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Gortler vortices in the Rayleigh layer on an impulsively started cylinder
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Centripetal instabilities in two flows involving time-dependent Rayleigh layers on a rotating circular
cylinder are examined. In one case we consider the stability of the flow induced in an infinite
expanse of quiescent fluid when the cylinder is impulsively given a constant angular velocity; in the
other problem the angular velocity increases as the square root of time so that the undisturbed flow
has a constant wall shear. For both situations linear neutral stability curves for vortex motions are
calculated by quasi-steadyr frozen-time)methods, with these results justified, where possible, by
Wentzel-Kramers—Brillouin techniques. The topology of the neutral curve for the ramped angular
velocity configuration allows a rigorous description of small wavelength, weakly and fully nonlinear
vortex structures to be obtained. Our results are compared with the equivalent cases that arise in the
study of unsteady thermal Rayleigh layers induced by the sudden heating of a horizontal flat
plate. © 2002 American Institute of Physic§DOI: 10.1063/1.1495869

I. INTRODUCTION started flow. Both of the above flows are unstable to small
amplitude toroidal vortices, periodic along the length of the
The stability of time-dependent Couette flow has beercylinder.
investigated extensively using both experimentaland Given the well-known analogy between thermal and
theoretical=2 techniques. For the particular case of impul- centripetal instability in steady flows, the unsteady boundary
sively started Couette flow good agreement has been otiayers, or Rayleigh layers, described above might also be
tained between experimental restitsand theoretical €xpected to have similar stability properties to thermal Ray-
predictiong for the initiation of Taylor vortices in the flow. |€igh layers generated by impulsively heating a horizontal
Other time-dependent aspects of the now classical Taylofllat plate in a quiescent fluid. Unlike the impulsive Couette
vortex flow have also been investigatetiproviding a wide prot_)lem, the t_'m?'depe“d‘?”t thermal problgms have been
. . \ .. subject to continuing experimentand theoreticdl*° inves-
range of information on the evolution of vortex motion in

trinetall table ti i Despite the | tigation, possibly due to persistent differences between ob-
centripetally unstable ime-varying fows. Lespite Ihe IMpor-gq 1\ ations and predictions. A secondary aim of the work pre-

tance of these recent experimental developments, the proRg e is to demonstrate the differences in the structure of the
lems investigated here concern more fundamental propertiggear stability properties of these classes of unsteady flows.
of the linear theory neutral stability curves for two flows As the flows under consideration are centripetally un-
related to the time—dependent Taylor vortex flow. Our pri-stab|e some Tay|or numbéor Gartler number)might be
mary aim is to delineate the regions of parameter spacexpected as the parameter governing the stability of the mo-
where the commonly used quasi-steady approximation cation. However, the problems as sketched above have only the
be mathematically justified, and from there construct matheylinder radius as the imposed geometrical length scale and
ematically valid solutions for the nonlinear development ofhence a Taylor number cannot be defined from the data of the
the time-dependent flow. In one case we consider the stabiproblem. For both of the flows considered it is possible to
ity of the flow generated in an infinite expanse of quiescen@nticipate a quasi-steady, or “frozen-time,” stability analysis
fluid when a circular cylinder is impulsively given a constant@nd use a “Rayleigh layer thickness” as the length scale for
angular velocity and, in the other, the flow when the anguIthe resulting vortex motion. This would lead to linear stabil-

velocity is proportional to the square root of time. This latter!ly €guations analogous to those of the standard steady

situation causes the undisturbed flow to have a constant w. 'ﬁaylor—GcrtIer vortex problen‘?. For the approach adopted

shear stress, and will be referred to as the impulsive she ere, only the given physical data in the problem are used to

. . i L i . make the governing equations nondimensional, so that the
case, while the previous configuration is the ImpUISIVewindependent variabléme becomes the fundamental quantity
characterizing the stability of the flow. NeitZellso reported
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istics of the impulsively started flow and the impulsive shear gy au u -, ap )
case. For example, as time increases in the impulsively E+u%+w5—y == %JFV u, (4a)
started flow the width of the band of unstable axial wave
numbers shrinks to zero, while, as time becomes large, the dv v dv 5

: : ida — tU—+w—=V*, (4b)
constant shear case becomes unstable to an increasingly wide st an 9z
band of wave numbers. Similar striking differences in linear

stability characteristics have been reported in the impulsively W dw  Jw  dp

— t+u—+w—=——+V2w, 4c

heated plate problent§. ot om oz 9z (4c)
As the two impulsively started flows have quite distinc- p p

tive linear stability properties it is to be expected that there u,ow (4d)

will be significant differences in the nature of the resulting dn  dz
nonlinear vortex motion. In particular, our main result is thewhere V2=42/97%+ 9%/9z2. These equations need to be
determination of the structure of strongly nonlinear vorticessypplemented by no-slip boundary conditions w=0, v

in the impulsive shear case, finding an exact solution to the-1 on =0 (for t=0), far-field decayu, v, w—0 as 5
governing equations at large times. Unfortunately, for the_, . and no motioru=v =w=0 prior to the initiation of the
impulsively started flow, we cannot justify, on mathematicalfigw at timet=0.

