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ABSTRACT

Ocean warming accounts for the majority of the earth’s recent energy imbalance. Historic ocean heat

content (OHC) changes are important for understanding changing climate. Calculations of OHC anomalies

(OHCA) from in situ measurements provide estimates of these changes. Uncertainties in OHCA estimates

arise from calculating global fields from temporally and spatially irregular data (mapping method), in-

strument bias corrections, and the definitions of a baseline climatology from which anomalies are calculated.

To investigate sensitivity of OHCA estimates for the upper 700m to these different factors, the same quality-

controlled dataset is used by seven groups and comparisons are made. Two time periods (1970–2008 and

1993–2008) are examined. Uncertainty due to the mapping method is 16.5 ZJ for 1970–2008 and 17.1 ZJ for

1993–2008 (1 ZJ 5 1 3 1021 J). Uncertainty due to instrument bias correction varied from 8.0 to 17.9 ZJ for

1970–2008 and from 10.9 to 22.4 ZJ for 1993–2008, depending on mapping method. Uncertainty due to

baseline mean varied from 3.5 to 14.5 ZJ for 1970–2008 and from 2.7 to 9.8 ZJ for 1993–2008, depending on

mapping method and offsets. On average mapping method is the largest source of uncertainty. The linear

trend varied from 1.3 to 5.0 ZJ yr21 (0.08–0.31Wm22) for 1970–2008 and from 1.5 to 9.4 ZJ yr21 (0.09–

0.58Wm22) for 1993–2008, depending on method, instrument bias correction, and baseline mean. Despite

these complications, a statistically robust upper-ocean warming was found in all cases for the full time period.

1. Introduction

Ocean heat content (OHC) is an essential climate

variable for understanding interannual, decadal, and

longer time-scale changes in the climate system and the

earth’s energy budget. The earth’s energy budget is

currently imbalanced (Wild et al. 2013 and references

therein; Trenberth et al. 2014), with an estimated 10.5

to11.0Wm22 net top-of-the-atmosphere (TOA) energy
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flux over the first decade of the twenty-first century

(Trenberth et al. 2014). Oceans cover more than 70% of

the earth’s surface. Their extensive interface with the

atmosphere, combined with their high heat capacity, low

albedo, and great depth, has resulted in ocean seques-

tration of more than 90% of the earth’s excess heat over

recent years (Roemmich et al. 2015) and recent decades

(Bindoff et al. 2007; Rhein et al. 2013). This net buildup of

excess heat in the ocean mitigates surface warming, but

it increases ocean temperature, contributing to sea ice

melt (Liu and Curry 2010; Polyakov et al. 2010), melting

at the marine terminations of ice sheets (Straneo and

Heimbach 2013; Rignot et al. 2013), changes in atmo-

spheric and oceanic circulations (e.g., Hoerling et al.

2001; Toggweiler and Russell 2008), and sea level rise

(Church et al. 2011). Since the 1970s, about one-third of

the observed global mean sea level rise is explained by

thermal expansion of the ocean’s volume caused by in-

creases in OHC (Church et al. 2013).

Here we focus on changes to OHC anomaly (OHCA)

because of its importance to the global energy balance of

the earth. While OHCA is expressed in joules, the rate

of change of OHCA is often expressed in terms of watts

per square meter applied over the earth’s surface area

(5.1 3 1014m2) for comparisons with and constraints on

net TOA energy fluxes.

OHCA can be calculated from in situ measurements

by differencing ocean temperature profile data from a

baseline climatology, multiplying this temperature

anomaly by density and the specific heat of seawater,

and volume integrating this product. Several research

groups routinely produce OHCA estimates from in situ

data that are widely used for ocean and climate science,

model evaluations, outreach activities, and govern-

mental reports. All of these estimates show that the

global ocean has significantly warmed in the upper

700m during the past decades; however, they can dis-

agree in variability and warming rates (Rhein et al.

2013; Abraham et al. 2013), although some differences

are not statistically significant. Differences arise be-

cause, in practice, there are many sources of un-

certainty in OHCA estimation (Lyman et al. 2010;

Palmer et al. 2010), and groups deal with them in dif-

ferent ways. Two relevant issues in OHCA estimation

are associated with the evolving nature of the tech-

nology used to gather subsurface ocean temperature

profiles (e.g., mix of instrumental accuracies and biases

as well as quality control procedures) and the uneven

distribution of the observational coverage in time,

depth, and geography (Abraham et al. 2013; Gould

et al. 2013).

Before the Argo program (Roemmich et al. 2009)

array of autonomous profiling floats, which began

implementation around 2000, became near global, most

ocean temperature profile data were obtained from in-

strumentation dropped over the side of a ship (Johnson

and Wijffels 2011; Abraham et al. 2013). This practice

limited ocean temperature profile measurements in

hard-to-reach areas away from major shipping routes

and during seasons of inclement weather, resulting in an

uneven distribution of temperature profiles in time and

space. To estimate global integrals of OHCA, algo-

rithms must be developed to put temperature anomaly–

OHCA information on a regular grid, cope with data-

sparse regions, and smooth out temporal and spatial

variability. These algorithms will hereafter be referred

to as ‘‘mapping methods.’’ Prior to the middle of the

twentieth century, ocean temperature profile data are

too sparse to calculate OHCA with any mapping

method without very large uncertainties (Gouretski

et al. 2012). From the middle of the twentieth century to

present, mapping method is still a source of uncertainty

in OHCA estimates from in situ data (Gregory et al.

2004; AchutaRao et al. 2006).

Lyman et al. (2010) compared global OHCA esti-

mates in the upper 700m for 1993–2008 to quantify

sources of uncertainty in OHCA calculations, including

combined quality control and expendable bathythermo-

graph (XBT) measurement bias corrections, climatolog-

ical reference, observational sampling, and mapping

method. Their calculations were all relative to compari-

sons using the same representative mean (PMEL_R)

mapping method from Lyman and Johnson (2008), ex-

cept in the mapping method case. Uncertainty due to

mapping method was quantified by matching pairs of

OHCA estimates that had the same XBT corrections

between those originally published by individual research

groups and those mapped by using the PMEL_R routine,

although original estimates included differences other

than just mapping method (e.g., baseline climatology and

non-XBT data). Lyman et al. (2010) concluded that the

largest source of uncertainty was found to be the com-

bination of quality control and XBT bias corrections.

Observational sampling uncertainties include horizontal

and vertical variations in sampling (Lyman and Johnson

2008), changes in vertical sampling resolution (spacing

between adjacent measurements; Cheng and Zhu 2014a),

and changes in the ocean-observing system (Cheng and

Zhu 2014b).

Here we investigate the sensitivity of global OHCA

estimates in the upper 700m for 1970–2008 and 1993–

2008 to mapping methods, XBT bias corrections, and

baseline climatologies. Our sensitivity experiments ex-

tend the earlier work of Lyman et al. (2010) by directly

quantifying uncertainty attributable to mapping method

and separately quantifying uncertainty attributable to
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different baseline climatologies. Our analyses also

cover a longer period, 1970–2008, including years prior

to 1993, when data were sparser and hence global esti-

mates more susceptible to larger mapping uncertainties.

However, we do not address the influence of quality

control of in situ temperature in detail.Monthly baseline

climatological means are used in all instances to remove

the seasonal cycle and minimize the impact on OHCA

calculations. Not all extant mapping methods are ex-

amined here (e.g., Cheng and Zhu 2014b; Cheng et al.

2015). Observational sampling changes and their effects

on uncertainty are not addressed directly here, although

they create differences arising from mapping methods

and baseline climatologies.

