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Centripetal instabilities in two flows involving time-dependent Rayleigh layers on a rotating circular
cylinder are examined. In one case we consider the stability of the flow induced in an infinite
expanse of quiescent fluid when the cylinder is impulsively given a constant angular velocity; in the
other problem the angular velocity increases as the square root of time so that the undisturbed flow
has a constant wall shear. For both situations linear neutral stability curves for vortex motions are
calculated by quasi-steady~or frozen-time!methods, with these results justified, where possible, by
Wentzel–Kramers–Brillouin techniques. The topology of the neutral curve for the ramped angular
velocity configuration allows a rigorous description of small wavelength, weakly and fully nonlinear
vortex structures to be obtained. Our results are compared with the equivalent cases that arise in the
study of unsteady thermal Rayleigh layers induced by the sudden heating of a horizontal flat
plate. © 2002 American Institute of Physics.@DOI: 10.1063/1.1495869#

I. INTRODUCTION

The stability of time-dependent Couette flow has been
investigated extensively using both experimental1–3 and
theoretical4–8 techniques. For the particular case of impul-
sively started Couette flow good agreement has been ob-
tained between experimental results1 and theoretical
predictions5 for the initiation of Taylor vortices in the flow.
Other time-dependent aspects of the now classical Taylor
vortex flow have also been investigated2–4 providing a wide
range of information on the evolution of vortex motion in
centripetally unstable time-varying flows. Despite the impor-
tance of these recent experimental developments, the prob-
lems investigated here concern more fundamental properties
of the linear theory neutral stability curves for two flows
related to the time-dependent Taylor vortex flow. Our pri-
mary aim is to delineate the regions of parameter space
where the commonly used quasi-steady approximation can
be mathematically justified, and from there construct math-
ematically valid solutions for the nonlinear development of
the time-dependent flow. In one case we consider the stabil-
ity of the flow generated in an infinite expanse of quiescent
fluid when a circular cylinder is impulsively given a constant
angular velocity and, in the other, the flow when the angular
velocity is proportional to the square root of time. This latter
situation causes the undisturbed flow to have a constant wall
shear stress, and will be referred to as the impulsive shear
case, while the previous configuration is the impulsively

started flow. Both of the above flows are unstable to small
amplitude toroidal vortices, periodic along the length of the
cylinder.

Given the well-known analogy between thermal and
centripetal instability in steady flows, the unsteady boundary
layers, or Rayleigh layers, described above might also be
expected to have similar stability properties to thermal Ray-
leigh layers generated by impulsively heating a horizontal
flat plate in a quiescent fluid. Unlike the impulsive Couette
problem, the time-dependent thermal problems have been
subject to continuing experimental9 and theoretical9,10 inves-
tigation, possibly due to persistent differences between ob-
servations and predictions. A secondary aim of the work pre-
sented is to demonstrate the differences in the structure of the
linear stability properties of these classes of unsteady flows.

As the flows under consideration are centripetally un-
stable some Taylor number~or Görtler number!might be
expected as the parameter governing the stability of the mo-
tion. However, the problems as sketched above have only the
cylinder radius as the imposed geometrical length scale and
hence a Taylor number cannot be defined from the data of the
problem. For both of the flows considered it is possible to
anticipate a quasi-steady, or ‘‘frozen-time,’’ stability analysis
and use a ‘‘Rayleigh layer thickness’’ as the length scale for
the resulting vortex motion. This would lead to linear stabil-
ity equations analogous to those of the standard steady
Taylor–Görtler vortex problem.8 For the approach adopted
here, only the given physical data in the problem are used to
make the governing equations nondimensional, so that the
independent variabletimebecomes the fundamental quantity
characterizing the stability of the flow. Neitzel7 also reported
the results of his numerical solutions in terms of time to
instability.

The use of time as the variable determining instability
uncovers a fundamental difference in the stability character-
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istics of the impulsively started flow and the impulsive shear
case. For example, as time increases in the impulsively
started flow the width of the band of unstable axial wave
numbers shrinks to zero, while, as time becomes large, the
constant shear case becomes unstable to an increasingly wide
band of wave numbers. Similar striking differences in linear
stability characteristics have been reported in the impulsively
heated plate problems.10

As the two impulsively started flows have quite distinc-
tive linear stability properties it is to be expected that there
will be significant differences in the nature of the resulting
nonlinear vortex motion. In particular, our main result is the
determination of the structure of strongly nonlinear vortices
in the impulsive shear case, finding an exact solution to the
governing equations at large times. Unfortunately, for the
impulsively started flow, we cannot justify, on mathematical
or practical grounds, the standard analytical methods for ob-
taining weakly nonlinear solutions and only linear stability
results are presented. Despite the limitations of our results
for the impulsively started flow, this problem is used to in-
troduce the scaling and WKB solution methods used for both
the unsteady flows studied here.