or practical grounds, the standard analytical methods for ob-

taining Weakly nonlinear solutions and Only linear Stabl'lty II. THE LINEAR STABILITY OF IMPULSIVELY

results are presented. Despite the limitations of our result§ TARTED ROTATION

for the impulsively started flow, this problem is used to in- ) ) .

troduce the scaling and WKB solution methods used for both _ Eduations(4) together with the associated boundary and

the unsteady flows studied here. initial conditions have the familiar Rayleigh layer solution
We begin by considering axisymmetric motion in an in- for the basic flow
compressible fluid, of kinematic viscosity generated by the o 2 (e ,
rotation of a long circular cylinder of radiug. Initially the u=w=0, v=V(gpt)=— _e®ds,
cylinder and surrounding fluid are at rest and at tithe-0 Ve Lo
the cylinder impulsively commences rotation about its longi- o
tudinal axis with angular velocity). Thus the physical data p=ﬁ=f V2(&,t) de. (5)
7

defining the problem are, ), R, andp, the fluid density.
From these constants a Reynolds number can be defined #s examine the linear stability of this flow we set
Re=QRY/v and the fluid density can be removed from the = (0v,0)+ &(u,v,w) andp—p+ p3d, with 5<1, and linear-

problem by suitable scaling of the pressure. ize the equations to obtain

Relative to the usualrf,8*,z*) cylindrical polar co-
ordinate system, scaled co-ordinatggndz and timet de- ‘9_“_2VU __ 0_p+V2u (6a)
fined by at an '

r*=R+qpd, z*=zd, t*=(d?w)t, (1) A N

) ) ) i . — +u—=V%, (6b)
are introduced. Herel is some distance, to be defined in ot an

terms of the existing problem constamtq), andR only, and

to be chosen so that the usual limit of large Re leaves cen- &_W: - a_p+V2W’ (6¢)
tripetal pressure terms in the radial momentum equation and, 9t 9z
simultaneously, allows the neglect of the tesd compared U ow
to R. (This last geometrical simplification is often called the —+ —=0. (6d)
narrow gap approximation in the standard Taylor vortex dn 0z
problem!!) The velocity components of the fluid in thé, The standard quasi-steady approach ia piori assume that
6*, andz* directions together with the fluid pressyp& are  disturbance growth rates are much larger than the time rate
written as of change of the basic flow. Then, under this assumption, the
) y p1? equations governing the quasi-steady neutrally stable modes
u* = aU,QRU,aW), p*I?p, (2) are , ,
and with this scaling the required form of the governing (F—az u—2a?Vu =0,
equations can be obtained via the choice n
3= 1,212 2
d3= 2/ Q%R, (3) (ﬁ_z_ z)v_ﬂu:()’ @)
so thatd=Re ?3R. The simplification of the geometry oc- I &

curs as long as) Re ?3<1 or, as the extent of the develop- where the disturbance has been taken to be periodic in the
ing Rayleigh layer is proportional ta'? for times t axial direction with wavelength 2/a.

<Ré"3, Assuming this holds, the governing Navier—Stokes ~ The above equations contain two apparently contradic-
and continuity equations for axisymmetric flow reduce to tory ingredients: First that the growth rate of the distur-
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Lovoow g and above the lower part of this “neutral curve,” the quasi-
L ] steady assumption does hold and the modal structure of the
10000 = disturbances can be determinedaas 0.
I ] Along the upper branch of the neutral curve the vortex
1000 = activity is concentrated in a relatively thin layer on the sur-

| face of the cylinder. This velocity field is analogous to that
- described by Half for large wave number vortices in the
] steady Taylor vortex problem, and so similar balances are
3 sought in the governing equations. Requirvifpv to bal-
ancea?u in the radial momentum equation am¥/d7|ou
~a% in the azimuthal equation gives the asymptdte

. ~0O(a 8 as a—0 for the neutral curve. More detailed
analysis shows that the region of vortex activityQga 2)
thick, compared to the Rayleigh layer depth@fa*), as
a—0, and so the region of vortex activity is small compared
to the Rayleigh layer thickness. Thus, WKB solutions to the
full time-dependent equatior(§) are sought in the form