Below we briefly describe the mapping methods rou-

tinely used by the seven research groups involved in this

study, as well as their baseline climatologies, and pro-

vide an overview of the available set of XBT bias ad-

justments. Section 2 provides details on the sensitivity

experiments performed in this study. Results are found

in section 3 and conclusions in section 4.

a. Details of mapping methods

Themapping methods used in each of the estimates of

OHCA analyzed here are described below.

1) LEVITUS (LEV) MAPPING

Levitus et al. (2000) compute OHCA for the upper

300m and for the upper 3000m for the years 1948–98

using 5-yr (pentadal) running means as the compositing

time period and monthly climatologies calculated from

all available data from the World Ocean Atlas 2001

(Stephens et al. 2002, hereafter WOA01; years 1772–

1998) as the long-term mean. This work shows an in-

crease in OHCA over the years under study and pro-

vides an estimate of OHC changes for the second half

of the twentieth century. The procedure outlined in

Levitus et al. (2000) has been modified since then,

deepening the shallower depth layer from 300 to 700m

and shortening the compositing time period to 1 year

(Levitus et al. 2005). Two subsequent updates on this

work were published (Levitus et al. 2009, 2012), which

use a baselinemonthly climatology calculated using data

only for the years 1955–2006. Pentadal, yearly, and

seasonal OHCA are calculated based on the method

outlined in these works and posted online every three

months (http://www.nodc.noaa.gov/OC5/3M_HEAT_

CONTENT/). Currently, this time series covers the

years 1955–2015. The LEVmethod used by Levitus et al.

(2000, 2005, 2009, 2012) is an objective analysis tech-

nique developed by Cressman (1959) for meteorological

data, modified by Barnes (1964). The technique cal-

culates a correction factor at each grid point based on

the weighted difference between a first-guess value

and a mean value for each grid point within a radius of

influence. The first-guess field is zero (degrees Celsius

for temperature anomalies, joules for OHCA, and so

forth). The mean value is the difference between an

in situ value and the baseline monthly climatology av-

eraged over all such differences within a 18 latitude by

longitude grid box. The grid point is the center of the 18
grid box. Weights are calculated based on distance from

the grid point within the radius of influence (Barnes

1964). The correction factor is applied to the first-guess

field at each grid point, a 5-point smoother (Shuman

1957) is then applied, and the procedure is repeated

twice more, with progressively smaller radii of influence

preserving smaller-scale signals when possible. The

three radii of influence are 880, 660, and 440km, ap-

proximately 88, 68, and 48 of latitude and longitude at the

equator. Full details, including a complete description

of the weight function, can be found in Locarnini

et al. (2010).

2) ISHII (ISH) MAPPING

Ishii et al. (2006) calculates global OHCA for the

upper 700m using subsurface temperatures computed

with an analysis based on a variational minimization

scheme (Derber and Rosati 1989) with spatiotemporal

covariance of background error. Mixed layer tempera-

tures are constrained by sea surface temperature (SST;

Ishii et al. 2005). The analysis scheme is detailed in Ishii

et al. (2003). The Tikhonov term in Ishii et al. (2003) is

replaced by background error decorrelation as a func-

tion of both horizontal and vertical distances for later

OHCA calculations (Ishii et al. 2006; Ishii and Kimoto

2009). Spatial decorrelation scales vary with depth. The

surface horizontal decorrelation scale is given as a co-

sine function of latitude, with 900 km at the equator

and a minimum of 300 km. At the surface the vertical

decorrelation scale is 10m and temporal decorrelation

scale is 15 days. Monthly differences from a baseline

climatological monthly mean were calculated in the

analysis scheme, binning all data within 120 days of the

15th day of each month.

3) WILLIS (WIL) MAPPING

Willis et al. (2004) calculates OHCA for the years

1993–2003 for the upper 750m of the global ocean using

altimeter data to compensate for sparse in situ tempera-

ture profile data. As outlined inWillis et al. (2003) a two-

term covariance with large (920km) and small (100km)

scales is used to map the in situ data to all grid points.

The covariance function is chosen based on global

wavenumber–frequency spectrum for altimetric sea sur-

face height (Zang and Wunsch 2001). The seasonal cycle
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is removed by subtracting out baseline climatological

means. Altimeter fields of sea surface height (AVISO;

Ducet et al. 2000) are then used to modify the objectively

mapped in situ values using the following:

hINSITi difference estimate5 hINSIT2 (aAH)i
1 haAHi , (1)

where INSIT is the in situ field, AH is the altimeter sea

surface height field, and a is a time-averaged regression

coefficient for AH onto INSIT. The angled brackets

denote objective mapping as described above. Thus, Eq.

(1) results in an objective mapping of a quantity (INSIT)

using altimetric sea surface height, represented in terms

of INSIT as a first guess. In the case of OHCA, INSIT is

derived from a mean difference between observed and

baseline mean monthly temperature.

4) PMEL MAPPING

Pacific Marine Environmental Laboratory (PMEL)

mapping methods are derived from the objective map-

ping methods of Willis et al. (2003, 2004). As with all

other methods, seasonal cycle is removed by subtracting

out baseline climatological monthly means. Instead of

using sea surface height anomalies from satellite altim-

eter data to compensate for sparse in situ ocean tem-

perature profile data as in WIL, the PMEL method

calculates a representative mean, which effectively as-

sumes that unsampled regions have the same anomalies

as the mean anomaly of the sampled regions (Lyman

and Johnson 2008). This method is used to compensate

for areas where the distance between measurements is

large compared with mapping correlation length scales

or the amount of data are insufficient to overcome the

noise-to-signal ratios (Lyman and Johnson 2008). The

initial global estimate in the PMEL method is the mean

of the maps (PMEL_M; called SI in Lyman and Johnson

2008). In the mean of the maps, the objective map re-

laxes back toward the initial guess of zero anomalies in

data-sparse regions. The second step in the mapping is

the calculation of the global representative mean

(PMEL_R), wherein data-sparse areas are effectively

given a value equal to the mean value for all well-

represented areas (Lyman and Johnson 2008).While the

PMEL_M product should be viewed as an intermediate

step to the final global integral of PMEL_R, both are

retained here so that PMEL_M can be compared against

other objectively mapped products.

5) MET OFFICE HADLEY CENTRE DATASET

MAPPING

The Met Office Hadley Centre produces monthly

objectively analyzed temperature fields using a modified

version of the method outlined in quality control pro-

cedures for the Enhanced Ocean Data Assimilation and

Climate Prediction (ENACT) and ENSEMBLES pro-

jects (Ingleby and Huddleston 2007). This mapping

method (hereafter referred to as EN) is a modified

successive correction scheme that approximates optimal

interpolation (Lorenc et al. 1991; Bell et al. 2000). The

background for the analysis for each month is the

combination of climatology and a damped persistence of

anomalies from the previous month’s analysis:

B
i11

5C
i11

1a(A
i
2C

i
) , (2)

whereCi is the climatological mean for month i,Ai is the

analyzed value for the given month–year, a is a factor,

here set to 0.9 (based on experimental best fit), and Bi11

is the background for the following month. This

creates a first-guess field that has damped persistence

from the previous month–year, relaxing to climatology

where there are no data. The combination of the back-

ground and the observations is governed by estimates of

observation error variance and background error co-

variance. The covariance is parameterized using two

second-order autoregressive (SOAR) functions with

horizontal scales of 300 and 400 km. The former is ex-

tended near the equator to 1500km. The analysis scheme

used in this study corresponds to that used to produce the

EN3 version 2a dataset (Ingleby and Huddleston 2007)

(http://www.metoffice.gov.uk/hadobs/en3).

