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ABSTRACT 12 

Marine plastic pollution is a global problem with considerable ecological and economic 

consequences. Quantifying the amount of plastic in the ocean has been facilitated by surveys 14 

of accumulated plastic on beaches, but existing monitoring programmes assume the 

proportion of plastic detected during beach surveys is constant across time and space. Here 16 

we use a multi-observer experiment to assess what proportion of small plastic fragments is 

missed routinely by observers, and what factors influence the detection probability of 18 

different types of plastic. Detection probability across the various types of plastic ranged 

from 60 - 100%, and varied considerably by observer, observer experience, and biological 20 

material present on the beach that could be confused with plastic. Blue fragments had the 

highest detection probability, while white fragments had the lowest. We recommend long-22 

term monitoring programmes adopt survey designs accounting for imperfect detection or at 

least assess the proportion of fragments missed by observers. 24 

 

Keywords: Detection probability; Marine debris; Observer effect; Plastic pollution; Beach 26 

clean-up  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 
 

1. Introduction 28 

Pollution of marine and coastal environments with discarded, lost, and ‘disposable’ plastic 

items is a rapidly increasing and significant global issue (UNEP, 2014).  Plastic pollution has 30 

been linked directly to the injury or mortality of an enormous array of marine wildlife (Gall 

and Thompson, 2015) and incurs large financial costs through lost tourism, the creation of 32 

shipping hazards, and clean-up programmes (Barnes et al., 2009; Vegter et al., 2014). 

Substantial effort has therefore been directed towards monitoring, removing, or preventing 34 

plastic from entering the marine environment (Ocean Conservancy, 2015), including a range 

of national and international programmes (e.g., International Pellet Watch, Australian Marine 36 

Debris Initiative) focused on collecting quantitative data on plastic accumulation patterns and 

associated hazards such as absorbed co-pollutants (Ogata et al., 2009).  38 

 

Beach surveys implemented by scientists or the general public are an important source of data 40 

on the type and provenance of plastic debris on beaches around the world (Ivar do Sul et al., 

2011; Lee and Sanders, 2015). Systematic beach surveys or clean-up programmes have been 42 

promoted as a tool to provide comparative baseline data on the distribution, abundance, and 

accumulation of plastic debris (Rees and Pond, 1995; Ribic et al., 2010, 2012). Such 44 

systematic programmes can also be used as long-term monitoring tools to document temporal 

trends in marine plastic pollution (Bravo et al., 2009; Hidalgo-Ruz and Thiel, 2013). 46 

However, using the number of plastic items collected by observers along a certain stretch of 

beach, and comparing these numbers across space and time, rests on the critical assumption 48 

that a constant proportion of plastic pieces is detected and recorded. The assumption of 

perfect detection has been widely criticized in the monitoring of biological populations, and 50 

numerous approaches have been developed to account for imperfect detection (Buckland et 

al., 2008; Kéry and Schaub, 2012; Nichols et al., 2009). For example, counts of mobile birds 52 
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and lizards depend on the observer, weather, habitat, and several other factors (Alldredge et 

al., 2007; Kéry et al., 2009; Schmidt et al., 2013), and even counts of sessile plants are 54 

generally considered to be less than perfect and vary with substrate and observer experience 

(Bornand et al., 2014; Burg et al., 2015; Dufrêne et al., 2015). However, such effects have, to 56 

our knowledge, not been considered in the majority of beach plastic studies (but see Hidalgo-

Ruz and Thiel, 2013). As a consequence, temporal or spatial comparisons of beach plastic 58 

accumulation may be biased if certain plastic particles are easier to detect and count at certain 

sites or during certain times. While large plastic objects (e.g., bottles, buoys, etc.) are likely to 60 

be counted with little error, smaller plastic debris is much harder to detect (Baztan et al., 

2014; Convey et al., 2002). 62 

 

Increasing recognition of the hazard posed by small debris to marine wildlife, and expansion 64 

of citizen science programmes which contribute debris data over large areas (e.g., National 

Sampling of Small Plastic Debris programme in Chile and Australian Marine Debris 66 

Initiative), has highlighted a growing need for reliable data on micro-plastics (< 5 mm; 

Hidalgo-Ruz and Thiel, 2013; McDermid and McMullen, 2004). A number of current debris 68 

monitoring programmes include micro-plastics (Costa et al., 2010; McDermid and 

McMullen, 2004; Thompson et al., 2004), which are counted manually on beaches. Floatation 70 