100

10 F

FIG. 1. Linear neutral stability curve for the impulsively started rotation

problem, obtained by solving syste(#) with base flowV given by (5).
Shown dashed is the two-term small wave number asymgi@e

bances is largéthe quasi-steady ansatnd second that the (u,v,w,p)=(0(7,Y)cosazp(rY)

growth rate of the disturbances is zéthe marginal stability

condition)*? It is one of the aims of this paper to show that

these conflicting conditionsan lead to results which have a ity

rigorous mathematical justification. When quasi-steady

theory is inapplicable, energy-stability theory provides an al-  (0,0,W,p)=(Ug+a2U,+---,a?Vy+a*V,+---,aW,

ternative approach and this technique has been employed in a

range of other paper$*® concerned with both centrifugal

and thermal instabilities. xexga ®(go(7)+ag.(7)+---)], (8)
Unfortunately, the WKB techniques employed to justify

the use of(7) are unable to validate the quasi-steady neutrawherer=a’t andY = a?» and where the unknown functions

curve at the critical conditions and hence large differenced);.V;,... depend orr andY. The leading order approxima-

between theory and experiments determining the onset dfons to Eqs.(6) are then

instability are to be expected for the problems considered ,

here. On the other hand, when quasi-steady theory can be (1+90)Uo=2Vo,

rationalised, it does capture many other features of the sta-

X cosazW(7,Y)sinazp(r,Y)cosaz),

+adW,+---,a?Py+a’Py+- )

bility problem and it is these aspects that we concentrate (1+96)V0:U0/\/7T_T' ©)
upon. and hence (+g()?=2/\/=r. To leading order, the distur-

Equations(7) need to be solved subject to the no-slip
and far-field conditionsi=du/dnp=v=0 at =0 and asy
—o0, The timet appears in these equations only as a paramgs wo neutral curve.

eter and the quasi-steady neutral cutveersusa, obtained The next order approximations from Ef) determine

by a numerl_cal S°'“.“°” 0@) IS given In Fig. 1. The neutral the structure of the velocity field and the correction to the
curve for this centrifugal instability does not have the usual

: . 2 rowth rate. The governing equation becomes
shape associated with Taylor or @er vortex problem¥ g g geq

bances are neutrally stable whgf=0 and hence we obtain
the leading order asymptote-4a~ &/ for the upper branch

and instead clearly shows that the basic flow is always lin- 2, 1 1+g,
early stable to disturbances witdimensional)wavelengths Y20 - - Oy + 295 |Up=0, (10)
smaller than approximately#Re ?°R. Such a conclusion J (3+8o) | V7

is not easily extracted from the quasi-steady neutral curve

. . 3 o Subject toUy=0U,/dY=0 atY=0 andU,—0 asY—o. A
given in Otto] where the characteristic length scale for the” _ . ’ luti | : . h
Taylor number is taken as the “Rayleigh layer thickness »satisfactory solution can only be obtained by dropping the

ot ' derivative condition orJ,, and in this caselJ, becomes a
v multiple of the Airy function Ai and the growth rate correc-

Also shown in Fig. 1 is the result of a WKB analysis, ,. .~ .
tion is given by

based on the limit of—<, of the full time-dependent prob-
lem (6). This is the only septiqn of the “neutral curve” where 95=2"2%( 7)Y 2+ VA (mr) " VH3,. (12)

the quasi-steady assumption is valid, as on all other parts the

disturbances and the basic flow are changing on the samntdere (o~ —2.3381:--is the first zero of Aif). A wall layer
time scale. In these regions the evolution of disturbances tof thicknessO(a™ 1) is needed in order to re-impose the
the basic state is governed by parabolic equations and naerivative condition o, but this layer can be shown to be
merical methods are needed to locate the true neutral Curvepassive and to have no effect on the growth rates at this
However, it can be showfthat fort larger thanO(a~*%)  order.
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A two-term approximation to the neutral curve can  let+06 f T T T T
be obtained by requiring that the growth rate vanish, i.e.,

requiring gy+a%g,=0. This condition leads to the result ~ "*"*°F

r=4[1+6Y3¢,a’+- -]/, or, in terms oft 10000
a~® :
t,= — [1+6Y3¢ a2+ -], (12) b 1000

which is the asymptote plotted on Fig. 1. It is possible to find 1oE
WKB solutions for the essentially inviscid, rapidly growing
vortices in the parameter rang€a~ % <t<t, asa—0, but
as the actual initiation of the vortex motion is governed by 1L L L L L
the full parabolic systen®6) these modal calculations would 0 ! 2 3 4 5
have little practical relevance. The main result of the calcu-

lations presented so far is the unusual nature of the quasiG. 2. Linear neutral stability curve forLr1e impulsive shear problem, ob-
Steady neutral curve ds— and its justification by a ratio- _tained by solving systertv) with base flowV given by(l4). Shown dashed
nal, asymptotic WKB approach. A different form for the 'S i€ two-term large wave number asympte).

linear stability neutral curve is obtained in the impulsive

shear case, which is given in the next section.