6) DOMINGUES (DOM) MAPPING

The CSIRO–Antarctic Climate and Ecosystems Co-

operative Research Centre (ACE CRC)–Institute for

Marine and Antarctic Studies (IMAS) research group

produces global OHCA estimates for the upper 700m of

the ocean by summing two depth-integrated layers, 0–

300 and 300–700m (Domingues et al. 2008; Church et al.

2011). In situ temperature observations from Argo

floats, bottles, CTDs, and XBT-corrected data (Wijffels

et al. 2008) are first converted into thermosteric sea

level. Anomalies are obtained using a historical clima-

tology that includes annual, semiannual, and linear

trend terms (Alory et al. 2007; Wijffels et al. 2008).

Thermosteric sea level anomaly profiles are depth in-

tegrated for the layers mentioned above. If more than

one profile exists in the same 18 3 18 grid box, within

658N–658S, their median is used. These 18 estimates are

then projected onto the first 30 EOFs, derived from the

satellite record altimeter (since 1993), to reconstruct

spatially complete fields, at monthly time scales, from

the 1950s onward. The reconstruction method is based

on a reduced-space optimal interpolation (Kaplan et al.

2000), which formalism provides estimates of errors on
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the basis of the in situ data distribution and uncertainties

(instrumental and geophysical errors) as well as ocean

eddy variability based on satellite altimeter data. Fi-

nally, thermosteric sea level anomaly fields are con-

verted into OHCA using coefficients obtained from a

spatially variable linear regression between OHCA and

thermosteric sea level anomalies on a 108 3 108 grid, for
each of the two depth layers (similarly to Willis et al.

2004). To reduce unwanted noise, monthly estimates

are yearly averaged and then a 3-yr running mean is

applied. The version history of these reconstructed

global OHCA and thermosteric sea level anomalies,

including the latest available estimates, are found online

(http://www.cmar.csiro.au/sealevel/thermal_expansion_

ocean_heat_timeseries.html).

7) GOURETSKI (GOU) MAPPING

Gouretski et al. (2012) calculate OHCA from median

temperature anomalies for a depth layer over 58 grid

boxes. The depth layers are 0–20 and 0–400m. Tem-

perature profiles are first interpolated to 1-m in-

crements. The 0–400-m vertical temperature average is

obtained using correlations between the mean temper-

ature of the entire layer to mean temperatures in shal-

lower levels. The correlations are calculated based on

high-resolution CTD temperature profiles. The mean

layer temperature anomaly is then differenced from a

baseline monthly mean. Baseline monthly mean layer

temperatures are calculated on a 0.258 grid from tem-

perature profiles measured during 2001–10. The base-

line mean is calculated using the following weighting

function:

W5 (R2 2 r2)/(R2 1 r2) , (3)

where R is the radius of influence, set to 111km, and r is

the distance from observation to each grid point. The

global average layer temperature anomaly is then the

sum of all 58 median layer temperature anomalies di-

vided by the number of 58 grid boxes containing data.

This is converted to OHCA over the entire ocean sur-

face area, thus assuming a mean global layer anomaly

for all 58 ocean grid boxes without data. This assumption

is similar to that used in PMEL_R and by Palmer

et al. (2007).

b. XBT bias adjustments

Temperature profiles collected by XBTs make up a

large part of the available subsurface temperature data

from 1970 to 2003. Without these data, calculations of

OHCA for in situ profiles would be very difficult for

these decades. Even now, when the Argo program is the

dominant observing system, XBTsmake up on the order

of 10% of available subsurface temperature profiles

each year. The depths of temperature measurements

from XBTs are estimated from elapsed time since

launch using a fall-rate equation. It was known early on

that there were systematic errors in the XBT data (Flierl

and Robinson 1977). Hanawa et al. (1995) introduced a

correction for the most commonly used XBTs [Sippican

and Tsurumi Seiki (TSK) T-4, T-6, and T-7 models]

based on a time-invariant fall-rate equation to mitigate

the biases. However, Gouretski and Koltermann (2007)

showed that XBT biases vary with year, and thus cor-

rections need to be time dependent.

Since then, a number of XBT corrections have been

proposed for depth (Wijffels et al. 2008, hereafter W08

for their Table 1 corrections; Ishii and Kimoto 2009,

hereafter I09 when referring to XBT corrections; Good

2011, hereafter G11), for temperature (Levitus et al.

2009, hereafter L09 when referring to XBT corrections),

and for both depth and temperature (Gouretski and

Reseghetti 2010, hereafter GR10; Hamon et al. 2012;

Gouretski 2012, hereafter GO12; Cowley et al. 2013,

hereafter C13 when referring to the thermal gradi-

ent XBT correction). Of the different calculations of

OHCA, LEV uses L09; ISH, PMEL_M, and PMEL_R

use I09; WIL uses Wijffels et al. (2008, their Table 2);

DOMusesW08; andGOUandEN useGR10. TheXBT

bias, when modeled as a fall-rate correction only, tends

to report water parcels as being deeper than their true

depths. Since water temperature generally decreases

with depth, the deeper displacement increases the

reported temperature at the deeper depth, thereby

increasing the OHCA relative to an unbiased measure-

ment. Splitting the XBT types into shallow (,550m)

and deep (.550m) as per W08, the depth bias is ap-

proximately 10m at 400-m depth for the shallow probes

and 10m at 700-m depth for the deeper probes averaged

over all years, but with significant year-to-year varia-

tions. Viewing the XBT bias as pure (but depth de-

pendent) temperature offset (L09) results in a tem-

perature correction that is on the order of 10.18C
averaged over the 0–700-m depth range. C13 estimate a

mean temperature bias of 10.058C with a widely

varying depth bias by probe and year, but generally

smaller than the depth-only corrections of W08. All

XBT bias correction methods are time (year to year)

varying in depth and/or temperature correction. Dif-

ferences among methods have implications for OHCA

calculations.

Cheng et al. (2016) report on recommendations by the

XBT community that XBT corrections account for five

factors (depth bias, pure temperature bias, temperature-

induced depth bias, temperature-induced temperature

bias, and depth offset). Only one correction scheme

1 JULY 2016 BOYER ET AL . 4821

http://www.cmar.csiro.au/sealevel/thermal_expansion_ocean_heat_timeseries.html
http://www.cmar.csiro.au/sealevel/thermal_expansion_ocean_heat_timeseries.html


(Cheng et al. 2014) directly accounts for all five of these

factors explicitly. Work is still in progress to quantify

which XBT bias correction method works best. For ex-

perimental simplicity and clarity of results, rather than

using all extant XBT correction methods, XBT correc-

tion methods were selected from the categories of depth

correction, temperature correction, and depth-plus-

temperature correction. The importance of initial ve-

locity variations of the XBT probe due to drop height

has recently been documented using a numerical method

(Abraham et al. 2012) and empirically from water tank

experiments (Bringas and Goni, 2015). C13 (and Cheng

et al. 2014) account for this effect in the depth offset

corrections.