(where sediment is placed in water, buoyant plastics rise to the surface and more dense debris 

is then sorted in the sediment) can be effective for some types of plastic polymers, but still 72 

relies on manual sorting for a portion of debris which is both time consuming and prone to 

errors (Nuelle et al., 2014). Approaches to account for imperfect detection, therefore, may be 74 

useful to ensure that data from beach survey programmes are comparable across space and 

time.   76 
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Here we used recent statistical advances for the monitoring of wildlife populations (Dénes et 78 

al., 2015; Kéry and Schaub, 2012) to examine whether the detection of plastic debris on 

beaches can, and should, be accounted for. We investigated which type of plastic debris had a 80 

probability of detection substantially less than 100%, and explored the relative importance of 

observer heterogeneity, beach substrate, and plastic visibility, on the detection probability of 82 

plastic items varying in size and colour. This assessment provides a first estimate as to what 

proportion of plastic is missed routinely in beach survey programmes, and provides guidance 84 

on the design of future monitoring programmes to account for variable detection probabilities 

of different types and colours of plastic. 86 

 

2. Methods 88 

2.1. Data collection 

A confounding issue for the interpretation of plastic found on beaches is how much was 90 

washed ashore and how much was deposited locally by people. To avoid this issue and ensure 

that all encountered plastic was washed ashore from the sea, we conducted our study on one 92 

of the remotest islands of the world, far from anthropogenic debris sources. 

 94 

Henderson Island (24º20 S, 128º19 W), one of four islands belonging to the Pitcairn Island 

group, is an uninhabited island in the South Pacific Ocean.  The island is surrounded by a 96 

fringing limestone reef with open sandy beaches on the north, east, and north-western 

shorelines. Over a two-day period in July 2015, thirty-three 50 × 50 cm quadrats were centred 98 

along the high tide line of the northern beach, which has a pale coral sand substrate with 

white coral pebbles and small amounts of black biological debris (Fig. 1).  Five observers 100 

visually inspected each quadrat independently for two minutes, recording the number and 

colour of specific plastic items present. Observers were not allowed to touch or re-arrange 102 
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anything in a quadrat to maintain identical conditions among observers, and the entire trial 

was completed within 1.5 hours before tidal action could alter the abundance of plastic in 104 

each quadrat. 

 106 

Micro-plastic items are increasingly the focus of pollution monitoring programmes (Costa et 

al., 2010; McDermid and McMullen, 2004; Thompson et al., 2004). We therefore focused on 108 

five different types of plastic items ranging in size from 2.5 to 60 mm, representing a range of 

plastic items that are very easy or very difficult to detect given the substrate of the beach in 110 

our study area. We chose white, black, and blue fragments of all sizes to represent items that 

contrast little, moderately, and strongly with the beach substrate, respectively. In addition, we 112 

counted black and white resin pellets (‘nurdles’; average 2.7 mm diameter), as these tiny but 

readily identifiable items are considered a priority in many beach clean-up and monitoring 114 

programmes (e.g., International Pellet Watch; Ogata et al., 2009). 

 116 

The detection of plastic particles on a beach can depend on multiple factors, such as the 

experience of the observer, visibility, or other objects that can be confused with or obscure 118 

plastic particles. We therefore recorded the observer identity and the order in which the 33 

quadrats were examined by each observer to account for improvements or deterioration of 120 

detection over time. We further estimated cloud cover to the nearest 10% for each 2 min 

interval during which observers counted plastic to account for differences in detectability of 122 

plastic particles in bright sunlight and in cloudy conditions. Lastly, we estimated the cover of 

pale-coloured coral rubble and dark-coloured biological debris (e.g., dried algae, seeds, 124 

charcoal, and leaves) for each quadrat to the nearest 5% to account for substrate effects on the 

detectability of plastic. 126 
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After all observers had recorded the abundance of all types of plastic in each of the 33 128 

quadrats independently, we carefully removed the top layer of sediment (ca. 3-5 mm) in each 

quadrat to determine the true abundance of plastic items, ensuring that only surface plastics 130 

but no buried items were collected. For each quadrat, we placed the sediment in a bucket of 

sea water following methods outlined by Hidalgo-Ruz et al. (2012), allowing low-density 132 

plastic items to be collected and sorted once they had floated to the surface (Imhof et al., 