10 -3

see that the current basic flow is linearly unstable to all wave
IIl. THE IMPULSIVE SHEAR PROBLEM numbers and that the neutral curve has an asymptotetwith
—o asa—. These properties are in marked contrast to the
To contrast with the situation of the impUlSively started neutral curve obtained in the impu|sive|y started f|@\f
cylinder, we now examine the flow generated when the speeflig. 1). As previously, the large time asymptote of the neutral
of the surface of the cylinder ik(t*)"> wheret* is the  curve can be derived analytically via WKB methods, but
dimensional time an#l is a glvenO(l) constant. In this case now the appropriate resca”ng of time is given Ibyas»r as
the initiation of the flow is less abrupt than in the impulsively . \vith this form fort, and basic flow given by(14),

started flow, and the form of the time dependence of thes,imple balances withiri6) show that the vortex activity is

angular velocity leads to a basic undisturbed flow with a4\ ~onfined to the region wherg=a?3Y. The WKB so-
constant wall shear stress. Before proceeding further, thg i 1 has the form

nondimensionalization employed in E() above needs to

be modified as there is no longer an expl@ihstantangular (u,v,w,p)=(0(7,Y)cosazp(rY)
velocity scale imposed on the flow. Noting thett/v has the

same units as angular velocity, the form for the azimuthal
velocity v* is now taken to ba* = (kd/\/v)v [cf. (2)] so with
that the value ofl is now

X cosaz W(,Y)sinaz p(r,Y)cosaz),

(a,a,W;ﬁ):(U0+ a_ 10/3LJ1+' c ,a_2V0+ a_ 16/3\/1

d=R(»*/R*?)Y>=RRe 25, (13)
. -5/ =5 v — 213
The resulting system of governing equations is precigély oA MWota tWots,an #P,
again, but the no-slip conditions to be imposedpn0 are +a 4P+ )exdadgy(7)
now u=w=0 andv=t"2 As shown below in14), the vis-
inder, i i +a” gy +)] (15)
cous layer on the cylinder, in the undisturbed flow, has a 1 '

thickness proportional t6?, so that the requirement for the
“ ” . . . H < /5 . X

small-gap” approximation to be valid is now<Re™. o (15)in (6a) and (6b) shows thall, andV, are gov-
However, the results of the strongly nonlinear calculations iNarned by

Sec. Il B indicate that the thickness of the layer on the cyl-

inder grows much faster thak?, and hence a more stringent ~ (1+g§)Ug=27"3,,

condition ont is needed for the neglect of the curvature

terms to remain valid. The details are presented at the end of , 1

Sec. Il B. (1+gO)V0:§ \/;Um (16)

The basic flow solution is given by

where each unknown is a function efandY. The substitu-

and the consistency of these two equations requires

0=V(n,t)=t"(n/\), (1+gp)2=mr

" The details of the vortex structure are found by obtaining
f(¢):e_¢2/4_¢f e ds, (14) the equations coupling,; and V;. The compatibility re-

$l2 quirement for these two nhonhomogeneous equations reduces

and the natural starting point for a stability analysis of thisto the satisfaction of

flow is the quasi-steady linearized equati@is The corre- 20 +2 oq!
sponding neutral stability curve, in tret plane, obtained 0 _ (7+2) _ O
via a numerical solution of7) is shown in Fig. 2. Here we aY?  2(3+gh)(1+gp) 0 3+g)

Uop=0, (17
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subject to the boundary condition$0=<9UO/(9Y=0 aty (u,u,w,p)z(O,V,OE)Jr(U,V,W,P), (22)

=0 andUy—0 asY—. The solution forU, follows the

path outlined in Sec. Il for dealing witfiL0): Uy is a mul-  where the quantities with an overbar denote the basic flow
tiple of Ai; g; is given by values whileU, V, W, and P are the components of the

gl=2- 5,3§0(7T+2)2/3(7”)_ 111 4 (7)1, disturbance. The governing systéd) may be rewritten as

18 o _— 9P U FU u U
, _ o . — —2WH———5———=-U——-W—+V?,
where(, is a zero of the Airy function Ai; and the details of Jt dn dn° Iz an Jz
a passive wall-layer have been ignored. (23a)
The large-aasymptote for the neutral stability curve — ) )
N oV NV 9V oV oV
t=abr - 6Y(7+2)23 @l -+ (19) E+5}U—a—ﬂz—?——uﬁ—w5, (23b)

is superimposed on Fig. 2 which shows that the analytical

and numerical solutions are in ver d i ﬁv 0P _PW W oW W
y good agreement in this _—  —— _ ———=—U—-W—, (23c)
limit. The overall form of this neutral curve indicates that the 9t~ dZ  dn°  Jz an gz
critical conditions for the initiation of vortex motion are
likely to be neara=0.25 andr=5.4. These conditions are QjL M_O (23d)

well away from the region where current analytical tech-97 92 o
niques for Eqs(6) can be justified mathematically and so so that terms on the left-hand sides of these balances are

numerical :ne;hod? WOUIC:. be nse.(t:ied tl()) Iocatet the IF:()rnl'inear in the disturbance quantities while those on the right
mencement of vortex-motion and s subsequent NONIN€a . 4 linear. Solutions are sought in the form

development with time. However, for monochromatic distur-
bances with large wave numbers, existing analytical methods U=a~ 23U ,+a %%+ -)cosaz
can be applied to determine the structure and time-
development of the vortex motion. Further, as the flow does
not evolve through a region governed by parabolic equations,
as was the case in Sec. ll, these solutions can be justified