As previously indicated, Lyman et al. (2010) show that

the differences due to XBT corrections and quality

control combined are the largest source of uncertainty in

OHCA calculations. In the present work, we quantify

uncertainties owing to XBT corrections but without the

complicating influence of quality control. We make a

comparison of OHCA using the different mapping

methods and the same XBT corrections. We also com-

pare OHCA using each mapping method with different

XBT corrections to see how each mapping method is

affected by the XBT correction used. Since there is no

consensus yet on the best XBT correction scheme to

implement, the W08 XBT corrections, as the longest in-

use XBT correction for OHCA (Domingues et al. 2008),

will be used for comparison of mapping methods with

different baseline climatologies.

c. Baseline climatologies

Also not part of the actual mapping method, but of

vital importance to the OHCA calculation, is the

baseline mean subtracted from observations to com-

pute anomalies. Ishii and Kimoto (2009, their Table

5) find a 10% difference in the linear trend of OHCA

(0.14 ZJ yr21; 1 ZJ 5 1 3 1021 J) from 1951 to 2005

when using the World Ocean Atlas 2005 (Locarnini

et al. 2006, hereafter WOA05) in place of WOA01.

The difference betweenWOA05 andWOA01 is in the

input data, the World Ocean Database 2005 (Boyer

et al. 2006, hereafter WOD05) and the World Ocean

Database 2001 (Conkright et al. 2002, hereafter

WOD01), respectively. WOD05 contains data from 7

additional years (1999–2005), additional historical

data, and additional quality control. However,

WOD05 and WOD01 are used as input data for tem-

perature anomalies as well in the respective cases, so

some of the difference in OHCA found by Ishii

and Kimoto (2009) may be due to these data differ-

ences. Lyman et al. (2010) compare OHCA using

baseline climatologies calculated using data from year

periods 1993–2003 and 2005–08 for their comparison

and find negligible differences in OHCA curves due to

baseline climatology after adjustment for the warmer

ocean in the 2005–08 period. Lyman and Johnson (2014)

show a striking difference in OHCA for the PMEL_M

mapping method when using a baseline climatology for

2005–10 from Argo data compared to the same clima-

tology adjusted to reflect estimates of mean ocean

temperature differences in 1955 relative to 2005–10. The

difference in baseline does not affect their final product,

the PMEL_R method (Lyman and Johnson 2014).

The mapping methods described above all use

baseline monthly mean temperature climatologies

over different time periods. LEV currently uses

monthly WOA09 as a baseline (Levitus et al. 2009).

WOA09 monthly climatologies are the means of five

decadal (or near decadal) climatologies (1955–64, 1965–

74, 1975–84, 1985–94, and 1995–2006), thus producing a

mean climatology of 1955–2006 that is not skewed to-

ward any one decade. The most recent PMEL maps

(Johnson et al. 2015) use a monthly baseline climatology

of 2004–13 derived from Argo data only. OHCA are

then adjusted to reflect differences from the period

1993–2013. The most current ISH (Ishii and Kimoto

2009) uses a baseline climatology encompassing years

1961–2000. DOM uses a climatology that has the long-

term linear trend of temperature change removed

(Alory et al. 2007). The EN uses a time-varying baseline

mean that incorporates persistence of temperature

change from previous years, as described above. All of

the above use climatological monthly mean tempera-

tures at discrete depths on a 18 grid. GOU uses clima-

tological monthlymean vertically averaged temperature

on a 1/48 grid. Similar to Ishii and Kimoto (2009) and

Lyman et al. (2010), OHCA in this study is calculated

relative to different baseline climatologies. These cal-

culations are used to assess the impact of baseline cli-

matology on each of the mapping methods.

2. Methods

To perform the intercomparison experiments for this

study, a uniform set of input data is generated. To pre-

pare the data for mapping, the method outlined in

Domingues et al. (2008, their supplementarymaterial) is

followed. For 1970–2004 the EN 3 version 2a database

(EN3v2a; Ingleby and Huddleston 2007) of in situ tem-

perature profiles is used for all bottle, CTD, and XBT

data. For 2000–08, the real-time and delayed mode

temperature profiles from Argo profiling floats as in

Barker et al. (2011) are used. Only temperature profile

data from the above-mentioned instrument classes are

used. Data from moored buoys, drifting buoys, towed
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CTDs, and mechanical bathythermographs (MBTs) are

not used, following the data choice of Domingues et al.

(2008). Inclusion/exclusion of specific ocean profile data

types will have an effect on OHCA uncertainty. It

should be noted that the Argo array still had geographic

gaps in its target coverage until 2006/07 and was not

designed initially to cover continental shelves, marginal

seas, or areas where ice is present (Roemmich et al.

2015). Of the years in this study with only Argo data

(2005–08), year 2005 should not be considered to have

full Argo coverage. After removal of gross outliers

using a simple check (Domingues et al. 2008), quality

flags set in the EN3v2a quality control procedures

(Ingleby and Huddleston 2007) are used almost exclu-

sively for bottle, CTD, and XBT data. If a profile had a

measurement with a quality flag other than good, the

entire profile was excluded from use. Additionally,

profiles are not used if they have coarse vertical reso-

lution (as in Willis et al. 2004) or if they terminate at

depths shallower than 100m. For each temperature

profile OHCA is calculated relative to a baseline cli-

matology for 0–300m and for 300–700m. The 0–700-m

OHCA is the sum of the OHCA for each of the two

layers. Splitting of the ocean into two layers follows

Domingues et al. (2008) and allows for the inclusion of

profile data that do not reach to the full 700-m study

depth. Vertical sampling depth contributes to OHCA

uncertainties. Each of the mapping methods is applied

to this same input OHCA dataset to calculate a 18
latitude–longitude bin gridded field of OHCA between

658S and 658N for each year 1970–2008 (58 gridded bins

in GOUmethod, years 1993–2008 only forWILmethod) .

The years are chosen to start with the advent of the XBT,

which provided increased global data coverage for 0–300m

for 1970 onward compared to previous years (Church et al.

2011;Gleckler et al. 2012;Abrahamet al. 2013; Lyman and

Johnson 2014). Since the only difference between the

gridded fields produced is the mapping method, the effect

of different mapping methods on OHCA calculations can

be readily examined. Furthermore, by using the same input

dataset as described above, with different sets of XBT

corrections and base climatologies, an examination of the

relative effect of these factors on the different mapping

methods can be evaluated.

The different test cases using the same input data

(EN3v2a 1 Barker Argo) are as follows, using as nam-

ing convention CY_T_XXX for each case. The CY_T

portion of the name refers to the baseline climatology

used, whereas the XXX portion refers to the XBT bias

correction (see Table 1 for a complete listing).

Uncertainty is represented by the yearly standard

deviation among grouped cases. There are seven map-

ping methods (eight for 1993–2008), six XBT correction

schemes, and three baseline climatologies representing

the different cases studies here, so the standard de-

viation is based on relatively few separate cases, espe-

cially for the baseline means. Furthermore, as discussed

in Lyman et al. (2010), the different cases are not com-

pletely independent since they use the same input

dataset. To better quantify confidence in the standard

deviation as uncertainty, effective degrees of freedom

(EDOF) are given for each case. The value of the EDOF

is always smaller than the simple degrees of freedom for

standard deviation since it accounts for the interde-

pendence of the datasets (Lyman et al. 2010, based on

Bretherton et al. 1999).

a. Baseline climatologies

Three monthly mean temperature climatologies—two

historical (C1_H and C2_H) and one modern (C3_M)—

were used to calculate OHCA (without seasonal vari-

ability) for each temperature profile from the input

dataset versions for the sensitivity tests (Table 1). The

historical climatologies (C1_H and C2_H) were origi-

nally mapped by Alory et al. (2007) and are based on

historical observations from the EN3v1d database

(Ingleby and Huddleston 2007)—the previous version to

EN3v2a—merged with recent Argo data (Barker et al.