We begin by considering axisymmetric motion in an in-
compressible fluid, of kinematic viscosityn, generated by the
rotation of a long circular cylinder of radiusR. Initially the
cylinder and surrounding fluid are at rest and at timet* 50
the cylinder impulsively commences rotation about its longi-
tudinal axis with angular velocityV. Thus the physical data
defining the problem aren, V, R, and r, the fluid density.
From these constants a Reynolds number can be defined as
Re5VR2/n and the fluid density can be removed from the
problem by suitable scaling of the pressure.

Relative to the usual (r * ,u* ,z* ) cylindrical polar co-
ordinate system, scaled co-ordinatesh andz and timet de-
fined by

r * 5R1hd, z* 5zd, t* 5~d2/n!t, ~1!

are introduced. Hered is some distance, to be defined in
terms of the existing problem constantsn, V, andR only, and
to be chosen so that the usual limit of large Re leaves cen-
tripetal pressure terms in the radial momentum equation and,
simultaneously, allows the neglect of the termhd compared
to R. ~This last geometrical simplification is often called the
narrow gap approximation in the standard Taylor vortex
problem.11! The velocity components of the fluid in ther * ,
u* , andz* directions together with the fluid pressurep* are
written as

u* 5S n

d
u,VRv,

n

d
wD , p* 5

rn2

d2 p, ~2!

and with this scaling the required form of the governing
equations can be obtained via the choice

d35n2/V2R, ~3!

so thatd5Re22/3R. The simplification of the geometry oc-
curs as long ash Re22/3!1 or, as the extent of the develop-
ing Rayleigh layer is proportional tot1/2, for times t
!Re4/3. Assuming this holds, the governing Navier–Stokes
and continuity equations for axisymmetric flow reduce to

]u

]t
1u

]u

]h
1w

]u

]z
2v252

]p

]h
1¹2u, ~4a!

]v
]t

1u
]v
]h

1w
]v
]z

5¹2v, ~4b!

]w

]t
1u

]w

]h
1w

]w

]z
52

]p

]z
1¹2w, ~4c!

]u

]h
1

]w

]z
50, ~4d!

where ¹2[]2/]h21]2/]z2. These equations need to be
supplemented by no-slip boundary conditionsu5w50, v
51 on h50 ~for t>0!, far-field decayu, v, w→0 as h
→` and no motionu5v5w[0 prior to the initiation of the
flow at time t50.

II. THE LINEAR STABILITY OF IMPULSIVELY
STARTED ROTATION

Equations~4! together with the associated boundary and
initial conditions have the familiar Rayleigh layer solution
for the basic flow

u5w50, v5V̄~h,t !5
2

Ap
E

h/A4t

`

e2s2
ds,

p5 p̄5E
h

`

V̄2~j,t ! dj. ~5!

To examine the linear stability of this flow we setu
5(0,V̄,0)1d(u,v,w) andp→ p̄1pd, with d!1, and linear-
ize the equations to obtain

]u

]t
22V̄v52

]p

]h
1¹2u, ~6a!

]v
]t

1u
]V̄

]h
5¹2v, ~6b!

]w

]t
52

]p

]z
1¹2w, ~6c!

]u

]h
1

]w

]z
50. ~6d!

The standard quasi-steady approach is toa priori assume that
disturbance growth rates are much larger than the time rate
of change of the basic flow. Then, under this assumption, the
equations governing the quasi-steady neutrally stable modes
are

S ]2

]h2 2a2D 2

u22a2V̄v50,

S ]2

]h2 2a2D v2
]V̄

]h
u50, ~7!

where the disturbance has been taken to be periodic in the
axial direction with wavelength 2p/a.

The above equations contain two apparently contradic-
tory ingredients: First that the growth rate of the distur-
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bances is large~the quasi-steady ansatz!and second that the
growth rate of the disturbances is zero~the marginal stability
condition!.12 It is one of the aims of this paper to show that
these conflicting conditionscan lead to results which have a
rigorous mathematical justification. When quasi-steady
theory is inapplicable, energy-stability theory provides an al-
ternative approach and this technique has been employed in a
range of other papers13–15 concerned with both centrifugal
and thermal instabilities.

