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ABSTRACT

Marine plastic pollution is a global problem witbrsiderable ecological and economic
consequences. Quantifying the amount of plastiherocean has been facilitated by surveys
of accumulated plastic on beaches, but existingitoigng programmes assume the
proportion of plastic detected during beach surveyg®nstant across time and space. Here
we use a multi-observer experiment to assess whpbgion of small plastic fragments is
missed routinely by observers, and what factodsiémice the detection probability of
different types of plastic. Detection probabilityrass the various types of plastic ranged
from 60 - 100%, and varied considerably by obsemeserver experience, and biological
material present on the beach that could be codfwsé plastic. Blue fragments had the
highest detection probability, while white fragm&htid the lowest. We recommend long-
term monitoring programmes adopt survey designsuatng for imperfect detection or at

least assess the proportion of fragments missebbgrvers.

Keywords: Detection probability; Marine debris; Observeieet; Plastic pollution; Beach

clean-up
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1. Introduction

Pollution of marine and coastal environments witltdrded, lost, and ‘disposable’ plastic
items is a rapidly increasing and significant glabsue (UNEP, 2014). Plastic pollution has
been linked directly to the injury or mortality ah enormous array of marine wildlife (Gall
and Thompson, 2015) and incurs large financialscthbsbugh lost tourism, the creation of
shipping hazards, and clean-up programmes (Batras 8009; Vegter et al., 2014).
Substantial effort has therefore been directed tdsvenonitoring, removing, or preventing
plastic from entering the marine environment (Oc€anservancy, 2015), including a range
of national and international programmes (e.gerimtional Pellet Watch, Australian Marine
Debris Initiative) focused on collecting quantivatidata on plastic accumulation patterns and

associated hazards such as absorbed co-pollu@gésa et al., 2009).

Beach surveys implemented by scientists or thergépablic are an important source of data
on the type and provenance of plastic debris oohEsaaround the world (lvar do Sul et al.,
2011; Lee and Sanders, 2015). Systematic beachysior clean-up programmes have been
promoted as a tool to provide comparative baselata on the distribution, abundance, and
accumulation of plastic debris (Rees and Pond, ;1R#%c et al., 2010, 2012). Such
systematic programmes can also be used as longatemitoring tools to document temporal
trends in marine plastic pollution (Bravo et aDP®2; Hidalgo-Ruz and Thiel, 2013).
However, using the number of plastic items collédig observers along a certain stretch of
beach, and comparing these numbers across spatienandests on the critical assumption
that a constant proportion of plastic pieces igectetd and recorded. The assumption of
perfect detection has been widely criticized inn@nitoring of biological populations, and
numerous approaches have been developed to adooumperfect detection (Buckland et

al., 2008; Kéry and Schaub, 2012; Nichols et 8I09. For example, counts of mobile birds
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and lizards depend on the observer, weather, hahitd several other factors (Alldredge et
al., 2007; Kéry et al., 2009; Schmidt et al., 2Q0E3)d even counts of sessile plants are
generally considered to be less than perfect andwigh substrate and observer experience
(Bornand et al., 2014; Burg et al., 2015; Dufrénale 2015). However, such effects have, to
our knowledge, not been considered in the majoiffityeach plastic studies (but see Hidalgo-
Ruz and Thiel, 2013). As a consequence, temporgpatial comparisons of beach plastic
accumulation may be biased if certain plastic pkasi are easier to detect and count at certain
sites or during certain times. While large plastijects (e.g., bottles, buoys, etc.) are likely to
be counted with little error, smaller plastic delis much harder to detect (Baztan et al.,

2014; Convey et al., 2002).