2011). Cheng and Zhu (2015) show that historical cli-

matologies can have inconsistencies in the mean year for

different regions of the ocean based on sampling patterns

(e.g., good coverage most years in the Northern Hemi-

sphere and good coverage in the Southern Hemisphere

only during the Argo era). If mean year is different for

different regions, OHCA calculations will be inconsistent

among the regions. As part of the Alory et al. (2007)

mapping technique, a long-term linear trend was re-

moved at each grid point to reduce the impact of these

sampling biases from the observing system, ameliorating

the inconsistent mean year problem. At the same time,

inclusion of Argo data helped to reduce aliasing of sea-

sonal signals into historical changes, particularly in high-

latitude areas of the Southern Hemisphere (not shown),

which are historically poorly sampled in winter. C1_H

contains temperature data from bottles, CTDs, and Argo

floats, whereas C2_H also includes bias-corrected XBT

from W08. By including XBT data, C2_H has a greater

number of profiles and thus a better sampling coverage

than C1_H. On the other hand, C2_H is burdened with

uncertainties due to XBT bias corrections. The modern

monthly mean temperature climatology (C3_M), origi-

nally mapped by Locarnini et al. (2013), is dominated by

Argo data for 2005–12 but also includes data from bias-

corrected XBTs (Levitus et al. 2009), moored buoys,

drifting buoys, gliders, and towed CTDs from theWOA13

(Locarnini et al. 2013). Although its 8-yr period is
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relatively short, C3_M presents a more temporally uni-

form temperature field, which is not biased to different

epochs depending on location, as for many historical

climatologies; C3_Malso represents a warmer ocean than

both C1_H and C2_H. (C3_M global OHC is 157 ZJ

higher than C1_H and 141 ZJ higher than C2_H). The

latter two are representative of longer baseline periods

with cooler means.

b. XBT bias corrections

The XBT corrections examined are as follows: XXX5
none, W08, L09, I09, G11, GO12, and C13. Each case is

described above in section 1b. There are more available

XBT corrections, but those used here represent a cross

section of approaches—temperature corrections only

(L09), depth corrections only (W08, I09, and G11), and

depth and temperature corrections (GO12 and C13).

‘‘None’’ is the case where no XBT correction [other than

Hanawa et al. (1995)where necessary] is applied. Since it is

clear that there are XBT biases that necessitate correction

(Gouretski and Koltermann 2007), results from the none

case are presented for perspective but are not included in

any calculations of uncertainties.

3. Results

The global OHCA time series created as part of the

sensitivity experiments (Table 1) are organized into three

groups to assess the spread introduced:

(i) by mapping methods for each XBT correction

(section 3a),

(ii) by XBT corrections for each mapping method

(section 3b), and

(iii) by baseline climatologies for eachmapping method

(section 3c).

In the figures, the same historical climatology (C1_H)

underpins the results shown for (i) and (ii) and the same

XBT correction (W08) for (iii).

a. Effect of mapping methods

The globally integrated OHCA estimates using eight

different mapping methods using six different XBT

corrections and the no-XBT-correction case, relative to

the C1_H climatology (Figs. 1a–f), exhibit apparent

differences for all years over the 1970–2008 period.

Since we use the same climatology for all estimates, no

shifting to a common mean is required for purposes of

comparison here. The uncertainty of OHCA due to

XBT corrections is discussed below. Those features that

are common to Figs. 1a–e (but not necessarily the no-

XBT-correction case) are evaluated as differences at-

tributable to mapping method.

In the Argo-data-only years (2005–08) ISH mapping

produces the lowest globally integrated OHCA; WIL,

DOM, PMEL_R, and GOU produce the highest

OHCA values; while LEV, PMEL_M, and EN are

similarly clustered in the middle (Fig. 1). Some map-

ping method–XBT correction combinations have peak

OHCA in 2004 with a minimum in 2007 before in-

creasing in 2008. The last year for this experiment in

which XBT data were used was 2004, pointing to pos-

sible OHCA calculation uncertainty due to choice of

input ocean profile data. For earlier years, with more

XBT data, ISH, PMEL_M, and EN are usually very

similar, within about 20 ZJ of each other. LEV, DOM,

PMEL_R, and GOU generally track along with the

other three OHCA mappings but with some larger

year-to-year spikes (e.g., the increase of 79 ZJ from

1976 to 1977 followed by a decrease of 32 ZJ in 1978 in

the LEV W08 case), most often of higher OHCA than

ISH, PMEL_M, and EN. DOM yearly estimates con-

tain large spikes, which are usually reduced with a 3-yr

running mean average (e.g., Domingues et al. 2008;

Church et al. 2011). This smoothing, however, is not

applied here, the better to allow intercomparisons.

These spikes are not entirely physical but are due to the

specific mapping method.

TABLE 1. Summary of the sensitivity experiments performed in this study in terms of variations in XBT data (see section 1b), clima-

tological baselines, andmappingmethods (see section 1a). [Climatological baseline cases includeH: historical period, only bottles, CTDs,

andArgo data (C1_H); 2: historical period, as withH but includingXBTdata corrected byW08 (C2_H); andM:modern period (2005–12),

Argo and concurrent non-Argo data from the WOA13.]

XBT cases

Mapping Methods

DOM EN LEV GOU ISH PMEL_M PMEL_R WIL

No XBT correction H — H H H H H H

W08 Depth H, 2, M H, 2, M H, 2, M H, 2, M H, 2, M H, 2, M H, 2, M H, 2, M

I09 H H H H H H H H

L09 Temperature H H H H H H H H

GO12 Depth 1 temperature H H H H H H H H

C13 H H H H H H H H

G11 Depth (bathymetry approach) H H H H H H H H
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The range of OHCA estimates from the eight map-

ping methods is given in terms of standard deviations

(Fig. 2). Calculated EDOF associated with the standard

deviations of mapping methods are approximately 4 for

years 1970–2008 and 3 for years 1993–2008 (Table 2).

The differences among standard deviations for each

XBT correction case are discussed below, focusing on

mapping method differences. For the six XBT correc-

tions the standard deviation for the different mapping

methods is 16.5 ZJ over the 39-yr period, with a local

minimum of 10.0 ZJ in 1976 and 1985 and a local max-

imum above 30.0 ZJ in 1997 and 2001. Mean standard

deviations among estimates using different mapping

methods over 1970–2008 for different XBT corrections

range from 14.0 ZJ for W08 to 17.9 ZJ for C13. Over

1993–2008, the range of OHCA mapping method stan-

dard deviations for different XBT corrections is larger

(12.5 ZJ for W08 to 20.0 ZJ for L09), and the average

is 17.1. The average standard deviations—16.5 for

1970–2008 and 17.1 for 1993–2008—are used as the

overall estimates of the uncertainty due to mapping

method. This uncertainty is a measure of the spread of

OHCA values among the mapping methods within a

year. It is not exactly comparable to the 9.0-ZJ standard

error of the mean estimated by Lyman et al. (2010) for

the 1993–2008 time period. In Lyman et al. (2010) un-

certainties were given as standard errors, but we pres-

ent them here as standard deviations to facilitate

comparisons among the different mapping methods,

which produce time series with different decorrelation

time scales. The discrepancies among OHCA estimates

from different mapping methods diminish and con-

verge toward the end of the time series (Fig. 1), when

global coverage improves during the Argo period, as

discussed below. The standard deviations of theOHCA

values from the mid- to late 2000s are below the aver-

age over the entire period analyzed (Fig. 2) but similar

to values found in the early 1990s. Even with the in-

creased global coverage of the Argo array, there are

still differences due to mapping method, both for areas

still without data coverage and for areas with sufficient

data coverage.