Unfortunately, the WKB techniques employed to justify
the use of~7! are unable to validate the quasi-steady neutral
curve at the critical conditions and hence large differences
between theory and experiments determining the onset of
instability are to be expected for the problems considered
here. On the other hand, when quasi-steady theory can be
rationalised, it does capture many other features of the sta-
bility problem and it is these aspects that we concentrate
upon.

Equations~7! need to be solved subject to the no-slip
and far-field conditionsu5]u/]h5v50 at h50 and ash
→`. The timet appears in these equations only as a param-
eter and the quasi-steady neutral curve,t versusa, obtained
by a numerical solution of~7! is given in Fig. 1. The neutral
curve for this centrifugal instability does not have the usual
shape associated with Taylor or Go¨rtler vortex problems16

and instead clearly shows that the basic flow is always lin-
early stable to disturbances with~dimensional!wavelengths
smaller than approximately 4p Re22/3R. Such a conclusion
is not easily extracted from the quasi-steady neutral curve
given in Otto,8 where the characteristic length scale for the
Taylor number is taken as the ‘‘Rayleigh layer thickness,’’
Ant.

Also shown in Fig. 1 is the result of a WKB analysis,
based on the limit oft→`, of the full time-dependent prob-
lem ~6!. This is the only section of the ‘‘neutral curve’’ where
the quasi-steady assumption is valid, as on all other parts the
disturbances and the basic flow are changing on the same
time scale. In these regions the evolution of disturbances to
the basic state is governed by parabolic equations and nu-
merical methods are needed to locate the true neutral curve.5

However, it can be shown10 that for t larger thanO(a24/5)

and above the lower part of this ‘‘neutral curve,’’ the quasi-
steady assumption does hold and the modal structure of the
disturbances can be determined asa→0.

Along the upper branch of the neutral curve the vortex
activity is concentrated in a relatively thin layer on the sur-
face of the cylinder. This velocity field is analogous to that
described by Hall16 for large wave number vortices in the
steady Taylor vortex problem, and so similar balances are
sought in the governing equations. RequiringV̄u0v to bal-
ancea2u in the radial momentum equation and]V̄/]hu0u
;a2v in the azimuthal equation gives the asymptotet
;O(a28) as a→0 for the neutral curve. More detailed
analysis shows that the region of vortex activity isO(a22)
thick, compared to the Rayleigh layer depth ofO(a24), as
a→0, and so the region of vortex activity is small compared
to the Rayleigh layer thickness. Thus, WKB solutions to the
full time-dependent equations~6! are sought in the form

~u,v,w,p!5~ û~t,Y!cosaz,v̂~t,Y!

3cosaz,ŵ~t,Y!sinaz,p̂~t,Y!cosaz!,

with

~ û,v̂,ŵ,p̂!5~U01a2U21¯ ,a2V01a4V21¯ ,aW0

1a3W21¯ ,a2P01a4P21¯ !

3exp@a26~g0~t!1a2g2~t!1¯ !#, ~8!

wheret5a8t andY5a2h and where the unknown functions
Ui ,Vi ,... depend ont andY. The leading order approxima-
tions to Eqs.~6! are then

~11g08!U052V0 ,

~11g08!V05U0 /Apt, ~9!

and hence (11g08)
252/Apt. To leading order, the distur-

bances are neutrally stable wheng0850 and hence we obtain
the leading order asymptotet;4a28/p for the upper branch
of the neutral curve.

The next order approximations from Eq.~6! determine
the structure of the velocity field and the correction to the
growth rate. The governing equation becomes

]2U0

]Y2 2
1

~31g08! S 11g08

Apt
Y12g28D U050, ~10!

subject toU05]U0 /]Y50 atY50 andU0→0 asY→`. A
satisfactory solution can only be obtained by dropping the
derivative condition onU0 , and in this case,U0 becomes a
multiple of the Airy function Ai and the growth rate correc-
tion is given by

g285222/3~pt!21/2~21&~pt!21/4!1/3z0 . ~11!

Herez0'22.3381¯ is the first zero of Ai~z!. A wall layer
of thicknessO(a21) is needed in order to re-impose the
derivative condition onU0 , but this layer can be shown to be
passive and to have no effect on the growth rates at this
order.