Increasing recognition of the hazard posed by sdeddlis to marine wildlife, and expansion
of citizen science programmes which contribute datbeita over large areas (e.g., National
Sampling of Small Plastic Debris programme in Chitel Australian Marine Debris

Initiative), has highlighted a growing need foriable data on micro-plastics (< 5 mm;
Hidalgo-Ruz and Thiel, 2013; McDermid and McMull@®04). A number of current debris
monitoring programmes include micro-plastics (Cagtal., 2010; McDermid and

McMullen, 2004; Thompson et al., 2004), which averted manually on beaches. Floatation
(where sediment is placed in water, buoyant plasige to the surface and more dense debris
is then sorted in the sediment) can be effectivesdme types of plastic polymers, but still
relies on manual sorting for a portion of debrisalihis both time consuming and prone to
errors (Nuelle et al., 2014). Approaches to accéomimperfect detection, therefore, may be
useful to ensure that data from beach survey pnogies are comparable across space and

time.
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Here we used recent statistical advances for thatorong of wildlife populations (Dénes et
al., 2015; Kéry and Schaub, 2012) to examine wheheedetection of plastic debris on
beaches can, and should, be accounted for. Wetigat=l which type of plastic debris had a
probability of detection substantially less thal0%) and explored the relative importance of
observer heterogeneity, beach substrate, andglasitility, on the detection probability of
plastic items varying in size and colour. This assgent provides a first estimate as to what
proportion of plastic is missed routinely in beacinvey programmes, and provides guidance
on the design of future monitoring programmes woaat for variable detection probabilities

of different types and colours of plastic.

2. Methods

2.1. Data collection

A confounding issue for the interpretation of plaéund on beaches is how much was
washed ashore and how much was deposited localhebple. To avoid this issue and ensure
that all encountered plastic was washed ashore themsea, we conducted our study on one

of the remotest islands of the world, far from aogogenic debris sources.

Henderson Island (24°20 S, 128°19 W), one of felands belonging to the Pitcairn Island
group, is an uninhabited island in the South Pa€iitean. The island is surrounded by a
fringing limestone reef with open sandy beachethemorth, east, and north-western
shorelines. Over a two-day period in July 2015tykthree 50 x 50 cm quadrats were centred
along the high tide line of the northern beach,chthas a pale coral sand substrate with
white coral pebbles and small amounts of blackdgigial debris (Fig. 1). Five observers
visually inspected each quadrat independentlywfiorminutes, recording the number and

colour of specific plastic items present. Observegse not allowed to touch or re-arrange
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anything in a quadrat to maintain identical comali§ among observers, and the entire trial
was completed within 1.5 hours before tidal actionld alter the abundance of plastic in

each quadrat.

Micro-plastic items are increasingly the focus ofigtion monitoring programmes (Costa et
al., 2010; McDermid and McMullen, 2004; Thompsomlet2004). We therefore focused on
five different types of plastic items ranging izesifrom 2.5 to 60 mm, representing a range of
plastic items that are very easy or very difficoldetect given the substrate of the beach in
our study area. We chose white, black, and blwgiemnts of all sizes to represent items that
contrast little, moderately, and strongly with theach substrate, respectively. In addition, we
counted black and white resin pellets (‘nurdleserage 2.7 mm diameter), as these tiny but
readily identifiable items are considered a prjoit many beach clean-up and monitoring

programmes (e.g., International Pellet Watch; Ogatd., 2009).

The detection of plastic particles on a beach egpedd on multiple factors, such as the
experience of the observer, visibility, or othefealts that can be confused with or obscure
plastic particles. We therefore recorded the olesadentity and the order in which the 33
guadrats were examined by each observer to acémuntprovements or deterioration of
detection over time. We further estimated cloudecdw the nearest 10% for each 2 min
interval during which observers counted plastiadoount for differences in detectability of
plastic particles in bright sunlight and in clouthnditions. Lastly, we estimated the cover of
pale-coloured coral rubble and dark-coloured bidlalgdebris (e.g., dried algae, seeds,
charcoal, and leaves) for each quadrat to the se%% to account for substrate effects on the

detectability of plastic.
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After all observers had recorded the abundancé tfpees of plastic in each of the 33
guadrats independently, we carefully removed thddger of sediment (ca. 3-5 mm) in each
guadrat to determine the true abundance of plastits, ensuring that only surface plastics
but no buried items were collected. For each quadsaplaced the sediment in a bucket of
sea water following methods outlined by Hidalgo-Rtial. (2012), allowing low-density
plastic items to be collected and sorted once ttaglfloated to the surface (Imhof et al.,
2012). We then examined the sediment for any dgsity plastics that may have settled to
the bottom, and added the two components to yidddtal number of plastic present in each

quadrat.