Insight into the differences in OHCA estimates from

the various mapping methods can be gained by exploring

the yearly variations of fractional coverage for ocean

temperature data for each mapping method (Fig. 3).

Fractional coverage, the fraction of total ocean area with

sufficient information to estimate OHCA (Lyman and

Johnson 2008), is specific to each mapping method. Al-

ternatively, this quantity can be thought of as what frac-

tion of a globally uniform signal is recovered by each

mapping routine given the spatial and temporal data

distribution. In general, fractional coverage is relatively

high during the 1990s, when theWorldOceanCirculation

Experiment (WOCE) collected substantial numbers of

ocean temperature profiles around the world, and even

higher during the last few years of the record, when the

global Argo array of profiling CTD floats builds to its

initial target strength. The GOU mapping generally has

the smallest fractional coverage because it requires data

within a 58 grid box to assume that coverage is sufficient,

but after the final step, its fractional coverage becomes

equal to 1 in every year. PMEL_M and ISH methods are

similar, probably because they both use objective map-

ping methods that incorporate similar correlation length

scales and additionally give less weight to anomalies in

regions where there are few data points. The ENmethod,

while using spatial decorrelation length scales similar to

the other methods, adds temporal persistence beyond a

year to theirmonthly estimates as described above so that

even one year after a data point is collected, it still has a

28%effect on the anomaly estimate at that location in the

absence of new data. Hence, the EN fractional coverage

is somewhat higher than those of PMEL_Mand ISH. The

LEV maps use the longest spatial correlation length

scales of all and also do not take signal-to-noise ratios into

account in their smoothing; they thus result in large yearly

fractional coverages, lower only thanWIL and PMEL_R.

Since the PMEL_R estimates assume that the mean

anomalies of sampled regions apply to unsampled re-

gions, similar to the final GOU estimates, they also ef-

fectively have fractional coverage of 1 for every year

after that step has been taken.

The DOM curve does not show fractional coverage as

defined above but rather the percent of 18 ocean boxes

with data, as their method does not use a spatial map-

ping radius. DOM compensates for this relative data

paucity with a well-developed related field of sea level

height on which to regress the temperature data for

OHCA estimates. The relatively low percent coverage

may also lead to some of the spikes seen in the DOM

estimates. The spikes are not apparent in 3-yr means of

OHCA, which is how results of the DOM mapping

method are generally presented.

The different mapping methods yield different re-

sults regionally as well as in the global integral. The

geographic distribution of OHCA for the year with

highest percent coverage in this study (2008) varies by

method (Fig. 4). Coverage is nearly global, owing to the

Argo data, and extends at least to the 700-m depth, the

limit for this study, in almost all areas of the ocean

(Fig. 4a). La Niña conditions present in 2008 are rep-

resented by cooler tropical and subtropical eastern

Pacific waters in all mappings except EN (Fig. 4d).

Warming along the Indian Ocean Antarctic zone,

warming over most of the Atlantic Ocean, and cooling
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FIG. 1. Annual globally integrated OHCA (ZJ) time series for

1970–2008 computed using different mapping methods (see leg-

ends) using C1_H baseline climatology and XBTs corrected with

(a)W08, (b) L09, (c) I09, (d) G11, (e) GO12, (f) C13, and (g) none.

The y axis is from 250 to 200 ZJ. The mappings are: DOM (red),

LEV (blue), PMEL_M (dashed green), PMEL_R (solid green),

ISH (yellow), EN (black), GOU (cyan), and WIL (gray).
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in the central Indian Ocean are all represented to some

degree in each mapping method. The DOM (Fig. 4b)

and ISH (Fig. 4f) OHCA fields for 2008 are smoother

than the LEV, PMEL_M (Fig. 4e), and WIL (Fig. 4h)

OHCA fields, which exhibit more small-scale features.

The differences can be explained for each case. The

EOFmapping using sea surface height patterns in DOM

can only resolve the larger-scale features (Kaplan et al.

1998, 2000). The LEV mapping does not give less

weight to sparse data (a lone data point within a radius

of influence will fully describe the OHCA at a point in

the absence of additional data points, whereas other

mapping methods will weigh the singular data point

at a value less than one, diminishing its influence), the

PMEL_M and WIL mappings include a small spatial

correlation length scale, and the WIL mapping makes

use of detailed fields of altimetric sea surface height,

all of which tend to preserve smaller-scale features.

Whether some of these smaller-scale features are

noise introduced by the point measurements of the

in situ temperature profiles, are factors influencing sea

surface height other than OHCA, or may legitimately

represent the influences of eddies and other small-

scale ocean features will not be investigated here. The

different mapping methods are filtering noise and

smoothing at different length scales and this accounts

for some of the differences in OHCA from different

mapping methods.

The fractional global coverage for 1980 ranges from

45% (GOU) to 81% (LEV) and in general is much

lower than the coverage for 2008 (Figs. 3 and 5a). Areas

with data, such as the North Pacific, do not have cov-

erage below 300m (Fig. 5a). The DOM-mapped OHCA

for 1980 (Fig. 5b) is positive or close to 0.0 ZJ over most

FIG. 2. Standard deviations of global OHCA (ZJ) for 1970–2008 from ensemblemeans of the

eight different mapping methods for each of the six XBT bias corrections (see legend) refer-

enced to the C1_H baseline climatology. Horizontal lines represent the standard deviations

means over the full time period. The green line denotes the OHCA difference between DOM

and LEV results where land–ocean grids are represented in one or the other method, but not

both (ocean definition differences).

TABLE 2. EDOF calculated following Lyman et al. (2010) for mapping method cases comparison, XBT correction cases, and baseline

mean cases.

Mapping method cases XBT correction cases Baseline mean cases

1970–2008 1993–2008 1970–2008 1993–2008 1970–2008 1993–2008

W08 4.3 3.4 DOM 3.6 3.0 DOM 1.3 1.6

L09 3.6 3.6 LEV 3.6 3.1 LEV 1.4 1.3

I09 3.7 3.7 PMEL_M 4.2 2.9 PMEL_M 1.1 1.4

C13 3.9 3.7 PMEL_R 4.2 2.9 PMEL_R 1.8 1.8

GO12 3.9 3.5 ISH 3.6 2.9 ISH 1.2 1.6

G11 4.3 3.8 EN 3.9 3.1 EN 1.2 1.4

GOU 3.9 2.9 GOU 1.9 1.3

WIL 2.9 WIL 1.4
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of the global ocean, with the exception of the far-

western Pacific, east of the Philippines, along the track

of the South Pacific convergence zone (roughly) and

west of Australia. The DOM mapping also shows a co-

herent warm region in the central-east and northeast

Pacific. Other mappings exhibit localized cooling in the

northwest Atlantic and in the eastern Pacific. All map-

pings show warming greater than 10 3 1018 J in the

central Indian Ocean, but this warming is particularly

strong in LEV (Fig. 5c) and GOU (Fig. 5g), possibly

owing to the influence on these mapping methods of the

isolated data in the area (Fig. 5a). Despite the higher

coverage in the Northern Hemisphere for 1980 com-

pared to the Southern Hemisphere (Fig. 5a) the 18-ZJ

difference in OHCA for the Northern Hemisphere be-

tween DOM and LEV is not that much smaller than the

24.5-ZJ difference for the Southern Hemisphere. In all

maps, the Indian Ocean is mainly positive, with higher

OHCA for LEV and GOU (Figs. 5c,g). Strong positive

OHCA in all three basins of the Southern Ocean are

only seen in DOM (Fig. 5b).