FIG. 1. Linear neutral stability curve for the impulsively started rotation

problem, obtained by solving system~7! with base flowV̄ given by ~5!.
Shown dashed is the two-term small wave number asymptote~12!.
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A two-term approximation to the neutral curve can
be obtained by requiring that the growth rate vanish, i.e.,
requiring g081a2g2850. This condition leads to the result
t54@1161/3z0a21¯#/p, or, in terms oft

tn5
4a28

p
@1161/3z0a21¯#, ~12!

which is the asymptote plotted on Fig. 1. It is possible to find
WKB solutions for the essentially inviscid, rapidly growing
vortices in the parameter rangeO(a24/5),t,tn asa→0, but
as the actual initiation of the vortex motion is governed by
the full parabolic system~6! these modal calculations would
have little practical relevance. The main result of the calcu-
lations presented so far is the unusual nature of the quasi-
steady neutral curve ast→` and its justification by a ratio-
nal, asymptotic WKB approach. A different form for the
linear stability neutral curve is obtained in the impulsive
shear case, which is given in the next section.

III. THE IMPULSIVE SHEAR PROBLEM

To contrast with the situation of the impulsively started
cylinder, we now examine the flow generated when the speed
of the surface of the cylinder isk(t* )1/2 where t* is the
dimensional time andk is a givenO(1) constant. In this case
the initiation of the flow is less abrupt than in the impulsively
started flow, and the form of the time dependence of the
angular velocity leads to a basic undisturbed flow with a
constant wall shear stress. Before proceeding further, the
nondimensionalization employed in Eq.~2! above needs to
be modified as there is no longer an explicitconstantangular
velocity scale imposed on the flow. Noting thatk/An has the
same units as angular velocity, the form for the azimuthal
velocity v* is now taken to bev* 5(kd/An)v @cf. ~2!# so
that the value ofd is now

d5R~n3/R4k2!1/55R Re22/5. ~13!

The resulting system of governing equations is precisely~4!
again, but the no-slip conditions to be imposed onh50 are
now u5w50 andv5t1/2. As shown below in~14!, the vis-
cous layer on the cylinder, in the undisturbed flow, has a
thickness proportional tot1/2, so that the requirement for the
‘‘small-gap’’ approximation to be valid is nowt!Re4/5.
However, the results of the strongly nonlinear calculations in
Sec. III B indicate that the thickness of the layer on the cyl-
inder grows much faster thant1/2, and hence a more stringent
condition on t is needed for the neglect of the curvature
terms to remain valid. The details are presented at the end of
Sec. III B.

The basic flow solution is given by

v5V̄~h,t !5t1/2f ~h/At !,

f ~f!5e2f2/42fE
f/2

`

e2s2
ds, ~14!

and the natural starting point for a stability analysis of this
flow is the quasi-steady linearized equations~7!. The corre-
sponding neutral stability curve, in thea-t plane, obtained
via a numerical solution of~7! is shown in Fig. 2. Here we

see that the current basic flow is linearly unstable to all wave
numbers and that the neutral curve has an asymptote witht
→` asa→`. These properties are in marked contrast to the
neutral curve obtained in the impulsively started flow~cf.
Fig. 1!. As previously, the large time asymptote of the neutral
curve can be derived analytically via WKB methods, but
now the appropriate rescaling of time is given byt5a8t as
a→`. With this form for t, and basic flowV̄ given by~14!,
simple balances within~6! show that the vortex activity is
now confined to the region whereh5a2/3Y. The WKB so-
lution has the form

~u,v,w,p!5~ û~t,Y!cosaz,v̂~t,Y!

3cosaz,ŵ~t,Y!sinaz,p̂~t,Y!cosaz!,

with

~ û,v̂,ŵ,p̂!5~U01a2 10/3U11¯ ,a22V01a2 16/3V1

1¯ ,a2 5/3W01a25W11¯ ,a2 2/3P0

1a24P11¯ !exp@a10~g0~t!

1a2 20/3g1~t!1¯ !#, ~15!

where each unknown is a function oft andY. The substitu-
tion of ~15! in ~6a! and ~6b! shows thatU0 andV0 are gov-
erned by

~11g08!U052t1/2V0 ,

~11g08!V05
1

2
ApU0 , ~16!

and the consistency of these two equations requires
(11g08)

25Apt.
The details of the vortex structure are found by obtaining

the equations couplingU1 and V1 . The compatibility re-
quirement for these two nonhomogeneous equations reduces
to the satisfaction of

]2U0

]Y2 2
~p12!

2~31g08!~11g08!
YU02

2g18

31g08
U050, ~17!

FIG. 2. Linear neutral stability curve for the impulsive shear problem, ob-

tained by solving system~7! with base flowV̄ given by~14!. Shown dashed
is the two-term large wave number asymptote~19!.
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subject to the boundary conditionsU05]U0 /]Y50 at Y
50 andU0→0 asY→`. The solution forU0 follows the
path outlined in Sec. II for dealing with~10!: U0 is a mul-
tiple of Ai; g18 is given by

g18522 5/3z0~p12!2/3~pt!2 1/12@112~pt!2 1/4#1/3,
~18!

wherez0 is a zero of the Airy function Ai; and the details of
a passive wall-layer have been ignored.