2.2. Satistical analysis

Our main goal was to estimate the number of fifeeint types of plastic particles in 33
sampling quadrats from a series of independenttsaxmducted by five different observers.
We then compared those estimates to the true nuohlparticles retrieved from each quadrat
to assess whether a multiple observer design quoldde an accurate statistical estimate of
the amount of plastic. Finally, we examined whi¢ls@veral factors affected the probability

of detection for the five different types of plasi our study.

Our analysis was guided by recent analytical dgorakmnts in the wildlife literature that

allows the estimation of detection probability aimindance from repeated counts (Chandler
and King, 2011; Kéry, 2008; Kéry et al., 2005; Roghd Nichols, 2003; Royle et al., 2005).
Because the same observer is unlikely to providependent counts of the same static
objects in a quadrat, we used the five indepencaumts provided by different observers as

repeat counts of the same quadrat.

We estimated plastic abundance and detection pilgipalsing binomial mixture models

(Kéry et al., 2005; Royle and Nichols, 2003; Rosiel., 2005). These models use the
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repeated observations for a given sampling quadrsgparately estimate the probability to
detect plastic particles and the number of plgsditicles in this quadrat. Briefly, these
models consist of two components which link théestd interest (abundance of plastic) and
the observation process (detection probabilityg merarchical fashion:
N;i ~ PoissonX) 1. State process that describes the abundantte iat s

yij | Ni~ Binomial (\i,, p) 2. Observation process that describes the aberdsrsite
wherey;; is the number of plastic items observed atisitering couni with detection
probabilityp given the true number of plastic items pred¢rat sitei. The abundance
component is modelled as a random Poisson prooessséimates the number of plastic
particles present (Kéry et al., 2005; Kéry and 8bh2012; Royle and Nichols, 2003). The
observation model component is conditional on tialmer of plastic particles estimated in
each sampling quadrat, and estimates the prohabildetection based on repeated counts at
a given site using binomial trials for each plagten. Two critical assumptions for these
models are that the population is closed over gr@g during which the repeat surveys are
conducted, and that no false positive detectiossn®decause we conducted all repeat
counts of our sampling quadrats on the same ddymaét 90 min interval, no plastic particles
were added or lost by tidal action between countditferent observers and the closure
assumption was fully met. We tested the assumtior false positive observations by

comparing observations to sieved abundances prifitting models.

We fit binomial mixture models in R 3.1.3 (R Devefoent Core Team, 2014) using the
function ‘pcount’ in R package ‘unmarked’ (Fiskeda@handler, 2011) with ‘sampling
guadrat’ as categorical site covariate affectingnalance. We then extracted the mean

estimated abundance for each sampling quadratdstimated coefficients and compared the
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mean and 95% confidence interval of the estimabeth@ance to the true abundance of

plastic determined by sediment extraction to qizathie degree of bias of the models.

To examine which factors affected the probabilitgletect different types of plastic, we used
an information theoretic approach and construc#gdldusible candidate models explaining
the variation in plastic count data. We first consted a null model that assumed that
detection was constant across space, time, arefelitf observers. We then constructed a
model that assumed that detection of plastic wiesiad by the beach substrate, namely the
percent cover of coral rubble and biological debFise remaining ten models all considered
that detection probability varied either amongfilie observers or whether observers had
previous experience in collecting plastic debrigrfrbeaches. Eight of these 10 models
additionally accounted for variability in detectiaith the percent cover of coral rubble, the
cover of biological debris, the percent cloud coaad the temporal sequence of counts as a
measure of observer fatigue (i.e., reduced vigdac increasing experience. We ranked all
12 models using Akaike’s Information Criterion (AlBurnham and Anderson, 2002), and
provide mean parameter estimates with standardseioothose detection parameters that
received the greatest support from our data. Ahdad the R code used to obtain the results

have been deposited at https://github.com/steffpalgplastic.

