1

∫ x

g(s)ds

}
. (11)

Neglecting terms of O
(
ε3
)
, equations (4) then yield the system

(g2 − 1)2u + ε
[
4u′g(g2 − 1) + 2ug′(3g2 − 1)

]
+ ε2

[
2u′′(3g2 − 1) + 12u′g′g + ug′′(4g + 3)

]
= T vV,

(g2 − 1)v + ε(2v′g + vg′) + ε2
v
′′ = 1

2uV ′. (12)

Substituting the asymptotic series for u, v and ε we can equate orders in δ. At O
(
1
)

we find

(g2 − 1)2u0 = T0v0V, (g2 − 1)v0 = 1
2u0V

′ =⇒ (g2 − 1)3 = T0V V ′
/
2. (13)

Therefore there are six roots which we label

g±j = ±
√

1 + ωjsgn
(

1
2T0V V ′

) ∣∣1
2T0V V ′

∣∣1/3
where ωj = e2πji/3, j = 0, 1, 2. (14)

The solutions g±0 correspond to exponentially growing and decaying solutions whereas the
complex solutions are oscillatory with exponentially growing or decaying amplitudes. Figure
1 shows a typical plot of − 1

2T0V V ′ and identifies critical points of (13) where the WKB form of

solution is no longer valid. At x = x1, x2, the function 1
2T0V V ′ vanishes and both of the sets

of three roots {g+j}, {g−j} coalesce leaving only two remaining real roots g = ±1. At x0 and
x3,

1
2T0V V ′ takes the value −1 and the two real roots g±0 coalesce leaving the four remaining

complex roots and g = 0. A sketch of the behaviour of the roots of g in the complex plane is
included in figure 1.

Equating coefficients of δ1/2, δ3/4, δ, δ9/8 and δ5/4 we find that, for a consistent solution of
(12), T1 = T2 = T3 = T4 = T5 = 0. This is not surprising – at x = x0, β = β0 the correction to
the Taylor number is O

(
ε
)
. At O

(
δ3/2

)
the dynamics are forced by u0 and v0:

(g2 − 1)2u6 + ε0

[
4u′0g(g2 − 1) + 2u0g

′(3g2 − 1)
]

= T0v6 + T6v0V,

(g2 − 1)v6 + ε0(2v
′

0g + v0g
′) = 1

2u6V
′. (15)

Using (13) and (15) a first order differential equation for u0 can be determined, namely

u
′
0

u0
+

g′

2g
+

V ′′

3V ′
− T6

6ε0T0

g2 − 1

g
= 0. (16)
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Figure 1. A typical plot of −T0V V ′/2 showing the critical points of the WKB solution and
the behaviour of the roots of g there.

Solving (16) we find that

u0 = u0E ∝ |g|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

g(s)ds +
T6

6ε0T0

∫ x g(s)2 − 1

g(s)
ds

}
,

v0 = v0E =
u0V

′E

2(g2 − 1)
∝ |g|−1/2|V ′|2/3

2(g2 − 1)
exp

{
1

ε

∫ x

g(s)ds +
T6

6ε0T0

∫ x g(s)2 − 1

g(s)
ds

}
. (17)

The six roots of g give the six linearly independent leading order velocities outside the critical
layers. We will link these solutions across the critical layers (where roots coalesce and separate
asymptotic analysis is needed) and to the boundaries x = 0, 1. We assume that both the
Taylor and Dean disturbances are O

(
1
)

and that they are spatially decaying, interacting
at exponentially small orders via the WKB solutions, to produce necessary conditions for
simultaneous onset.