The large-aasymptote for the neutral stability curve

t5a8p21261/3~p12!2/3z0a14/3/p1¯ , ~19!

is superimposed on Fig. 2 which shows that the analytical
and numerical solutions are in very good agreement in this
limit. The overall form of this neutral curve indicates that the
critical conditions for the initiation of vortex motion are
likely to be neara50.25 andt55.4. These conditions are
well away from the region where current analytical tech-
niques for Eqs.~6! can be justified mathematically and so
numerical methods would be needed to locate the com-
mencement of vortex motion and its subsequent nonlinear
development with time. However, for monochromatic distur-
bances with large wave numbers, existing analytical methods
can be applied to determine the structure and time-
development of the vortex motion. Further, as the flow does
not evolve through a region governed by parabolic equations,
as was the case in Sec. II, these solutions can be justified
mathematically. Clearly, any large wave number solution has
little relevance to the critical conditions for instability, but
these largea solutions will provide useful checks for any
completely numerical attack on the problem.

A. Weakly nonlinear solutions

The above analysis of the right-hand portion of the neu-
tral stability curve can be extended to study nonlinear vortex
motion. In order to proceed to fully nonlinear vortices how-
ever, it is first necessary to investigate the properties of the
weakly nonlinear modes whose structure follows on from the
above linear theory results. Thus the disturbance is concen-
trated in ah5O(a2/3) region attached to the surface of the
cylinder so that fora@1 the relevant time and length scales
are

t5a8t01a14/3t̂ , ~t05p21! h5a2/3Y, ~20!

where t̂ is the appropriate temporal scale over which the
weakly nonlinear vortices will develop. With these choices
the basic flow expands as

V̄5a4t0
1/21S t̂

2At0

2
1

2
ApYD a2/3

1
~2t0Y22 t̂2!

8t0
3/2 a2 8/31¯ , ~21a!

]V̄

]h
52

1

2
Ap1

Y

2At0

a2 10/31¯ . ~21b!

The flow field needs to be decomposed as

~u,v,w,p!5~0,V̄,0,p̄!1~U,V,W,P!, ~22!

where the quantities with an overbar denote the basic flow
values whileU, V, W, and P are the components of the
disturbance. The governing system~4! may be rewritten as

]U

]t
22V̄V1

]P

]h
2

]2U

]h2 2
]2U

]z2 52U
]U

]h
2W

]U

]z
1V2,

~23a!

]V

]t
1

]V̄

]h
U2

]2V

]h2 2
]2V

]z2 52U
]V

]h
2W

]V

]z
, ~23b!

]W

]t
1

]P

]z
2

]2W

]h2 2
]2W

]z2 52U
]W

]h
2W

]W

]z
, ~23c!

]U

]h
1

]W

]z
50, ~23d!

so that terms on the left-hand sides of these balances are
linear in the disturbance quantities while those on the right
are nonlinear. Solutions are sought in the form

U5a2 2/3~U101a2 10/3U111¯ !cosaz

1a24~U201¯ !cos 2az1¯ , ~24a!

V5a2 8/3VM1¯1a2 8/3~V101a2 10/3V111¯ !cosaz

1a26~V201¯ !cos 2az1¯ , ~24b!

W5a2 7/3~W101a2 10/3W111¯ !sinaz

1a2 17/3~W201¯ !sin 2az1¯ , ~24c!

P5a2PM1¯1a2 4/3~P101a2 10/3P111¯ !cosaz

1a2 14/3~P201¯ !cos 2az1¯ , ~24d!

where the unknowns are functions ofY and t̂ . The substitu-
tion of ~24! into ~23! gives the leading-order fundamental
equations

22At0V101U1050, 2
1

2
ApU101V1050,

P105W10, W1052
]U10

]Y
. ~25!

The first two of these are consistent only ift05p21, agree-
ing with the underlying linear theory, while the details of the
spatial structure of the vortex motion requires consideration
of the next order terms. The consistency of the equations

22At0V111U115Ap~ t̂2Y!V101
]2U10

]Y2 2
]P10

]Y
,

~26a!

2
1

2
ApU111V1152

Y

2At0

U101
]2V10

]Y2 2U10

]VM

]Y
,

~26b!

gives the condition governingU10 as
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3
]2U10

]Y2 2
1

2
@~p12!Y2p t̂ #U102

2

Ap
U10

]VM

]Y
50.

~27!