3. Results

Across the 33 quadrats, observers counted betwédn e fragments, 0-7 black fragments,
0-23 white fragments, 0-4 black pellets, and O-ntevpellets per quadrat. True abundance of
plastic particles obtained from sediment extractesulted in 0-6 blue fragments, 0-3 black
fragments, 0-34 white fragments, 0-4 black pelletsl 0-9 white pellets per quadrat.

Summed across all plastic particles, each obseecerded only 67.3 — 81.3% of the plastic
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particles that were actually retrieved from the glng quadrats, and raw detection

probabilities ranged from 60 — 100% across eackrobs and types of plastic (Table 1).

Black fragments were the only type of plastic gasinfused with other particles on the
beach, which led to highly variable detection ardgh incidence of false positive
detections. Of the 33 sampling quadrats, only 8anad any black plastic fragments, but
observers recorded black fragments in 30 quadtatsh observer recorded non-existing
black fragments in at least four quadrats, andaiv48 counts (29%) of black fragments
contained false positive observations. We theredadenot estimate abundance of black
fragments with binomial mixture models becauseyadssumption was violated. For white
fragments, white pellets, and black pellets, <1G%bservations contained false positives,

for blue fragments 17% of observations containézkfpositive detections.

Despite the mild violation of a core assumptiomaonial mixture models generally retrieved
an accurate estimate of the true abundance oigfasin the repeated count data (Fig. 2).
True abundance values were within the 95% confied@merval of the estimated abundance
for 94% of quadrats for blue fragments, 91% forckland white pellets, and 82% for white
fragments. The models indicated that the detegqtrobability of plastic was highly variable
among the different types and colours (Table 1)eBilastic fragments were detected most
accurately by all observers (Fig. 2), with estimdatetection probabilities approaching 1 even
for inexperienced observers (Table 1). Estimatedatien probability of white fragments

was below 50% even for experienced observers (THbetection of the small pellets was
extremely variable among observers, but overalptiobability to detect white or black

pellets was slightly higher than the detection pimlity for white fragments (Table 1).

10
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The factors affecting detection probability varatoss the four different types of plastic we
modelled. Blue fragments were easily detected bgteervers, and there was model
selection uncertainty (Table 2) with ambiguous supfor either detection to vary by
observer (Table 1), or increase with experierfte (.353 + 0.379, z = 0.98,= 0.35), or
decrease with the amount of biological debfis(-0.740 + 0.332, z = -2.2p,= 0.03). By
contrast, white fragments were difficult to detgisten the pale sandy background and the
presence of natural rubble, and the best supportetkl indicated that detection probability
increased with experiencg € 0.304 + 0.094, z = 3.2H,< 0.001) and decreased with
increasing cover of white coral rubbj8+£ -0.295 + 0.071, z = -4.18,< 0.001). For the

much smaller pellets, observer experience recdittesupport from the data, and detection
probability was better explained by differences agst individual observers independent of
their previous experience (Table 2). For whitegisllthere was overwhelming support for
observer differences and decreasing detection piiitlgaover time as observers showed
signs of decreasing vigilancg € -0.396 + 0.118, z = -3.36,< 0.001). Detection probability
of black pellets also varied by observer and apmaktr increase with more biological debris

(B=0.543 + 0.344, z = 1.58,= 0.11; Table 2).

4. Discussion

Counts of plastic on beaches are useful for mangahe quantity of plastic in the marine
environment, but spatial and temporal comparisessrae that the proportion of plastic
counted by observers is constant across spaceénamdwWe identified and quantified three
common sources of error that may lead to highlyalde counts of plastic on beaches,
namely imperfect detection, misidentification, anclassification. We have shown that
even experienced observers generally detect lassliP0% of all plastic particles, and that

detection probability is extremely variable amowgets and colours of plastic, and among

11
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different observers. These sources of variation awenfound any spatial or temporal
comparison of plastic counted on beaches, and e@aytb biased or erroneous conclusions

about the accumulation of plastic in the marineiremment.