3.2. The critical layer at x0

Although as x0 is approached the complex roots g±j , j = 1, 2 remain distinct and their velocity
contribution is unaffected by the layer, the real roots of g coalesce at 0. It is a second order
critical point and a balance of scales shows that the layer is O

(
δ3/4

)
. Thus we introduce a scaled

variable given by ξ = (x − x0)δ
−3/4. Expressing the differential operator L in terms of ξ and

expanding the base velocity V about x0 we can equate orders of δ within (4). At O
(
1
)

we have

u0 = T0v0V0, −v0 = 1
2u0V

′

0 =⇒ T0 = −2
/
V0V

′

0 . (18)

Thus T0 is determined for the neutral stability of Dean disturbances. The next few orders relate
uk and vk, k = 1 . . . 5, but at O

(
δ3/2

)
we have a linear equation governing u0:

d2u0

dξ2
+

u0

3ε2
0

(
T6

T0
+

3V ′′

2V0
ξ2

)
= 0. (19)

Equation (19) reduces to the parabolic cylinder equation

d2u0

dX2
− u0

(
a + 1

4X2
)

= 0 where X =

(−2V ′′

ε2
0V0

)1/4

ξ, a = − T6

3ε0T0

(
V0

−2V ′′

)1/2

, (20)



which possesses two linearly independent solutions U(a,X), V (a,X). The asymptotic forms of
these solutions for X � 1 are given by Abramowitz & Stegun [7]. The solution V (a,X) displays
exponential growth as X → ∞. But we are investigating (the concurrent) onset of instability
and assume that any deviation from the isolated O

(
1
)

Taylor and Dean modes of instability is
tiny. Thus we reject any contribution to u0 from V (a,X). By linearity we take u0 = U(a,X)
whereby

u0 ∼ X−a−
1
2 e−X2/4, as X → ∞,

u0 ∼
√

2π

Γ
(

1
2 + a

)(−X)a−
1
2 eX2/4 − sinπa(−X)−a−

1
2 e−X2/4, as X → −∞. (21)

Although u0 seems to possess a term with exponential growth as X → −∞, at a = −1/2 its
coefficient vanishes, corresponding to an isolated Dean mode of instability. We require that a
be exponentially close to −1/2 and that any growth will become O

(
1
)

at x = x3, corresponding
to the interaction between the Taylor and Dean modes (see figure 2). This condition will relate
T6 and ε0.

We match this layer onto the main flow for x1 < x < x0 using the method of intermediate
scales. Introducing a lower limit, l0 = x0−δ3/4 to accommodate the simple pole of the integrand,
we find that the radial velocity for x1 < x < x0 is given by

u0 = C+|g+0|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

x0

g+0(s)ds +
T6

6ε0T0

∫ x

l0

g+0(s)
2 − 1

g+0(s)
ds

}

+ C−|g−0|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

x0

g−0(s)ds +
T6

6ε0T0

∫ x

l0

g−0(s)
2 − 1

g−0(s)
ds

}
, (22)

where α = −2V0

/
V ′′ and

C+ = − sinπa α−
1
4 (−V ′

0)
1
3 δ

3
8

(
4

ε2
0α

)−
1
4

(
a−

1
2

)

, C− =

√
2π

Γ(1
2 + a)

α−
1
4 (−V ′

0)
1
3 δ

3
8

(
4

ε2
0α

)1
4

(
a−

1
2

)

.

(23)
We note that the factor δ3/8 implies that the flow becomes more intense in the layer, as might
be expected.

3.3. The critical layer about x1

In the main flow the leading order velocities u0, v0 are proportional to |V ′|−1/3 and |V ′|2/3(g2 −
1)−1 respectively. As we approach x = x1 we find that V ′ → 0, g → ±1 and |V ′|2/3(g2−1)−1 → 0.
It is clear therefore that, near this critical point, the assumption that u0, v0 are of the same
order is no longer valid. By careful consideration of the appropriate asymptotic scales and the
governing equations it can be seen that, near x1, u ∼ O

(
δ−3/8

)
, v ∼ O

(
δ3/8

)
in a layer of width

O
(
δ9/8

)
. Introducing the scaled variable ξ = (x − x1)δ

−9/8 we look for solutions of the form

u = δ−3/8ũ(ξ) exp(±x/ε), v = δ3/8ṽ(ξ) exp(±x/ε). (24)

The velocity V and operator L can once again be expressed in terms of ξ and, equating at lowest
orders of δ, the governing equations about x1 become