2012).  We then examined the sediment for any high-density plastics that may have settled to 134 

the bottom, and added the two components to yield the total number of plastic present in each 

quadrat. 136 

 

2.2. Statistical analysis 138 

Our main goal was to estimate the number of five different types of plastic particles in 33 

sampling quadrats from a series of independent counts conducted by five different observers. 140 

We then compared those estimates to the true number of particles retrieved from each quadrat 

to assess whether a multiple observer design could provide an accurate statistical estimate of 142 

the amount of plastic. Finally, we examined which of several factors affected the probability 

of detection for the five different types of plastic in our study. 144 

Our analysis was guided by recent analytical developments in the wildlife literature that 

allows the estimation of detection probability and abundance from repeated counts (Chandler 146 

and King, 2011; Kéry, 2008; Kéry et al., 2005; Royle and Nichols, 2003; Royle et al., 2005). 

Because the same observer is unlikely to provide independent counts of the same static 148 

objects in a quadrat, we used the five independent counts provided by different observers as 

repeat counts of the same quadrat. 150 

We estimated plastic abundance and detection probability using binomial mixture models 

(Kéry et al., 2005; Royle and Nichols, 2003; Royle et al., 2005). These models use the 152 
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repeated observations for a given sampling quadrat to separately estimate the probability to 

detect plastic particles and the number of plastic particles in this quadrat. Briefly, these 154 

models consist of two components which link the state of interest (abundance of plastic) and 

the observation process (detection probability) in a hierarchical fashion: 156 

Ni ~ Poisson (λ) 1. State process that describes the abundance at site i 

yi,j | Ni ~ Binomial (Ni,, p) 2. Observation process that describes the abundance at site i 158 

where yij is the number of plastic items observed at site i during count j with detection 

probability p given the true number of plastic items present Ni at site i. The abundance 160 

component is modelled as a random Poisson process and estimates the number of plastic 

particles present (Kéry et al., 2005; Kéry and Schaub, 2012; Royle and Nichols, 2003). The 162 

observation model component is conditional on the number of plastic particles estimated in 

each sampling quadrat, and estimates the probability of detection based on repeated counts at 164 

a given site using binomial trials for each plastic item. Two critical assumptions for these 

models are that the population is closed over the period during which the repeat surveys are 166 

conducted, and that no false positive detections occur. Because we conducted all repeat 

counts of our sampling quadrats on the same day within a 90 min interval, no plastic particles 168 

were added or lost by tidal action between counts by different observers and the closure 

assumption was fully met. We tested the assumption of no false positive observations by 170 

comparing observations to sieved abundances prior to fitting models. 

 172 

We fit binomial mixture models in R 3.1.3 (R Development Core Team, 2014) using the 

function ‘pcount’ in R package ‘unmarked’ (Fiske and Chandler, 2011) with ‘sampling 174 

quadrat’ as categorical site covariate affecting abundance. We then extracted the mean 

estimated abundance for each sampling quadrat from estimated coefficients and compared the 176 
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mean and 95% confidence interval of the estimated abundance to the true abundance of 

plastic determined by sediment extraction to quantify the degree of bias of the models. 178 

 

To examine which factors affected the probability to detect different types of plastic, we used 180 

an information theoretic approach and constructed 12 plausible candidate models explaining 

the variation in plastic count data. We first constructed a null model that assumed that 182 

detection was constant across space, time, and different observers. We then constructed a 

model that assumed that detection of plastic was affected by the beach substrate, namely the 184 

percent cover of coral rubble and biological debris. The remaining ten models all considered 

that detection probability varied either among the five observers or whether observers had 186 

previous experience in collecting plastic debris from beaches. Eight of these 10 models 

additionally accounted for variability in detection with the percent cover of coral rubble, the 188 

cover of biological debris, the percent cloud cover, and the temporal sequence of counts as a 

measure of observer fatigue (i.e., reduced vigilance) or increasing experience. We ranked all 190 

12 models using Akaike’s Information Criterion (AIC; Burnham and Anderson, 2002), and 

provide mean parameter estimates with standard errors for those detection parameters that 192 

received the greatest support from our data. All data and the R code used to obtain the results 

have been deposited at https://github.com/steffenoppel/plastic. 194 

 