Imperfect detection of plastic debris can potehtiaé accounted for using repeat surveys
and binomial mixture models to estimate the truenalance of plastic. Such data could be
easily generated by at least 3-10 independent repeats from at least 25-50 distinct sites.
While these approaches require a more stringenttarorg design and greater monitoring
effort, the statistical framework is applied insegly to large-scale citizen science datasets
(Isaac et al., 2014; Tulloch et al., 2013; vanebtet al., 2013) and we envision that results
from beach surveys could be analysed in a simalsiibn to account for the imperfect
detection of plastic. Alternatively, more efficiembnitoring designs that use the time to
detection to estimate detection probability hawa/pn useful in botanical surveys and may
reduce the number of observers required for rofmastitoring (Bornand et al., 2014).
However, an important consideration for the desifjsuch surveys is the interval between
repeat surveys and between surveys that are usstintate changes over time: the
abundance of plastic on a beach is a function climalation over time, hence the interval
between sampling events will influence the abundariglastic that is collected (Moreira et

al., 2016; Ryan et al., 2014; Smith and Markic,201

Existing beach surveys and clean-up programmesithadt account for imperfect detection
underestimate the amount of plastic on beacheghEse existing datasets, or for monitoring
programmes where designs or analyses accountingnfarfect detection are logistically
impractical, the true amount of plastic could barsely extrapolated by using the detection

probabilities estimated here. Based on detectiobabilities calculated from sediment

12
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extraction and estimated from models, we suggestitie true amount of white fragments
can be 1.3-9.5x higher than raw counts, 1.0-1.4kdrifor blue fragments, 1.2-5.7x higher
for white pellets, and 1.0-4.9% higher for blackigts. These correction factors apply
however only for plastic visible on the surfaced @o not account for the invisible plastic
buried in the sediment (Kusui and Noda, 2003; \Afiis and Tudor, 2001). In addition, these
factors are likely to vary among different beaclzes] we strongly recommend that long-
term monitoring programmes assess the amount sfiplaissed by observers and develop
correction factors for the local conditions on etaiget beach if no robust monitoring
approaches are feasible. Despite their limitaticosrection factors have proven beneficial

in ecological studies (Eagles-Smith et al., 20@8n3on, 2008).

The most important variable that affected detegtaobability of plastic debris across the
different types of plastic that we investigated weesidentity of the observer. For some
items, in our case white fragments, observer egpeé could adequately control for variation
among observers, whereas for smaller pellets aaxklfitagments experience alone was a
poor predictor of observer performance. In additmthe observer effect, fatigue played an
important role in the detection of white pelletdiare detection probability decreased
towards the end of the trial. Observer effects exuerience are well known to influence
surveys of animal (Alldredge et al., 2007; Diefectbat al., 2003; Gale et al., 2009) and plant
populations (Ahrends et al., 2011; Burg et al.,.2@ufréne et al., 2015), and we
recommend that observer heterogeneity is considergahely in the analysis of beach

plastic monitoring studies.

Besides imperfect detection, the second major soofrerror was misidentification. Some

observers in our experiment counted more plastignfrents than were actually present in a

13
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given quadrat, and this pattern was most promifeerilack fragments, and to a much lesser
extent for black pellets. False positive detectidaedy occurred due to confusing natural
debris, for example clam shell fragments, chardealjes, or coral items with similar white

or black plastic fragments or pellets. While the+u@tection of plastic particles that are
actually present can be accounted for using thenbia mixture models that we have
employed, most current abundance estimation methgglame that no false positive
detections occur in the data (Dénes et al., 208#)ough there are some approaches that
correct for false positive detections in applicati@lealing with binary detection / non-
detection data (McClintock et al., 2010; Milleradt, 2013; Royle and Link, 2006), we are not
aware of techniques that control for false positlegections in abundance estimates (Dénes
et al., 2015). False positive detections will Iéa@n over-estimation of the actual abundance
of plastic, and a concomitant underestimation efdatection probabilities (Table 1).
Although both our abundance and detection proligl@stimates were slightly affected by
the occurrence of false positive detections, weetelthat this problem may be less severe in
actual beach surveys than in our experiment: totaisi equal detection opportunities in our
experiment the observers were not allowed to t@mghfragments, as this could have altered
the detection probability for subsequent obseniidogical compounds and plastic
fragments are generally easy to distinguish by tiegiture and weight, and practical beach
survey applications may therefore suffer from &asslfalse positive detections than our
artificial experiment. Where possible, polymer itigcation techniques, such as Fourier

transform infrared spectroscopy (FTIR) should bepaeld (Mecozzi et al., in press).