ũ′′′

0 = ±T0V1V
′′

16ε3
0

ξũ0, ṽ0 =
4ε2

0

T0V1
ũ′′

0 . (25)



A change of variables simplifies the system within the layer to two third order differential
equations corresponding to the two sets of roots, {g+j} and {g−j} in the main flow:

d3ũ0

dX3
±

= −X±ũ0, where X+ = (2ε0)
−3/4γ1/4ξ = e−πi/4X−, γ = −1

2T0V1V
′′. (26)

In the limit |X±| � 1 there are three linearly independent solutions with asymptotic forms

f±j = X
−1/3
±

exp
{
−3

4ωjX
4/3
±

}
, j = 0, 1, 2 (27)

and our solution will match a linear combination of the f±j. But, to obtain a consistent solution
to (26) throughout the complex plane for |X±| � 1, we require that, as the argument of X±

varies (and we cross the layer), the coefficients of the f±j change as we cross Stokes lines.
The changes are given by known Stokes multipliers. The asymptotic behaviour of equation
(26) has been analysed by Heading [8] and as arg X+ goes from 0+ to π− the linear combination
c0f+0+c1f+1+c2f+2 becomes c0f+0+c1f+1+(e2πi/3c0+eπi/3c1+c2)f+2. Similarly, as arg X− goes
from π/4 to 5π/4, c0f−0+c1f−1+c2f−2 becomes c0f−0+e2πi/3c2f−1+(e2πi/3c0+eπi/3c1+c2)f−2.
We can therefore trace the evolution of our solution (22) in x1 < x < x0 across the layer about
x1 to the region x2 < x < x1. It is found that the dominant solution associated with (g−0 +1) –
an increasing function about x1 – remains dominant and the sub-dominant solution relating to
(g+0 − 1) – a decreasing function about x1 – becomes a pair of oscillating solutions in [x2, x1]:

u0 = D+|g+1|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

x1

g+1(s)ds +
T6

6ε0T0

∫ x

x1

g+1(s)
2 − 1

g+1(s)
ds

}
+ c.c.

+ D−|g−0|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

x1

g−0(s)ds +
T6

6ε0T0

∫ x

x1

g−0(s)
2 − 1

g−0(s)
ds

}
, (28)

where

D+ = C+eπi/3 exp

{
1

ε

∫ x1

x0

g+0ds +
T6

6ε0T0

∫ x1

l0

g2
+0 − 1

g+0
ds

}
,

D− = C− exp

{
1

ε

∫ x1

x0

g−0ds +
T6

6ε0T0

∫ x1

l0

g2
−0 − 1

g−0
ds

}
. (29)

3.4. The critical layer about x2

The layer about x2 is analogous to that at x1, except that now it is V that vanishes rather
than V ′. The appropriate scaling is u0 ∼ O

(
1
)

and, since g → ±1, v0 ∼ O
(
δ−3/8

)
within a

layer of O
(
δ9/8

)
. We introduce the new variable ξ = (x − x2)δ

−9/8 and write u = ũ(ξ)e±x/ε,

v = δ−3/8ṽ(ξ)e±x/ε. We find that it is now the azimuthal velocity that satisfies the parabolic
cylinder equation,

d3ṽ0

dX3
±

= −X±ṽ0, where X− = (2ε0)
−3/4λ1/4ξ = e−πi/4X+, λ = −1

2T0(V
′

2)2, (30)

and ũ0 = 4ε0ṽ
′
0

/
V ′

2 . Therefore the asymptotic solutions and Stokes multipliers remain
unchanged. Near x2, g−0 is decreasing about −1 and thus f−0 is the sub-dominant solution.
Therefore when we match to the left this solution maps onto two oscillating solutions whereas
the oscillating solutions associated with g+1,2 are equally dominant and merge into a single



solution. Matching the solution for ṽ0 in the layer about x2 to the left, it can be shown, using
(17b), that in the region x3 < x < x2, the radial velocity is given by