The equation for the mean flow term,VM , is obtained from
the azimuthal momentum equation~23b! and is

]VM

]Y
5

1

4
ApU10

2 . ~28!

The coupled system needs to be solved subject to the re-
quirements thatU105VM50 at the wallY50 and that the
vortex quantityU10→0 as Y→`. Some typical numerical
solutions of~27!, ~28! for various values of the parametert̂
are shown in Fig. 3. Analogous results have also been ob-
tained for weakly nonlinear vortex motion on an oscillating
cylinder.19 These numerical results show that the vortex is
confined to a zone, next to the cylinder surfaceY50, which
grows with t̂ . In fact an asymptotic solution of~27! and~28!

for large t̂ can be found. To do this we rescaleY5 t̂ ŷ and
make the ansatz that in the main core regionU105 t̂1/2Û10

andVM5 t̂2V̂M . At leading order equation~27! becomes

Û10
2 5p2~p12!ŷ, ~29!

which vanishes atŷ5p/(p12). Of course this solution
does not fulfill the wall-condition thatU1050 on Y50 and
this requirement suggests that a thin layer must develop
there. Within this zoneY5 t̂21/2Ỹ andU105 t̂1/2Ũ10 where

3
]2Ũ10

]Ỹ2
1

1

2
pŨ102

1

2
Ũ10

3 50, ~30!

this equation has the solutionŨ105Ap tanh(ỸAp/12) which
satisfiesŨ1050 at Ỹ50 and matches with the core solution
~29! as Ỹ→`.

The form of ~29! as ŷ→p/(p12) indicates that the
vortex amplitude develops a square-root form around this
point. In order to smooth this behavior it is necessary to
introduce a scaled co-ordinateȳ5O(1) so Y5p t̂ /(p12)
1 ȳ. The system~27!, ~28! then reduces to

3
d2U10

dȳ2 2
1

2
~p12!ȳU102

1

2
U10

3 50, ~31!

an equation which is effectively the second Painleve´ tran-
scendent. Hastings and McLeod17 have proved rigorously
that this equation admits a solution for whichU10 grows in a
square-root manner asȳ→2` @and thereby matching with
the core solution~29!# while decaying exponentially asȳ
→`. The result is that aboveY5p t̂ /(p12) the vortex mo-
tion is completely extinguished and all that remains is a re-
sidual azimuthal mean-flow adjustment—this remnant is
brought to zero through a diffusion layer of depth
O(a7/3t̂1/2).

The crucial result of this large time analysis is that the
correction to the azimuthal mean flow attains the size
O(a2 8/3t̂2) in a region of thicknessO(a2/3t̂ ). From ~21a!
the undisturbed flow has anO(a4) azimuthal velocity, which
is comparable to the mean flow correction whent̂
;O(a10/3). At these large times the thickness of both the
vortex activity region and the diffusion layer has expanded to
O(a4), which is the same as the undisturbed Rayleigh layer
thickness, indicating that the vortex motion is so intense that
it leads to a zeroth-order change to the underlying mean flow.

B. Strongly nonlinear vortex motion

The details of a strongly nonlinear flow follow from the
asymptotic solutions outlined above. The bulk of the activity
is to be found in the region whereh5O(a4) and appropriate
temporal and spatial scales are defined by

t5a8t, h5a4f. ~32!

Solutions of the full nonlinear equations~4! are sought in the
form

u5a~U101a24U111¯ !cosaz

1a24~U201¯ !cos 2az1¯ , ~33a!

v5a4v% 01v% 11¯1a21~V101a24V111¯ !cosaz

1a26~V201¯ !cos 2az1¯ , ~33b!

w5a24~W101a24W111¯ !sinaz

1a29~W201¯ !sin 2az1¯ , ~33c!

p5a12p% 01a8p% 11¯1a23~P101a24P111¯ !cosaz

1a28~P201¯ !cos 2az1¯ , ~33d!

where all the unknowns are functions off and t. To the
orders that are required here the higher harmonics are unim-
portant and, as is characteristic of strongly nonlinear flows of
this type, a consistency condition on the leading-order vortex
equations will determine the mean flow. The substitution of
~33! in ~4! leads to

22v% 0V1052U10, U10

]v% 0

]f
52V10,

P105W10, W1052
]U10

]f
, ~34!