+a 4(Uygt---)cos2az+ -, (24a)

V=a ®vy,+---+a ¥(Vgta v+ )cosaz

mathematically. Clearly, any large wave number solution has +a 8(Vyyt---)cos2az+ -, (24b)
little relevance to the critical conditions for instability, but
these largea solutions will provide useful checks for any W=a" "B(Wp+a” 3w, +---)sinaz
completely numerical attack on the problem. ta AWt -)sin2az + -, (24¢)
A. Weakly nonlinear solutions P=a’Py+---+a “(Pyt+a %p,+--)cosaz

The above analysis of the right-hand portion of the neu- +a M3 P,y+--)cos Az + -, (244d)

tral stability curve can be extended to study nonlinear vortex

motion. In order to proceed to fully nonlinear vortices how-ynere the unknowns are functions ¥fandi. The substitu-

ever, it is first necessary to investigate the properties of thgqy, of (24) into (23) gives the leading-order fundamental
weakly nonlinear modes whose structure follows on from theequations

above linear theory results. Thus the disturbance is concen-

trated in ap=0(a??) region attached to the surface of the 1
cylinder so that fom>1 the relevant time and length scales _2‘/7—0V10+ Uo=0, — 2 VU 10t V10=0,
are
U
t=aro+at®®, (ro=m"h) p=a, (20) P1o=Wio, Wio=——~. (25)

wheret is the appropriate temporal scale over which theT
weakly nonlinear vortices will develop. With these choices
the basic flow expands as

he first two of these are consistent onlyrif= 71, agree-

ing with the underlying linear theory, while the details of the
spatial structure of the vortex motion requires consideration
of the next order terms. The consistency of the equations

— t 1
V=a%r TP R — =Y a2/3
0 2\/7-—0 2 \r ~ (92U10 f7P10
— 27Vt U= \a(t—Y)Vyot+ T oy
279212
8o LPETIN , (21a) (262)
87,
1 Y V1o IV
N o1 Y — S\mU+ V= - Uit —g2 — VUi :
_:__\/;+ a- 10/3+... . (21b) 2 2\/7—0 Y Y
a2V o (26b)

The flow field needs to be decomposed as gives the condition governing , as
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U, 1 _ 1.
1 3 d)—/z —E(Tr-i-Z)yUlo—zUlO:O, (31)

an equation which is effectively the second Painlénam-
scendent. Hastings and McLédchave proved rigorously
that this equation admits a solution for whithg grows in a
square-root manner 35— — [and thereby matching with
the core solution(29)] while decaying exponentially ag

- — o0, The result is that abové= rt/(7+2) the vortex mo-
tion is completely extinguished and all that remains is a re-
sidual azimuthal mean-flow adjustment—this remnant is
v ’ brought to zero through a diffusion layer of depth
o(@"%13),

The crucial result of this large time analysis is that the
correction to the azimuthal mean flow attains the size
O(a” #%?) in a region of thicknes©(a?%). From (21a)
the undisturbed flow has aB(a*) azimuthal velocity, which

L I N T Y

o

FIG. 3. Structure of the vortex velocity componé&hiy(Y) determined from
Egs.(27) and (28) for various scaled time€:=5, 10, 15, 20, 25, and 30.

PUp, 1 . 2 Ny is comparable to the mean flow correction whén
3—yz ~pl(m+2)Y—mt]Uso- —\/—Ulo—aY =0. ~0(al®). At these large times the thickness of both the
o

27) vortex activity region and the diffusion layer has expanded to
O(a%), which is the same as the undisturbed Rayleigh layer
The equation for the mean flow teri,,, is obtained from thickness, indicating that the vortex motion is so intense that

the azimuthal momentum equati¢23b) and is it leads to a zeroth-order change to the underlying mean flow.
Ny 1 ; :
= Z\/; io- (28) B. Strongly nonlinear vortex motion

The details of a strongly nonlinear flow follow from the
The coupled system needs to be solved subject to the r@symptotic solutions outlined above. The bulk of the activity
quirements that);o=V,,=0 at the wallY=0 and that the is to be found in the region wherg=0(a*) and appropriate
vortex quantityU,;—0 asY—o. Some typical numerical temporal and spatial scales are defined by
solutions Of.(27)1 (28) for various values of the parameﬁar t=abr, p=a‘e. 32)
are shown in Fig. 3. Analogous results have also been ob-
tained for weakly nonlinear vortex motion on an oscillating Solutions of the full nonlinear equatiofé) are sought in the
cylinder!® These numerical results show that the vortex isform
confined to a zone, next to the cylinder surfate 0, which

grows witht. In fact an asymptotic solution ¢27) and (28)
for larget can be found. To do this we rescate=t § and +a YUyt -)cosaz+ -, (33a)
make the ansatz that in the main core regiog=120, p=atT+ Oyt +a {(Vigta Vit )cosaz
andV,,=t?V,,. At leading order equatiof27) becomes

u=a(Up+a *Uy;+---)cosaz

+a 8(Vygt:--)cos2az+ -, (33b)