u0 = E+|g+0|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

x2

g+0(s)ds +
T6

6ε0T0

∫ x

x2

g+0(s)
2 − 1

g+0(s)
ds

}

+ E−|g−1|−1/2|V ′|−1/3 exp

{
1

ε

∫ x

x2

g−1(s)ds +
T6

6ε0T0

∫ x

x2

g−1(s)
2 − 1

g−1(s)
ds

}
+ c.c., (31)

where

E+ = D+ exp

{
1

ε

∫ x2

x1

g+1ds +
T6

6ε0T0

∫ x2

x1

g2
+1 − 1

g+1
ds

}
+ c.c.,

E− = D− exp

{
1

ε

∫ x2

x1

g−0ds +
T6

6ε0T0

∫ x2

x1

g2
−0 − 1

g−0
ds

}
. (32)

3.5. The layer at x3 = 0
We now study the final critical point x3 = 0, a local minimum of 1

2T0V V ′. It is not a stationary

point of the function and hence the layer is of width O
(
δ
)
. We rescale with ξ = xδ−1 and

expanding asymptotically about x3 as usual. We can equate coefficients in δ but, as will become
apparent, it is necessary to use the asymptotic expansion of T in terms of τj . We find at O

(
1
)

that
u0 = τ0v0V3, −v0 = 1

2u0V
′

3 =⇒ τ0 = −1
/
2V3V

′

3 . (33)

At the next two orders the equations reduce to τ1 = τ2 = 0, but at O
(
δ
)

the problem is forced
so that

u3 − 2ε2
0u

′′

0 = τ0V3v3 + τ0ξV
′

3v0 + τ3V3v0, ε2
0v

′′

0 − v3 = 1
2ξV ′′u0 + 1

2V ′

3u3. (34)

Note that T0, τ0 only agree up to O
(
δ
)

and hence τ3 6= 0. Using (33), system (34) reduces to

d2u0

dX2
= Xu0 where X = λ

1/3
0 ξ − λ1λ

−2/3
0 , λ0 = − 1

3ε2
0

(
V ′′

V ′
3

+
V ′

3

V3

)
> 0, λ1 =

τ3

3τ0ε2
0

. (35)

The Airy functions Ai(X) and Bi(X) solve (35) and their asymptotic behaviours for X � 1 are

Ai(X) ∼ 2−1π−1/2X−1/4 exp
(
−2

3X3/2
)

, Bi(X) ∼ π−1/2X−1/4 exp
(

2
3X3/2

)
. (36)

It is clear that Bi is exponentially increasing and cannot contribute at O
(
1
)

as this would not
correspond to an isolated mode of instability. In fact, the coefficient of Bi must be exponentially
small indicating a slight detuning of the isolated mode and link with the incoming WKB mode
corresponding to g+0. Thus we find the leading order contribution to Bi is

E+√
πε0

δ1/4λ
−1/6
0 (V ′

3)−1/3 exp

{
1

ε

∫ 0

x2

g+0ds +
T6

6ε0T0

∫ 0

x2

g2
+0 − 1

g+0
ds

}
Bi(X). (37)

We require the coefficient of Ai to be O
(
1
)

as we wish the two instabilities, Taylor and Dean, to
occur simultaneously and be of similar sizes. It is clear that as X → ∞ this links to the velocity
corresponding with the root g−0 in the region x3 < x < x2 which, as it encounters the critical
point x2 from the left, will become two oscillatory, complex conjugate solutions corresponding
to g−1,2. These will continue to decrease exponentially to the wall x = 1. Thus the coefficient
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Figure 2. Diagram of the six linearly independent solutions across the flow domain.

of Ai is not known and we can only say at this stage that u0 = FAi(X) where F is some O
(
1
)

constant.
We are investigating corrections to the Taylor number up to O

(
δ3/2

)
and continue to equate

at higher orders of δ. At O
(
δ9/8

)
, O
(
δ5/4

)
we find that τ4 = τ5 = 0. But, at O

(
δ3/2

)
, we find

d2u1

dX2
− Xu1 = − τ6

3ε2
0λ

2/3
0

u0 +
2ε1

ε0

d2u0

dX2
, (38)

with the same change of variables as (35). Equation (38) is solved in terms of Airy functions to
give

u1 = GAi(X) −
(

τ6

3ε2
0λ

2/3
0

+
2ε1X

3ε0

)
FAi′(X). (39)

Before we can write down the final conditions governing the parameters of our linked leading
order solutions we must consider the boundary conditions at the two cylinder walls x = 0, 1.