FIG. 3. Structure of the vortex velocity componentU10(Y) determined from

Eqs.~27! and ~28! for various scaled times:t̂55, 10, 15, 20, 25, and 30.
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so that for consistency we require

2v% 0

]v% 0

]f
521 or v% 05Ab~t!2f, ~35!

for some functionb(t). The leading-order mean flow com-
ponents of the azimuthal momentum equation~4b!, together
with the results~34!, give the equation

]2v% 0

]f2 2
]v% 0

]t
52

1

2

]

]f F]v% 0

]f
U10

2 G , ~36!

which determines the fundamental component,U10, of the
vortex. If the outer edge of the vortex is located atf
5f1(t), one integration of~36! and the requirement that
U10→0 asf→f1 combine to show

U10
2 5A b2f

b2f1
@224b8~t!~b2f1!#

14b8~t!~b~t!2f!22. ~37!

This result demonstrates thatU10→0 algebraically asf
→f1 and to explain the form of the disturbance aroundf
5f1 it is necessary to examine the flow characteristics in a
thin region centred there. The manipulations required were
first performed by Hall and Lakin18 for nonlinear Go¨rtler
vortices and since then numerous papers have described
similar calculations in a variety of related contexts.19–21 For
the sake of brevity we do not repeat the details here but
rather summarize the situation by noting that in the vicinity
of f5f1 the square-root behavior ofU10 is transformed to
an exponential decay forf.f1 @and this occurs through the
solution of a scaled form of the second Painleve´ transcen-
dent, cf. ~31!#. The result is that forf.f1 the vortex is
completely destroyed and all that remains is an azimuthal
mean velocity field. From~36! this flow satisfies

]2v% 0

]f2 5
]v% 0

]t
, ~38!

and it is easy to demonstrate that both the mean flow,v% 0 ,
and its spatial derivative must be continuous acrossf
5f1 . The use of~35! shows that~38! must be solved inf
.f1(t) subject to decay asf→` and

v% 05Ab~t!2f1,

]v% 0

]f
52

1

2Ab~t!2f1

at f5f1 . ~39!

The overall flow structure is now almost complete but to
finish it is necessary to consider the form ofb(t). It has been
seen how nonlinear motions are located in the region 0<f
<f1(t) and in order that the mean flow in this zone match
with the velocity of the cylinder onf50 it is evident from
~35! that b(t)5t. With this choice however, the form of
~37! suggests that the vortex activity does not vanish atf
50 contrary to the required constraints. To resolve this a thin
layer atf50 is introduced in which the necessary decay can
take place. This layer turns out to have depthf5O(a25) @or
h5O(a21) from ~32!# and since this is comparable to the
dimensionless wavelength of the vortex, all the harmonics of

the vortex are of the same order of magnitude here. This
leads to a coupled set of infinitely many ordinary differential
equations. Similar systems have been derived in other con-
texts; for example, in curved channel flows,20 for Taylor
vortices,21 for short wavelength Be´nard convection22 and for
curved Stokes layer flows.23 In the present problem this wall
layer is passive and we do not need to determine its struc-
ture.

The problem that remains to be solved to complete the
determination of this strongly nonlinear vortex motion is the
free boundary value system~38! subject to~39! with b(t)
5t and v% 0→0 asf→`. The weakly nonlinear theory de-
scribed previously shows that motion will commence when
the scaled timet5p21 @see~20!#, and following the meth-
ods used in Horsemanet al.,19 suitable initial conditions can
be derived to complete the specification of the system. The
resulting numerical solution forf1(t), obtained using the
NAG routine D03PHF, is shown in Fig. 4. The unexpected
result from this numerical solution is thatf1 grows almost
linearly with t, especially for larget. This result is perhaps
less surprising when it is recognized that~38! and~39! admit
the exact analytical solution

v% 05
1

&
et2f2 ~1/2! with f15t2 ~1/2! . ~40!

Thus, during a short period of time aftert5p21 the solution
relaxes from the given initial conditions to this simple expo-
nential profile and the extent of domain of vortex activity
grows liket. This result shows the effectiveness of the vor-
tex motion in transferring momentum away from the cylin-
der wall as the viscous diffusion mechanisms present in the
undisturbed flow only allow the boundary layer thickness to
grow like t1/2. The rapid growth of the strongly nonlinear
vortex region also imposes more severe restrictions on the
applicability of the ‘‘small gap’’ limit taken at the beginning
of this analysis. Due to the linear growth in time of the
boundary layer thickness, we now needt!Re2/5 so that the
approximation of the cylindrical polar form of the governing
equations by an essentially Cartesian form is valid.~It has
kindly been pointed out to us that as the limiting times for
our analysis are functions of the Reynolds number, an

FIG. 4. Solution of the free-boundary value problem~38! subject to~39! and
the requirementsb(t)5t andv% 0→0 asf→`. Shown is the position of the
outer extent of the vortex activity,f1(t) obtained via a numerical solution.