One approach to overcome difficulties with obselheterogeneity and imperfect detection in
long-term monitoring programmes of plastic pollaticould be to choose to monitor plastic

items with very high detection probability which ynaffer the most reliable data without the
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need to control for observer differences and ingegrfletection. In our experiment only blue
fragments were detected reliably and almost pdyfbgtall observers, most likely because
blue fragments contrasted strongly with the beaclingent colour and all natural compounds
encountered on the beach (Fig. 1). Easily detextabe fragments could therefore serve as
an indicator that is less affected by imperfecedebn. The adoption of a single candidate
indicator would however require further studied gstimate the correlations between the

abundance of blue plastic fragments and otheriplasins (Ribic, 1998).

While focussing on one particular type and coldyplastic may help control for detection
probability, such an approach will introduce trekrof misclassification. In our experiment
blue fragments had the second-highest proportidaleé positive detections despite the
generally very accurate counts. Observers likebgcted and correctly identified plastic
pieces that had different hues of blue and erroslgalassified them as blue (e.g. bluish
green, purple). Therefore, deciding on the typea@oidur of plastic that will enable
unambiguous classification and spatiotemporal corsas without the need to control for
variable and imperfect detection is likely very iddaging: dark volcanic sediments, coarser
biological debris of various colours, and othemunaltdebris will likely lead to locally diverse

conditions that affect the detection probabilityddferent types of plastic in different ways.

5. Conclusions

In summary, we recommend that the highly variablé iaconsistent detection probability of
different plastic types and colours is consideadahy spatial or temporal comparisons of
plastic surveys along beaches. Estimates of tlaédatount of plastic on beaches need to be
corrected for imperfect detection, and we providednge of possible correction factors for

various types of plastic. Future monitoring progna@s should consider appropriate survey
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designs with multiple observers or recording theetito-detection to control for imperfect

and variable detection.
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516 Tablel
True (sieved) and estimated detection probabil{nesan, and 95% confidence intervals) for
518 five different types of plastic counted by fivefdifent observers with or without previous
plastic detection experience in 33 50 x 50 cm gatadrn a pale sandy beach on Henderson
520 Island, South Pacific in July 2015. Raw probalastivere based on sieved abundances,

estimates were based on binomial mixture models.

Type Colour Observer Previous True Estimated detection probability
experience detection Mean Lower  Upper 95%
probability 95% CI Cl
Fragment Black A no 0.833 model assumptions vidlate
B yes 1.000
C yes 0.974
D no 0.897
E no 0.974
Blue A no 0.947 0.902 0.764 0.946
B yes 0.947 0.904 0.759 0.953
C yes 0.965 0.901 0.755 0.951
D no 0.902 0.865 0.704 0.926
E no 0.934 0.857 0.695 0.920
White A no 0.663 0.178 0.105 0.288
B yes 0.797 0.226 0.136 0.353
C yes 0.777 0.226 0.136 0.353
D no 0.639 0.179 0.106 0.289
E no 0.685 0.179 0.106 0.290
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522

Pellets

Black A no 0.980 0.826 0.525 0.932
B yes 0.859 0.763 0.435 0.895
C yes 0.952 0.826 0.522 0.933
D no 1.000 0.805 0.494 0.919
E no 0.795 0.543 0.200 0.746
White A no 0.626 0.445 0.325 0.572
B yes 0.759 0.556 0.423 0.681
C yes 0.872 0.648 0.485 0.782
D no 0.847 0.725 0.568 0.840
E no 0.602 0.271 0.176 0.389
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Table?2

Model selection table examining effects influencihg detection probability for five

different types of plastic counted by five diffetaibservers on a pale sandy beach on
Henderson Island, South Pacific in July 2015. Raadtacluded observer experience,
proportion of substrate covered by pale-colouredlaubble or dark-coloured biological
debris, visibility (sun or shade), and observegis (see Methods for details). k: the number
of parameters, AIC: Akaike’s Information CriteriokAIC: difference in AIC values from

the best-fitting model (lowest AIC valuapAIC: Aikaike weight.