Each mapping method has slightly different land–

ocean definitions, but only the DOMmethod excludes

marginal seas and ice-covered areas. In addition, com-

pared to the LEVmask, there are also some differences

along coastlines. (Figs. 4b and 5b, dark shading). De-

spite that, the effect of the different land–ocean defi-

nitions for DOM and LEV is not large with respect to

integrated global OHCA in comparison to mapping

method differences (Fig. 2, green curve).

Quality control of the in situ profile data is also im-

portant and can cause differences in OHCA using dif-

ferent mapping methods or keeping the mapping method

constant. The 2008OHCAfield using LEVmapping with

the World Ocean Database (WOD) quality control flags

and World Ocean Atlas 2009 baseline climatology

(Fig. 4i) is different from the field produced by LEVwith

the Barker Argo data quality control (Fig. 4c) because of

the sensitivity of the LEV mapping method to data

quality control. While these fields are very similar on the

large (basin) scale, there are some differences. For in-

stance, the cool OHCA in the eastern Pacific is larger in

the LEVmethodwithWODquality control (Fig. 4i) than

in the LEV method with Barker Argo quality control

(Fig. 4c). The 1980 OHCA field mapped with the LEV

method using WOD quality control flags (Fig. 5h) has

fewer small-scale features than that using EN3v2a quality

control (Fig. 5c), although there are some anomalous

features in Fig. 5h not in Fig. 5c (viz., the northern North

Atlantic). None of the anomalous features are found

FIG. 3. Fraction of the global ocean considered sampled for temperature data in each year for

eachmappingmethod (see legend). The PMEL_R andGOUmethod after its final infilling step

are equal to 1 for every year (green solid line). (GOU curve before infill is shown here.) DOM

curve (red) is not fractional coverage but indicates where data are available for 18 grid boxes

without including additional spatial radius.
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FIG. 4. (a) Geographic distribution for 2008 of ocean profiles

(red is 0–300-m data only, and black is 0–300- and 300–700-m data).

OHCA for (b) DOM, (c) LEV (using EN3v2 and Barker quality-

controlled data), (d) EN, (e) PMEL_M, (f) ISH, (g) GOU, (h)WIL,

and (i) LEV using WOD quality-controlled data. For (b)–(i),

contour interval is 5 3 1018 J, red signifies positive OHCA, and

blue negative. Dark gray shading in (b) indicates areas without

calculated OHCA.
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using the DOM mapping (Fig. 5b) or are as pronounced

in the other mappings, which use large-spatial-scale bins

or give less weight to spatially isolated profiles. Quality

control of in situ temperature profile data is not explored

further here as a source of difference in OHCA.

b. Effects of XBT corrections

Here we explore the effect of each XBT correction

on the global integral of OHCA by mapping method

(Fig. 6) relative to the C1_H baseline climatology.

Yearly values for different XBT corrections can vary

widely using the same mapping method. The W08 XBT

correction is a clear outlier from 1999 to 2001 in most

panels (e.g., Figs. 6a,c,d,e,g,h). Part of this deviation is

explained by the use of different dataset versions. At

least for DOM, the OHCA increase over 2000–04 when

using the EN3v1d data (Domingues et al. 2008) is about

50% smaller than observed in Fig. 6a (based on EN3v2a

data). For the LEV estimate, however, these differences

are smaller (not shown). An investigation of the differ-

ences between EN3v1d and EN3v2a would be needed to

understand these changes.

FIG. 5. As in Fig. 4, but for 1980 and with (a)–(h) only (without WIL mapping).
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EDOFs for XBT correction for each mapping method

are approximately 4 for years 1970–2008 and 3 for 1993–

2008, less than the number of mapping methods inves-

tigated (seven for 1970–2008 and eight for 1993–2008;

Table 1). Some mapping methods exhibit larger stan-

dard deviations for estimates using different XBT cor-

rections in a given year, showing more sensitivity to the

XBT correction used (Fig. 7). The DOM mapping

method is the most sensitive to XBT correction method

used, while ISH and PMEL_M are the least sensitive,

based on the mean standard deviation (Fig. 7). Again,

we use the standard deviation of different XBT correc-

tions for a given mapping method as a measure of the

variations inherent in estimates due to XBT correction

used for each mapping method (Fig. 7). The mean

standard deviations for different XBT corrections ap-

plied to each mapping method are calculated excluding

the years 2005–08, for which only Argo data were used.

The mean standard deviation for XBT corrections for

the ensemble of mapping methods is 12.1 ZJ for the

period 1970–2004 and 14.9 ZJ for the period 1993–2004.

Excluding years 1999–2001 because of the outliers in

W08, these values are 11.6 ZJ for 1970–2004 and 12.2

JZ for 1993–2004. These values excluding years 1999–

2001 will be used in comparing XBT correction un-

certainty. XBT correction is a larger factor than map-

ping method for DOM for both time periods, although

nearly equal for 1993–2008. This result could arise be-

cause the DOM mapping method focuses on large-

scale patterns, possibly making it more susceptible to

changes in sampling in data-sparse areas and also be-

cause of variations in XBT corrections in these areas.

For all other mapping methods, XBT correction en-

genders a smaller mean uncertainty than do un-

certainties due to mapping method. XBT correction

uncertainty was calculated using the C1_H baseline

climatology. This uncertainty was also calculated for

C2_H and C3_M baselines for the DOM and LEV

mapping methods (not shown). There was very little

difference in XBT correction uncertainty between the

C1_H and C2_H cases for DOM and LEV. However,

the C3_M case produced smaller yearly standard de-

viations for some years (not shown)—namely, those

years with outliers, such as 1999–2001 (discussed

above for the W08 correction), and also years such as

1990–91 with one or more XBT correction outliers.

Use of the C3_M baseline climatology ameliorated

the effects of XBT correction outliers while giving

nearly identical standard deviation for years with

smaller differences between corrections. The mean

standard deviation values for different XBT correc-

tions using the C3_M baseline climatology for DOM

mapping method are 15.9 ZJ for 1970–2004 (compared

with 16.7 ZJ, excluding years 1999–2001) and 17.1 ZJ for

1993–2004 (compared with 18.9 ZJ, again excluding

years 1999–2001). For LEV, mean standard deviations

are 10.2 ZJ for 1970–2004 (11.1 ZJ using C1_H) and 8.8

ZJ for 1993–2004 (10.4 ZJ using C1_H). Why the C3_M

baseline lessens the effects of outlier XBT corrections

is a question for further study.

c. Effects of baseline climatologies

The final variable in the calculation of OHCA that

we examine with respect to the different mapping

methods is baseline climatology. For all mapping

methods, a baseline monthly mean of temperature or

sea level is subtracted from in situ temperature obser-

vations to calculate an anomaly value that is then used

to map OHCA. All OHCA calculations to this point

use the C1_H climatological baseline mean. C1_H

uses a baseline temperature climatology calculated

from all bottle, CTD, and Argo profiling floats for all

available years. The climatological monthly means are

constructed with a model that includes a linear trend

with time to reduce temporal biases in the climatology

owing to long-term temperature changes (Alory et al.

2007). For comparison, a similarly calculated baseline

is used in C2_H. C2_H uses a baseline temperature

climatology calculated in the same way as Alory et al.

(2007), but with the addition of XBT data corrected

using W08 estimates of fall-rate corrections. C2_H has

the benefit of greatly increased spatial and temporal

data coverage with the disadvantage of the uncertainty

introduced by the XBT bias and choice of correction.