~ o ~
—m—(m+
UlO v (7T Z)ya (29) W:a_4(Wlo+ a_4W11+' )SlnaZ

which vanishes afy=m/(7+2). Of course this solution
does not fulfill the wall-condition that),,=0 onY=0 and

this requirement suggests that a thin layer must develop p=a'?p,+adp,+---+a 3(Pyta Py +---)cosaz
there. Within this zon&'=t~Y% andU,=t"20,, where

+a 9(Wyyt---)sin2az+ -, (33c)

+a 8Pyt -)cos 2z + -+, (33d)
Py 1 - 1., where all the unknowns are functions ¢f and 7. To the
3 +=a0,— —U3,=0, (30) . \ : .
N2 2 2 orders that are required here the higher harmonics are unim-

portant and, as is characteristic of strongly nonlinear flows of
this equation has the solutidi,y= /7 tanh(¥/7/12) which  this type, a consistency condition on the leading-order vortex

satisfiesUlO:O atY=0 and matches with the core solution €duations will determine the mean flow. The substitution of
(33)in (4) leads to

(29) asY — .
The form of (29) as y— #/(7+2) indicates that the ~ oy
vortex amplitude develops a square-root form around this —200V10=— Uy, U10£=—V10,
point. In order to smooth this behavior it is necessary to
introduce a scaled co-ordinate=0(1) so Y=7rf/(7r+2) U

P1o=Wio, Wiyo=——1 (34)

+Yy. The system(27), (28) then reduces to
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so that for consistency we require
dvg

Mot o GBI 4,

for some functiorb(7). The leading-order mean flow com-
ponents of the azimuthal momentum equatidh), together
with the resultg34), give the equation

190

2 3¢

25, (35)

9?0,
ap> ot

o

iy

b Ul (36)

which determines the fundamental componéhy,, of the
vortex. If the outer edge of the vortex is located ét
= ¢4(7), one integration of(36) and the requirement that
U,0—0 as¢— ¢, combine to show

[b-¢
U= Vp=g, 12~ 40" (D (b= )]

+4b'(7)(b(7)— ¢)—2. (37)

This result demonstrates that;;—0 algebraically as¢
— ¢, and to explain the form of the disturbance aroupd

MacKerrell, Blennerhassett, and Bassom
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FIG. 4. Solution of the free-boundary value problé3B) subject to(39) and
the requirementb(7) =7 andd,— 0 as¢— . Shown is the position of the
outer extent of the vortex activityp,(7) obtained via a numerical solution.

The larges asymptoteg,(7)~7— % [see(40)]is shown dashed.

the vortex are of the same order of magnitude here. This
leads to a coupled set of infinitely many ordinary differential
equations. Similar systems have been derived in other con-
texts; for example, in curved channel flotsfor Taylor

= ¢, it is necessary to examine the flow characteristics in &ortices?* for short wavelength Beard convectioff and for
thin region centred there. The manipulations required wer@urved Stokes layer flowsS.In the present problem this wall

first performed by Hall and Lakifi for nonlinear Gatler

layer is passive and we do not need to determine its struc-

vortices and since then numerous papers have describegre.

similar calculations in a variety of related conteXts?! For

The problem that remains to be solved to complete the

the sake of brevity we do not repeat the details here bufetermination of this strongly nonlinear vortex motion is the
rather summarize the situation by noting that in the vicinityfree boundary value syste(88) subject to(39) with b(7)

of ¢= ¢, the square-root behavior &f,, is transformed to
an exponential decay fab> ¢, [and this occurs through the
solution of a scaled form of the second Painlexenscen-
dent, cf.(31)]. The result is that fowb> ¢, the vortex is

=7 andvy,—0 as¢—x=. The weakly nonlinear theory de-
scribed previously shows that motion will commence when
the scaled timer= 7! [see(20)], and following the meth-
ods used in Horsemaet al.® suitable initial conditions can

completely destroyed and all that remains is an azimuthabe derived to complete the specification of the system. The

mean velocity field. Front36) this flow satisfies
vy dig
G2 ar (38)

and it is easy to demonstrate that both the mean figyy,
and its spatial derivative must be continuous acr@ss
= ¢»,. The use 0f(35) shows tha{38) must be solved irp
> ¢4(7) subject to decay ag— x> and

vo=Vb(7)— ¢,
@:_; at ¢=do;. (39)
d¢ 2\b(7)— ¢

resulting numerical solution foty,(7), obtained using the
NAG routine DO3PHF, is shown in Fig. 4. The unexpected
result from this numerical solution is thet; grows almost
linearly with 7, especially for larger. This result is perhaps
less surprising when it is recognized tl{a8) and(39) admit
the exact analytical solution