3. Results 196 

Across the 33 quadrats, observers counted between 0-5 blue fragments, 0-7 black fragments, 

0-23 white fragments, 0-4 black pellets, and 0-7 white pellets per quadrat. True abundance of 198 

plastic particles obtained from sediment extraction resulted in 0-6 blue fragments, 0-3 black 

fragments, 0-34 white fragments, 0-4 black pellets, and 0-9 white pellets per quadrat. 200 

Summed across all plastic particles, each observer recorded only 67.3 – 81.3% of the plastic 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 
 

particles that were actually retrieved from the sampling quadrats, and raw detection 202 

probabilities ranged from 60 – 100% across each observer and types of plastic (Table 1). 

 204 

Black fragments were the only type of plastic easily confused with other particles on the 

beach, which led to highly variable detection and a high incidence of false positive 206 

detections. Of the 33 sampling quadrats, only 8 contained any black plastic fragments, but 

observers recorded black fragments in 30 quadrats. Each observer recorded non-existing 208 

black fragments in at least four quadrats, and overall 48 counts (29%) of black fragments 

contained false positive observations. We therefore did not estimate abundance of black 210 

fragments with binomial mixture models because a key assumption was violated. For white 

fragments, white pellets, and black pellets, <10% of observations contained false positives, 212 

for blue fragments 17% of observations contained false positive detections. 

 214 

Despite the mild violation of a core assumption, binomial mixture models generally retrieved 

an accurate estimate of the true abundance of plastic from the repeated count data (Fig. 2). 216 

True abundance values were within the 95% confidence interval of the estimated abundance 

for 94% of quadrats for blue fragments, 91% for black and white pellets, and 82% for white 218 

fragments. The models indicated that the detection probability of plastic was highly variable 

among the different types and colours (Table 1). Blue plastic fragments were detected most 220 

accurately by all observers (Fig. 2), with estimated detection probabilities approaching 1 even 

for inexperienced observers (Table 1). Estimated detection probability of white fragments 222 

was below 50% even for experienced observers (Table 1). Detection of the small pellets was 

extremely variable among observers, but overall the probability to detect white or black 224 

pellets was slightly higher than the detection probability for white fragments (Table 1).  

 226 
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The factors affecting detection probability varied across the four different types of plastic we 

modelled. Blue fragments were easily detected by all observers, and there was model 228 

selection uncertainty (Table 2) with ambiguous support for either detection to vary by 

observer (Table 1), or increase with experience (β = 0.353 ± 0.379, z = 0.93, p = 0.35), or 230 

decrease with the amount of biological debris (β = -0.740 ± 0.332, z = -2.23, p = 0.03). By 

contrast, white fragments were difficult to detect given the pale sandy background and the 232 

presence of natural rubble, and the best supported model indicated that detection probability 

increased with experience (β = 0.304 ± 0.094, z = 3.25, p < 0.001) and decreased with 234 

increasing cover of white coral rubble (β = -0.295 ± 0.071, z = -4.18, p < 0.001). For the 

much smaller pellets, observer experience received little support from the data, and detection 236 

probability was better explained by differences amongst individual observers independent of 

their previous experience (Table 2). For white pellets, there was overwhelming support for 238 

observer differences and decreasing detection probability over time as observers showed 

signs of decreasing vigilance (β = -0.396 ± 0.118, z = -3.36, p < 0.001). Detection probability 240 

of black pellets also varied by observer and appeared to increase with more biological debris 

(β = 0.543 ± 0.344, z = 1.58, p = 0.11; Table 2). 242 

 

4. Discussion 244 

Counts of plastic on beaches are useful for monitoring the quantity of plastic in the marine 

environment, but spatial and temporal comparisons assume that the proportion of plastic 246 

counted by observers is constant across space and time. We identified and quantified three 

common sources of error that may lead to highly variable counts of plastic on beaches, 248 

namely imperfect detection, misidentification, and misclassification. We have shown that 

even experienced observers generally detect less than 100% of all plastic particles, and that 250 

detection probability is extremely variable among types and colours of plastic, and among 
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different observers. These sources of variation may confound any spatial or temporal 252 

comparison of plastic counted on beaches, and may lead to biased or erroneous conclusions 

about the accumulation of plastic in the marine environment. 254 

 