3.6. Boundary conditions at x = 0 and x = 1
The boundary conditions u = v = w = 0 on x = 0, 1 are equivalent to u = u′ = L2u = 0 on the
walls. Near x = 1 the flow has decayed to be exponentially small but even here it is necessary to
ensure adherence to the boundary conditions. We have found six linearly independent solutions
across the flow domain but it is clear that at any position in the fluid not all these solutions
can exist at leading order. The condition that the flow should only be O

(
1
)

at the two points
of instability coupled with the boundary conditions allows us to anticipate the dominant flow
solutions across the domain and, in particular, at the cylinder boundaries. Figure 2 shows
diagrammatically the evolution of the six flow elements. The different styles of line illustrate
the linking of solutions and the legend distinguishes the cartoons used to depict each of the six
types of solution. An indication of the magnitude of a solution is given by its vertical position.

We begin by considering the wall at x = 1. Of the six solutions here, the two oscillatory
decaying solutions associated with g−1,2 link directly to the decay of the Airy solution at x3. As
such they have decayed throughout the whole fluid domain and at x = 1 we would expect them
to be far smaller than the other flow components. Thus to satisfy the boundary conditions we
have four remaining solutions at our disposal: one associated with the O

(
1
)

Dean instability



whose coefficient is predetermined; two oscillating solutions which decay all the way to the
wall x = 0; and the solution associated with g+0 which links with the solution V (a,X) of the
parabolic cylinder equation. Thus we are able to satisfy the boundary conditions at x = 1 wall
by choosing the coefficients of the latter three, which will inevitably be be exponentially small
at x = 1.

The boundary x = 0 requires more detailed consideration. Examining figure 2 we see that of
the six solutions, the exponentially increasing one associated with Bi is linked to the Dean
instability and hence is exponentially small. The oscillatory growing modes link with the
exponentially small oscillating modes at the wall x = 1 and have further decayed across the
domain. The only remaining, possibly O

(
1
)
, modes are the oscillatory decaying solutions g−j

(also linking to the Dean instability U(a,X)) and the decreasing solution associated with Ai.
However we have three homogeneous boundary conditions and the three dominant solutions will
be unable to satisfy them non-trivially. Hence an inner adjustment layer is introduced to satisfy
the boundary conditions.

3.7. The inner layer at x = 0
A balance of scales reveals an inner layer of width O

(
δ3/2

)
at x = 0. Introducing ξ ≡ xδ−3/2,

we solve the leading order governing equations and apply the boundary conditions at ξ = 0 to
give

u0 = H
[
1 − (12)1/4ξ/ε0 + e−31/4 cos(π/12)ξ/ε0

(√
3 sin

(
31/4 sin(π/12)ξ/ε0

)

− cos
(
31/4 sin(π/12)ξ/ε0

))]
, (40)

where H is a constant,
√

1 − ω1 = 31/4e−πi/12,
√

1 − ω2 = 31/4eπi/12, and we have discarded the
exponentially increasing and growing oscillatory solutions at this order as required.