1
— T em (12
V2

Thus, during a short period of time after 77~ * the solution

relaxes from the given initial conditions to this simple expo-
nential profile and the extent of domain of vortex activity
grows like 7. This result shows the effectiveness of the vor-

with ¢y =7— (1/2). (40)

<

0

The overall flow structure is now almost complete but totex motion in transferring momentum away from the cylin-

finish it is necessary to consider the formuadfr). It has been
seen how nonlinear motions are located in the regieng0

der wall as the viscous diffusion mechanisms present in the
undisturbed flow only allow the boundary layer thickness to

< ¢,(7) and in order that the mean flow in this zone matchgrow like t¥2. The rapid growth of the strongly nonlinear

with the velocity of the cylinder orp=0 it is evident from
(35) that b(7)=7. With this choice however, the form of
(37) suggests that the vortex activity does not vanishpat

vortex region also imposes more severe restrictions on the
applicability of the “small gap” limit taken at the beginning
of this analysis. Due to the linear growth in time of the

=0 contrary to the required constraints. To resolve this a thiboundary layer thickness, we now needRe”® so that the
layer at¢p=0 is introduced in which the necessary decay carapproximation of the cylindrical polar form of the governing

take place. This layer turns out to have degth O(a™°) [or

equations by an essentially Cartesian form is valitthas

n=0(a"1) from (32)] and since this is comparable to the kindly been pointed out to us that as the limiting times for
dimensionless wavelength of the vortex, all the harmonics obur analysis are functions of the Reynolds number, an
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alternative way to view these constraints is that our arguef Liu and Chefi for the full nonlinear equationét), where
ments are valid only for Reynolds numbers exceeding certaitimes to instability ranging fronh=90 tot~ 126 are reported
values which can be inferred from the critical times predictedior 200<Re<600. As is well known, much of this variation
in Figs. 1 and 2. Of course, these in turn depend upon thean be ascribed to the experimental method or analytical cri-
disturbance wave numbgr. terion used to determine the critical conditions.

Finally, we point out that although the strongly nonlinear
solutions of Sec. Ill are based @n-c, the neutral curve in
Fig. 2 suggests that large wave number asymptotic structures

Under the global scaling used here the linear theory neuhave set in for wave numbers as small as 4 or 5, and hence it
tral stability curves, Figs. 1 and 2, for the two impulsively is not unreasonable to use these analytical solutions to vali-
generated flows examined have striking differences. Thelate numerical codes designed to investigate vortex motion
large-time behavior of the asymptotes for each neutral curvén unsteady flows.
are
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a~t~Y8 impulsive velocity change, ACKNOWLEDGMENTS

a~tY® impulsive wall shear change, This investigation was conducted while S.0.M. and
F‘O-"P'B' were visiting UNSW. They are indebted to the Aus-
etralian Research Council without whose grants their visits
would not have been possible.

ast—oo. These behaviors can also be compared to the pro
erties of the linear theory neutral curves obtained for th
related unsteady thermal boundary lay¥rslsing a similar

global scaling, the asymptotes of the neutral curves in the

thermal prObIems are !R. P. Kirchner and C. F. Chen, “Stability of time-dependent rotational

Couette flow. Part 1. Experimental investigation,” J. Fluid MedB, 39
(1970).

2E. R. Cooper, D. F. Jankowski, G. P. Neitzel, and T. H. Squire, “Experi-
ments on the onset of instability in unsteady circular Couette flow,” J.
ast—o. For the step change in the velocity or the tempera-_Fuid Mech.161, 97 (1985).

3 f : « : ;
o ‘ . Y. Takeda, K. Kobashi, and W. E. Fischer, “Observation of the transient
ture, it is not surprising that the basic state becomes MOT®, ehaviour of Taylor vortex flow between rotating concentric cylinders af-

stable as time becomes large, as in both of these cases th@r sudden start,” Exp. Fluids, 317(1990).
gradients of the basic velocity or temperature are decaying tdG. P. Neitzel, “Marginal stability of impulsively initiated Couette flow and

zero with increasing time. We know of no simple explanation SPin-decay.” Phys. Fluidg5, 226(1982). _ _
for the diff bet th . tw Th C. F. Chen and R. P. Kirchner, “Stability of time-dependent rotational
or the dirierence between theé remaining two cases. €S€Couette flow. Part 2. Stability analysis,” J. Fluid Meet8, 365 (1971).

linear theory differences lead to contrasts in the strongly®p. c. s. Liu and C. F. Chen, “Numerical experiments on time-dependent
nonlinear solutions available: For the thermal problem, rotational Couette flow,” J. Fluid Mect59, 77 (1973).
strongly nonlinear vortex motion solutions can be found for G. P. Neitzel, “Numerical computation of time-dependent Taylor-vortex

b hile in th flows in finite-length geometries,” J. Fluid Mecth41, 51 (1984).
any wave number €a<1 ast—c, while in the current 8S. R. Otto, “Stability of the flow around a cylinder: The spin-up problem,”

rotating cylinder problem we neeal—o as well. However IMA J. Appl. Math. 51, 13 (1993).

for both strongly nonlinear solutions, the extent of the vortex °R. J. Goldstein and R. J. Volino, “Onset and development of natural con-
region grows linearly with time vection above a suddenly heated surface,” Trans. ASME, J. Heat Transf.