Imperfect detection of plastic debris can potentially be accounted for using repeat surveys 256 

and binomial mixture models to estimate the true abundance of plastic. Such data could be 

easily generated by at least 3-10 independent repeat counts from at least 25-50 distinct sites. 258 

While these approaches require a more stringent monitoring design and greater monitoring 

effort, the statistical framework is applied increasingly to large-scale citizen science datasets 260 

(Isaac et al., 2014; Tulloch et al., 2013; van Strien et al., 2013) and we envision that results 

from beach surveys could be analysed in a similar fashion to account for the imperfect 262 

detection of plastic. Alternatively, more efficient monitoring designs that use the time to 

detection to estimate detection probability have proven useful in botanical surveys and may 264 

reduce the number of observers required for robust monitoring (Bornand et al., 2014). 

However, an important consideration for the design of such surveys is the interval between 266 

repeat surveys and between surveys that are used to estimate changes over time: the 

abundance of plastic on a beach is a function of accumulation over time, hence the interval 268 

between sampling events will influence the abundance of plastic that is collected (Moreira et 

al., 2016; Ryan et al., 2014; Smith and Markic, 2013). 270 

 

Existing beach surveys and clean-up programmes that do not account for imperfect detection 272 

underestimate the amount of plastic on beaches. For these existing datasets, or for monitoring 

programmes where designs or analyses accounting for imperfect detection are logistically 274 

impractical, the true amount of plastic could be coarsely extrapolated by using the detection 

probabilities estimated here. Based on detection probabilities calculated from sediment 276 
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extraction and estimated from models, we suggest that the true amount of white fragments 

can be 1.3-9.5× higher than raw counts, 1.0-1.4× higher for blue fragments, 1.2-5.7× higher 278 

for white pellets, and 1.0-4.9× higher for black pellets. These correction factors apply 

however only for plastic visible on the surface, and do not account for the invisible plastic 280 

buried in the sediment (Kusui and Noda, 2003; Williams and Tudor, 2001). In addition, these 

factors are likely to vary among different beaches, and we strongly recommend that long-282 

term monitoring programmes assess the amount of plastic missed by observers and develop 

correction factors for the local conditions on each target beach if no robust monitoring 284 

approaches are feasible.  Despite their limitations, correction factors have proven beneficial 

in ecological studies (Eagles-Smith et al., 2008; Johnson, 2008). 286 

 

The most important variable that affected detection probability of plastic debris across the 288 

different types of plastic that we investigated was the identity of the observer. For some 

items, in our case white fragments, observer experience could adequately control for variation 290 

among observers, whereas for smaller pellets and black fragments experience alone was a 

poor predictor of observer performance. In addition to the observer effect, fatigue played an 292 

important role in the detection of white pellets, where detection probability decreased 

towards the end of the trial. Observer effects and experience are well known to influence 294 

surveys of animal (Alldredge et al., 2007; Diefenbach et al., 2003; Gale et al., 2009) and plant 

populations (Ahrends et al., 2011; Burg et al., 2015; Dufrêne et al., 2015), and we 296 

recommend that observer heterogeneity is considered routinely in the analysis of beach 

plastic monitoring studies. 298 

 

Besides imperfect detection, the second major source of error was misidentification. Some 300 

observers in our experiment counted more plastic fragments than were actually present in a 
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given quadrat, and this pattern was most prominent for black fragments, and to a much lesser 302 

extent for black pellets. False positive detections likely occurred due to confusing natural 

debris, for example clam shell fragments, charcoal, leaves, or coral items with similar white 304 

or black plastic fragments or pellets. While the non-detection of plastic particles that are 

actually present can be accounted for using the binomial mixture models that we have 306 

employed, most current abundance estimation methods assume that no false positive 

detections occur in the data (Dénes et al., 2015). Although there are some approaches that 308 

correct for false positive detections in applications dealing with binary detection / non-

detection data (McClintock et al., 2010; Miller et al., 2013; Royle and Link, 2006), we are not 310 

aware of techniques that control for false positive detections in abundance estimates (Dénes 

et al., 2015). False positive detections will lead to an over-estimation of the actual abundance 312 

of plastic, and a concomitant underestimation of the detection probabilities (Table 1). 