We require that (40) matches with the velocity in the outer layer given by the Airy solutions,
FAi(X) and (39), together with the two oscillating, decaying WKB solutions from (31). To

achieve this requires Ai(−λ1λ
−2/3
0 ) = 0 and H = H̃δ1/2 with H̃ = O

(
1
)
; in particular

λ1λ
−2/3
0 =

τ3

3τ0ε2
0

[
− 1

3ε2
0

(
V ′′

V ′
3

+
V ′

3

V3

)]−2/3

= 2.3381,

F
(

2.3381
2ε1

3ε0
− τ6

3ε2
0λ

2/3
0

)
Ai′(−2.3381) = H̃, Fλ

1/3
0 Ai′(−2.3381) = −(12)1/4H̃/ε0. (41)

Matching the oscillatory, decaying solutions yields

E−(1 − ω1)
−1/4(V ′

3)−1/3 exp

{
1

ε

∫ 0

x2

g−1(s)ds +
T6

6ε0T0

∫ 0

x2

g−1(s)
2 − 1

g−1(s)
ds

}
= δ1/2H̃e4πi/3. (42)

We now have all the necessary equations. First, observe that the two Taylor number
expansions (10) must be equivalent. We expand τ0, T0 as series in δ using (18), (33) and
equate coefficients. At O

(
δ
)

we find τ3 = 1.6501 and then (41a) is used to determine ε0:

ε0 =

(
τ3

7.01432τ0

)3/2 [
− 1

3ε2
0

(
V ′′

V ′
3

+
V ′

3

V3

)]−1

= 0.0688 + 0.1631δ + O
(
δ2
)
. (43)

From the arguments of §3.2 we know that a is exponentially close to −1/2 so that, from (20),

τ6 = T6 = −3

2
ε0T0

(−2V ′′

V0

)1/2

= 0.2421 + 0.4082δ + O
(
δ2
)
. (44)



It follows from (41c) and (41b) respectively that

H̃
/
F = −0.2741 + 0.0018δ + O

(
δ2
)
, ε1 = −0.0105 − 0.0134δ + O

(
δ2
)
. (45)

Our final conditions are given by equation (42). Using (23), (29), (32) we find that

E− ∼ 0.7439
(

1
2 + a

)
δ3/8 exp

{
1

ε

∫ x2

x0

g−0ds + 1.3195

∫ x2

l0

g2
−0 − 1

g−0
ds

}
∈ <. (46)

Equating magnitudes and argument in (42) yields

1
2 + a ∼ 3.1091H̃δ1/8 exp

{
−<

[
1

ε

∫ 0

x2

g−1(s)ds +
T6

6ε0T0

∫ 0

x2

g−1(s)
2 − 1

g−1(s)
ds

]

−1

ε

∫ x2

x0

g−0ds − 1.3195s

}
,

4π
/
3 = π

/
24 + =

[
1

ε

∫ 0

x2

g−1(s)ds +
T6

6ε0T0

∫ 0

x2

g−1(s)
2 − 1

g−1(s)
ds

]
modulus 2π. (47)

Equation (47b) will determine the discrete values of δ at which the solution has the correct phase
to satisfy the boundary conditions. As δ → 0, the right hand side will increase unboundedly
and there are will be multiple values of δ for which this expression is satisfied.

4. Conclusions

In the preceding sections we have demonstrated the manner in which a consistent solution of
the governing equations for the simultaneous onset of exponentially linked Taylor and Dean
instabilities is constructed. Our consideration of the leading order velocity has determined the
leading coefficients in the asymptotic expansions of ε and the Taylor number T . In order to
precisely determine the values of δ for which the phase matching condition (47) is satisfied
we would require ε to be determined to O

(
δ3
)
. The process is extremely involved but once

completed would produce an implicit expression to determine δ. Having demonstrated the
approach necessary we do not pursue these higher orders.

The values of δ which satisfy (47) will be discrete – sparse for moderate values of δ but
becoming more closely gathered as zero is approached. Therefore we predict that neutral curve
crossing is theoretically possible but will be almost impossible to observe numerically. The
values of β at which numerical experimentation is performed will need to be precise – any
deviation from the discrete theoretical values required will result in exponential divergence from
the required solution phase.

In making comparisons with previous studies, and in particular that of [4], it must be
remembered that our study concentrates upon high wavenumbers. However, as Kachoyan
suggests, the asymptotic behaviours observed here might be used as a guide to interpret the
behaviour of neutral curves for other values of β.
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