. Ly e s 117, 808 (1995).

Although hot St”Ctl_y \_/a“dv it s US?fUI to compare the 105 p Bassom and P. J. Blennerhassett, “Impulsively generated convection
“neutral stability” predictions for the impulsively started in a semi-infinite fluid layer above a heated flat plate,” Q. J. Mech. Appl.
cylinder with existing experimental resultsAs the analysis _Math. 55, 563(2002).

here has assumed the limit Res, direct comparison with P G. Drazin and W H. Reidilydrodynamic StabilityCambridge Univer
sity Press, Cambridge, 1981

experiment is awkward, but selecting those experimentalzg” m. Homsy, “Global stability of time-dependent flows: impulsively
runs with the largest value of Reynolds number=R&5, heated or cooled fluid layers,” J. Fluid MecB0, 129 (1973).
and transforming to the scaling of this paper, the results OfSR. J. Gumerman and G. M. Homsy, “The stability of uniformly acclerated

. P - . o —-0- flows with application to convection driven by surface tension,” J. Fluid
Kirchner and Chehindicate a time to instability of~79; Mech. 68, 191(1975).

with Re=30.8 the corresponding time tis-222. These re- 4G, p. Neitzel, “Stability of circular Couette flow with variable inner cyl-

sults are to be compared with the calculations summarized ininder speed,” J. Fluid Mechl23, 43 (1982).

Fig. 1, which indicate the time to instability is given ty 15G. P. Neitzel, “Onset of convection in impulsively heated or cooled fluid

. 8 . & . layers,” Phys. Fluid5, 210(1982).

%:.LO' The d|fferen9e between the qs.sump.tlon of an '_nf'mtaGP. Hall, “Taylor—Gatler vortices in fully developed or boundary-layer

fluid for the analysis here and the finite fluid annulus in the flows: linear theory,” J. Fluid Mech124, 475(1982).

experiments is believed to be irrelevant as it was reporteéYS: E- rllﬂastings :npd _J-Il?- McLeod(,j A bOl:jndharyKvalue prot:jlen\ﬁ/ associated

; ot _ with the second Painleveanscendent and the Korteweg—de Vries equa-

thgt the observed |nsta}blllty Qccurred well before thel Ray tion.” Arch. Ration. Mech. Anal73, 31 (1980)

leigh layer on the rotating cylinder had expanded to fill theisp 41 ang w. D. Lakin, “The fully nonlinear development of @er

gap between the cylinders. The results of Fig. 1 are in closervortices in growing boundary layers,” Proc. R. Soc. London, SetlA,

agreement with the related numerical calculatibhssed on 421(1988). _

the numerical integration in time of the systéﬁ) where. in 19N. J. Horseman, A. P. Bassom, and P. J. Blennerhassett, “Strongly nonlin-
. . . .. . ' ! ear vortices in the Stokes layer on an oscillating cylinder,” Proc. R. Soc.

our notation, a time to instability of~34 is reported for London, Ser. 452, 1087(1996).

200<Re=<400. This is to be compared with the calculations®A. P. Bassom and P. J. Blennerhassett, “The structure of highly nonlinear

a~t~Y® impulsive temperature change,

a~1 impulsive heat flux change,


jahoff
Sticky Note
None set by jahoff

jahoff
Sticky Note
MigrationNone set by jahoff

jahoff
Sticky Note
Unmarked set by jahoff


2956 Phys. Fluids, Vol. 14, No. 9, September 2002 MacKerrell, Blennerhassett, and Bassom

vortices in curved channel flow,” Proc. R. Soc. London, SeA39, 317 22p_J. Blennerhassett and A. P. Bassom, “Nonlinear high-wavenumber Be
(1992). nard convection,” IMA J. Appl. Math52, 51 (1994).

213, P. Denier, “The structure of fully nonlinear Taylor vortices,” IMA J. 2°N. J. Horseman, “Nonlinear instabilities in curved flows,” Ph.D. thesis,
Appl. Math. 49, 15 (1992). University of Exeter, UK, 1991.


jahoff
Sticky Note
None set by jahoff

jahoff
Sticky Note
MigrationNone set by jahoff

jahoff
Sticky Note
Unmarked set by jahoff