Although both our abundance and detection probability estimates were slightly affected by 314 

the occurrence of false positive detections, we believe that this problem may be less severe in 

actual beach surveys than in our experiment: to maintain equal detection opportunities in our 316 

experiment the observers were not allowed to touch any fragments, as this could have altered 

the detection probability for subsequent observers. Biological compounds and plastic 318 

fragments are generally easy to distinguish by their texture and weight, and practical beach 

survey applications may therefore suffer from far less false positive detections than our 320 

artificial experiment. Where possible, polymer identification techniques, such as Fourier 

transform infrared spectroscopy (FTIR) should be adopted (Mecozzi et al., in press). 322 

 

One approach to overcome difficulties with observer heterogeneity and imperfect detection in 324 

long-term monitoring programmes of plastic pollution could be to choose to monitor plastic 

items with very high detection probability which may offer the most reliable data without the 326 
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need to control for observer differences and imperfect detection. In our experiment only blue 

fragments were detected reliably and almost perfectly by all observers, most likely because 328 

blue fragments contrasted strongly with the beach sediment colour and all natural compounds 

encountered on the beach (Fig. 1).  Easily detectable blue fragments could therefore serve as 330 

an indicator that is less affected by imperfect detection. The adoption of a single candidate 

indicator would however require further studies that estimate the correlations between the 332 

abundance of blue plastic fragments and other plastic items (Ribic, 1998). 

 334 

While focussing on one particular type and colour of plastic may help control for detection 

probability, such an approach will introduce the risk of misclassification. In our experiment 336 

blue fragments had the second-highest proportion of false positive detections despite the 

generally very accurate counts.  Observers likely detected and correctly identified plastic 338 

pieces that had different hues of blue and erroneously classified them as blue (e.g. bluish 

green, purple). Therefore, deciding on the type and colour of plastic that will enable 340 

unambiguous classification and spatiotemporal comparisons without the need to control for 

variable and imperfect detection is likely very challenging: dark volcanic sediments, coarser 342 

biological debris of various colours, and other natural debris will likely lead to locally diverse 

conditions that affect the detection probability of different types of plastic in different ways. 344 

 

5. Conclusions 346 

In summary, we recommend that the highly variable and inconsistent detection probability of 

different plastic types and colours is considered for any spatial or temporal comparisons of 348 

plastic surveys along beaches. Estimates of the total amount of plastic on beaches need to be 

corrected for imperfect detection, and we provided a range of possible correction factors for 350 

various types of plastic. Future monitoring programmes should consider appropriate survey 
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designs with multiple observers or recording the time-to-detection to control for imperfect 352 

and variable detection.   

 354 
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Table 1 516 

True (sieved) and estimated detection probabilities (mean, and 95% confidence intervals) for 

five different types of plastic counted by five different observers with or without previous 518 

plastic detection experience in 33 50 × 50 cm quadrats on a pale sandy beach on Henderson 

Island, South Pacific in July 2015. Raw probabilities were based on sieved abundances, 520 

estimates were based on binomial mixture models.  

Type Colour Observer Previous 

experience 

True 

detection 

probability 

Estimated detection probability 

Mean Lower 

95% CI 

Upper 95% 

CI 

Fragment Black A no 0.833 model assumptions violated 

B yes 1.000 

C yes 0.974 

D no 0.897 

E no 0.974 

Blue A no 0.947 0.902 0.764 0.946 

B yes 0.947 0.904 0.759 0.953 

C yes 0.965 0.901 0.755 0.951 

D no 0.902 0.865 0.704 0.926 

E no 0.934 0.857 0.695 0.920 

White A no 0.663 0.178 0.105 0.288 

B yes 0.797 0.226 0.136 0.353 

C yes 0.777 0.226 0.136 0.353 

D no 0.639 0.179 0.106 0.289 

E no 0.685 0.179 0.106 0.290 
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Pellets Black A no 0.980 0.826 0.525 0.932 

B yes 0.859 0.763 0.435 0.895 

C yes 0.952 0.826 0.522 0.933 

D no 1.000 0.805 0.494 0.919 

E no 0.795 0.543 0.200 0.746 

White A no 0.626 0.445 0.325 0.572 

B yes 0.759 0.556 0.423 0.681 

C yes 0.872 0.648 0.485 0.782 

D no 0.847 0.725 0.568 0.840 

E no 0.602 0.271 0.176 0.389 

 522 
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Table 2 524 

Model selection table examining effects influencing the detection probability for five 

different types of plastic counted by five different observers on a pale sandy beach on 526 

Henderson Island, South Pacific in July 2015. Factors included observer experience, 

proportion of substrate covered by pale-coloured coral rubble or dark-coloured biological 528 

debris, visibility (sun or shade), and observer fatigue (see Methods for details). k: the number 

of parameters, AIC: Akaike’s Information Criterion, ∆AIC: difference in AIC values from 530 

the best-fitting model (lowest AIC value), ωAIC: Aikaike weight. 