The large-t asymptotef1(t);t2
1
2 @see~40!# is shown dashed.

2954 Phys. Fluids, Vol. 14, No. 9, September 2002 MacKerrell, Blennerhassett, and Bassom

jahoff
Sticky Note
None set by jahoff

jahoff
Sticky Note
MigrationNone set by jahoff

jahoff
Sticky Note
Unmarked set by jahoff



alternative way to view these constraints is that our argu-
ments are valid only for Reynolds numbers exceeding certain
values which can be inferred from the critical times predicted
in Figs. 1 and 2. Of course, these in turn depend upon the
disturbance wave number.!

IV. CONCLUDING REMARKS

Under the global scaling used here the linear theory neu-
tral stability curves, Figs. 1 and 2, for the two impulsively
generated flows examined have striking differences. The
large-time behavior of the asymptotes for each neutral curve
are

a;t21/8 impulsive velocity change,

a;t1/8 impulsive wall shear change,

ast→`. These behaviors can also be compared to the prop-
erties of the linear theory neutral curves obtained for the
related unsteady thermal boundary layers.10 Using a similar
global scaling, the asymptotes of the neutral curves in the
thermal problems are

a;t21/8 impulsive temperature change,

a;1 impulsive heat flux change,

ast→`. For the step change in the velocity or the tempera-
ture, it is not surprising that the basic state becomes more
stable as time becomes large, as in both of these cases the
gradients of the basic velocity or temperature are decaying to
zero with increasing time. We know of no simple explanation
for the difference between the remaining two cases. These
linear theory differences lead to contrasts in the strongly
nonlinear solutions available: For the thermal problem,
strongly nonlinear vortex motion solutions can be found for
any wave number 0,a,1 as t→`, while in the current
rotating cylinder problem we needa→` as well. However
for both strongly nonlinear solutions, the extent of the vortex
region grows linearly with time.

Although not strictly valid, it is useful to compare the
‘‘neutral stability’’ predictions for the impulsively started
cylinder with existing experimental results.1 As the analysis
here has assumed the limit Re→`, direct comparison with
experiment is awkward, but selecting those experimental
runs with the largest value of Reynolds number, Re5275,
and transforming to the scaling of this paper, the results of
Kirchner and Chen1 indicate a time to instability oft'79;
with Re530.8 the corresponding time ist'222. These re-
sults are to be compared with the calculations summarized in
Fig. 1, which indicate the time to instability is given byt
'10. The difference between the assumption of an infinite
fluid for the analysis here and the finite fluid annulus in the
experiments is believed to be irrelevant as it was reported
that the observed instability occurred well before the Ray-
leigh layer on the rotating cylinder had expanded to fill the
gap between the cylinders. The results of Fig. 1 are in closer
agreement with the related numerical calculations,5 based on
the numerical integration in time of the system~6!, where, in
our notation, a time to instability oft'34 is reported for
200<Re<400. This is to be compared with the calculations

of Liu and Chen6 for the full nonlinear equations~4!, where
times to instability ranging fromt'90 to t'126 are reported
for 200<Re<600. As is well known, much of this variation
can be ascribed to the experimental method or analytical cri-
terion used to determine the critical conditions.

Finally, we point out that although the strongly nonlinear
solutions of Sec. III are based ona→`, the neutral curve in
Fig. 2 suggests that large wave number asymptotic structures
have set in for wave numbers as small as 4 or 5, and hence it
is not unreasonable to use these analytical solutions to vali-
date numerical codes designed to investigate vortex motion
in unsteady flows.
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jahoff
Sticky Note
None set by jahoff

jahoff
Sticky Note
MigrationNone set by jahoff

jahoff
Sticky Note
Unmarked set by jahoff



vortices in curved channel flow,’’ Proc. R. Soc. London, Ser. A439, 317
~1992!.

21J. P. Denier, ‘‘The structure of fully nonlinear Taylor vortices,’’ IMA J.
Appl. Math. 49, 15 ~1992!.

22P. J. Blennerhassett and A. P. Bassom, ‘‘Nonlinear high-wavenumber Be´-
nard convection,’’ IMA J. Appl. Math.52, 51 ~1994!.

23N. J. Horseman, ‘‘Nonlinear instabilities in curved flows,’’ Ph.D. thesis,
University of Exeter, UK, 1991.

2956 Phys. Fluids, Vol. 14, No. 9, September 2002 MacKerrell, Blennerhassett, and Bassom

jahoff
Sticky Note
None set by jahoff

jahoff
Sticky Note
MigrationNone set by jahoff

jahoff
Sticky Note
Unmarked set by jahoff