Type Colour model k AIC AAIC wWAIC

Fragment White  experience+coral rubble 36 723.93 000. 0.89

observer+coral rubble 39 729.05 5.12 0.07
experience+fatigue 36 732.01 8.08 0.02
experience 35 732.74 8.81 0.01
experience+biol.debris 36 73455 10.63 0.00
experience+visibility 36 734.67 10.74 0.00

biol.debris+coral rubble 36 73495 11.02 0.00

observer+fatigue 39 736.60 12.67 0.00
Observer 38 737.87 13.94 0.00
observer+biol.debris 39 739.68 15.76 0.00
observer+visibility 39 739.78 15.85 0.00
null 34 741.67 17.74 0.00
Blue experience+biol.debris 36 283.61  0.00 0.36
observer+biol.debris 39 283.82 0.21 0.32

biol.debris+coral rubble 36 284.43 0.82 0.24
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experience+visibility 36 289.43 5.82 0.02

observer+visibility 39 290.10 6.49 0.01
null 34 290.24  6.63 0.01
experience 35 291.32 7.71 0.01
Observer 38 291.54 7.93 0.01
experience+fatigue 36 291.69 8.09 0.01
observer+fatigue 39 292.16  8.55 0.00

experience+coral rubble 36 293.28  9.68 0.00

observer+coral rubble 39 29350 9.89 0.00
Pellets White  observer+fatigue 39 407.39 0.00 0.98
observer+biol.debris 39 417.10 9.70 0.01
Observer 38 417.72 10.33 0.01
observer+coral rubble 39 419.34 11.95 0.00
observer+visibility 39 41957 12.18 0.00
experience+fatigue 36 435.95 2855 0.00
experience 35 439.55 32.16 0.00
experience+biol.debris 36 439.71 32.32 0.00
experience+visibility 36 440.90 33.50 0.00

experience+coral rubble 36 441.07 33.68 0.00
null 34 443.18 35.79 0.00

biol.debris+coral rubble 36 44466  37.27 0.00

Black observer+biol.debris 39 245.59 0.00 0.35
Observer 38 246.12 0.53 0.27
observer+fatigue 39 247.70 2.11 0.12
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observer+visibility 39 247.90 2.30 0.11

observer+coral rubble 39 248.07 2.48 0.10
null 34 252.30 6.71 0.01

experience+biol.debris 36 25257 6.98 0.01
experience 35 25295 7.36 0.01

biol.debris+coral rubble 36 253.69 8.10 0.01
experience+visibility 36 254.85 9.26 0.00
experience+coral rubble 36 25491 9.32 0.00

experience+fatigue 36 25495 9.36 0.00
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Fig. 1. A 50 x 50 cm quadrat located along the high lilse of North Beach, Henderson
Island, in July 2015. Observers were given 2 nagauo visually estimate the total number of
white, black, and blue plastic fragments, and waitd black plastic pellets. The percent
cover of pale-coloured coral rubble and darkerdgial material was included in the

analysis.
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Fig. 2. Total number (x 95% confidence intervals) of ptagiagments and pellets in 33
different 50 x 50 cm quadrats estimated with a @b mixture model from repeated count
data provided by five observers. Red crosses itelicae abundance determined by

collecting all plastic items within each quadragdethods).
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Highlights

e Detection probability for beach plastic debris varies from 60 - 100%

e Detection rates varied considerably by observer and with observer experience

e Detection rates were also influenced by biological material present on the beach

e Blue fragments had the highest detection probability and could function as an
‘indicator species’