Type Colour model k AIC ∆AIC ωAIC 

Fragment White experience+coral rubble 36 723.93 0.00 0.89 

observer+coral rubble 39 729.05 5.12 0.07 

experience+fatigue 36 732.01 8.08 0.02 

experience 35 732.74 8.81 0.01 

experience+biol.debris 36 734.55 10.63 0.00 

experience+visibility 36 734.67 10.74 0.00 

biol.debris+coral rubble 36 734.95 11.02 0.00 

observer+fatigue 39 736.60 12.67 0.00 

Observer 38 737.87 13.94 0.00 

observer+biol.debris 39 739.68 15.76 0.00 

observer+visibility 39 739.78 15.85 0.00 

null 34 741.67 17.74 0.00 

Blue experience+biol.debris 36 283.61 0.00 0.36 

observer+biol.debris 39 283.82 0.21 0.32 

biol.debris+coral rubble 36 284.43 0.82 0.24 
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experience+visibility 36 289.43 5.82 0.02 

observer+visibility 39 290.10 6.49 0.01 

null 34 290.24 6.63 0.01 

experience 35 291.32 7.71 0.01 

Observer 38 291.54 7.93 0.01 

experience+fatigue 36 291.69 8.09 0.01 

observer+fatigue 39 292.16 8.55 0.00 

experience+coral rubble 36 293.28 9.68 0.00 

observer+coral rubble 39 293.50 9.89 0.00 

Pellets White observer+fatigue 39 407.39 0.00 0.98 

observer+biol.debris 39 417.10 9.70 0.01 

Observer 38 417.72 10.33 0.01 

observer+coral rubble 39 419.34 11.95 0.00 

observer+visibility 39 419.57 12.18 0.00 

experience+fatigue 36 435.95 28.55 0.00 

experience 35 439.55 32.16 0.00 

experience+biol.debris 36 439.71 32.32 0.00 

experience+visibility 36 440.90 33.50 0.00 

experience+coral rubble 36 441.07 33.68 0.00 

null 34 443.18 35.79 0.00 

biol.debris+coral rubble 36 444.66 37.27 0.00 

Black observer+biol.debris 39 245.59 0.00 0.35 

Observer 38 246.12 0.53 0.27 

observer+fatigue 39 247.70 2.11 0.12 
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observer+visibility 39 247.90 2.30 0.11 

observer+coral rubble 39 248.07 2.48 0.10 

null 34 252.30 6.71 0.01 

experience+biol.debris 36 252.57 6.98 0.01 

experience 35 252.95 7.36 0.01 

biol.debris+coral rubble 36 253.69 8.10 0.01 

experience+visibility 36 254.85 9.26 0.00 

experience+coral rubble 36 254.91 9.32 0.00 

experience+fatigue 36 254.95 9.36 0.00 

 532 
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 534 

Fig. 1.  A 50 × 50 cm quadrat located along the high tide line of North Beach, Henderson 

Island, in July 2015.  Observers were given 2 minutes to visually estimate the total number of 536 

white, black, and blue plastic fragments, and white and black plastic pellets. The percent 

cover of pale-coloured coral rubble and darker biological material was included in the 538 

analysis.  
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 540 

Fig. 2. Total number (± 95% confidence intervals) of plastic fragments and pellets in 33 

different 50 × 50 cm quadrats estimated with a binomial mixture model from repeated count 542 

data provided by five observers. Red crosses indicate true abundance determined by 

collecting all plastic items within each quadrat (see Methods). 544 
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Highlights 

• Detection probability for beach plastic debris varies from 60 - 100% 
• Detection rates varied considerably by observer and with observer experience 
• Detection rates were also influenced by biological material present on the beach 
• Blue fragments had the highest detection probability and could function as an 

‘indicator species’ 