Cheng and Zhu (2015) recommend using an Argo-era

climatology rather than a longer, historical time period.

This recommendation arises because of the full geo-

graphical and temporal sampling during the Argo era

compared with the nongeographically uniform time

period (e.g., Southern Hemisphere with a different

mean year of all observations relative to the Northern

Hemisphere) found in historical data climatologies.

The C1_H and C2_H climatologies calculate a trend

factor for each ocean grid to make the mean year

geographically uniform, mitigating this issue (Alory

et al. 2007). To address differences due to the use of

temporally limited data coverage representing the

Argo period, baseline mean C3_M uses the World

Ocean Atlas 2013 (WOA13) climatology from the

2005–12 time period (Locarnini et al. 2013). All in-

strument types are used, including XBTs corrected

using the L09 method, but the time period is dominated

by Argo measurements. OHCA in the 2005–12 time

period is warmer than over the rest of the 1970–2008

time period under consideration and can have an effect

on the results from some mapping methods (Lyman
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FIG. 6. Annual globally integrated OHCA (ZJ) time series for 1970–2008 for mappings using: (a) DOM,

(b) LEV, (c) PMEL_M, (d) PMEL_R, (e) ISH, (f) EN, (g) GOU, and (h) WIL for 1993–2008, relative to the

C1_H baseline climatology, using different XBT corrections: none (dashed gray), W08 (black), L09 (red), I09

(purple), G11 (blue), GO12 (cyan), and C13 (yellow). The y axis is from 250 to 200 ZJ.
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and Johnson 2014). The global integral of OHC for

CM_3 is 157 ZJ warmer than CH_1, while that for

CH_2 is only 16 ZJ warmer than CH_1.

For simplicity, only the W08 XBT correction case is

examined. Results using other XBT correction cases

were nearly identical (in yearly standard deviation,

means within 0.1 ZJ) for the DOM and LEV methods

for each of the XBT correction cases but could possibly

be different for othermappingmethods (not calculated).

We choose to adjust results from the three climatologi-

cal cases for comparison. Since 2008 has the widest and

most homogenous spatial and temporal coverage (and

does not include XBT data) we adjust OHCA estimates

for C2_H and C3_M by subtracting out the difference in

OHCA between these cases and the C1_H case for year

2008. The 2008 differences from C1_H for C2_H are less

than 18 ZJ, but those for C3_M are larger, being 167 ZJ

for DOM, 103 ZJ for LEV, 118 ZJ for ISH, 154 ZJ for

PMEL_M, 167 ZJ for PMEL_R, 154 ZJ for EN, 152 ZJ

for GOU, and 149 ZJ for WIL.

After these 2008 offsets are applied, the mapping

methods are still affected to differing degrees by the

change in baseline climatology (Figs. 8a–g). For all

mappingmethods except GOU, the difference between

OHCA using C1_H and C2_H is small, less than 5 ZJ

for most years, never exceeding 16 ZJ. For GOU in the

1990s and early 2000s, the difference in OHCA be-

tween C1_H and C2_H cases is greater than 25 ZJ for

most years. It is not clear why this occurs only with the

GOU mapping method. Differences between OHCA

using the C1_H and C3_M baseline climatologies are

more pronounced for all mapping methods than be-

tween the C1_H and C2_H cases. For the DOM, LEV,

and PMEL_R mapping methods, the C3_M OHCA

yearly values are generally lower than the C1_H

values, consistent with Cheng and Zhu (2015), more so

for the DOMmapping method than the other two. For

the PMEL_M, ISH, and EN mapping methods, the

C3_M OHCA yearly values are higher than for the

C1_H OHCA values and the difference is larger for

years earlier in the time series. The effect of the

baseline mean on the PMEL_M and ISH, methods,

and variants on zero infill (populating data void areas

with values which represent the absence of change), with

the warmer baseline (2005–12 in C3_M) result in smaller

linear trends than the cooler historical climatologies (C1_

H, C2_H), similar to the results of the experiment docu-

mented in Lyman and Johnson (2014).

The EDOF for baseline climatology comparison for

each mapping method (Table 2) is very low, approxi-

mately 1. With that result in mind we turn to standard

deviations of the estimates using different climatologies

for the same mapping method (Fig. 9). WIL and LEV

show a low sensitivity to baseline climatology, with LEV

having mean standard deviations of 3.5 and 2.7 ZJ for

1970–2008 and 1993–2008, respectively (Table 3), and

WIL having a 3.1-ZJ mean standard deviation for 1993–

2008. PMEL_R and ISH, havemean standard deviations

FIG. 7. Standard deviations of the yearly ensemble means of global OHCA (ZJ) for 1970–

2008 using different XBT corrections for each mapping method (see legend) from 1970–2008

referenced to the C1_H baseline climatology. Horizontal lines represent the mean standard

deviations over the full time series.
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FIG. 8. Annual globally integrated OHCA (ZJ) time series for 1970–2008, using theW08 XBT correction relative to

three climatological mean baselines—C1_H (black), C2_H (red), and C3_H (blue)—for mappings using: (a) DOM,

(b) LEV, (c) PMEL_M, (d) PMEL_R, (e) ISH, (f) EN, (g) GOU, and (h) WIL for 1993–2008. Individual curves have

been shifted to overlie each other in 2008, the year with the best coverage (Fig. 3). The y axis is from2100 to 150 ZJ.
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due to changes in baseline climatology of 6.6 and 8.6 ZJ,

respectively, for 1970–2008, higher than LEV but lower

than for the other mappingmethods. The results for ISH

are similar to the results reported in Ishii and Kimoto

(2009). DOM, EN, GOU, and PMEL_M all have mean

standard deviations due to baseline climatology greater

than 10.0 ZJ for 1970–2008. The standard deviation of

the GOU method has the largest differences between

C1_H and C2_H cases in the 1993–2008 period.

Standard deviations are constructed here only from

the three baseline cases for each mapping method for

each year, a very small sample size (approximately 1

EDOF; Table 2), and are subject to our choice to force

agreement at 2008, which impacts both the magnitudes

and temporal structures of the standard deviations.

Subject to these caveats, the effects of different baseline

mean in all mapping methods are smaller than the dif-

ference between the mapping methods themselves.

However, relative importance of difference due to XBT

correction and to baseline climatology is more year de-

pendent, with XBT correction uncertainty larger in later

years (1990s and 2000s) and baseline climatology un-

certainty larger in earlier years (1970s and 1980s) for

somemappingmethods with zero infill variants (PMEL_

M and ISH) as well as EN. Therefore, the choice of the

baseline climatology is of importance in estimating the

uncertainty in OHCAwith a widely varying dependence

on themappingmethod used. The choice of a latter-year

FIG. 9. Standard deviations of the yearly ensemble means of global OHCA (ZJ) for 1970–

2008 based on the three different baseline climatologies (C1_H, C2_H, and C3_H) for each

mapping method (see legend). Horizontal lines represent mean standard deviations over the

full time period.

TABLE 3. Time-mean standard deviations of global OHCA (ZJ) associated with variations in XBT bias corrections and baseline

climatologies for different mapping methods for 1970–2008 and 1993–2008 (in parentheses). The asterisk indicates that the WIL method

can only be calculated from 1993–2008. TheXBT bias correction standard deviation is only through 2004, since XBTs were not used in this

experiment beyond that year; and also excludes years 1999–2001 because of obvious outliers in the W08 method for those years.

Mapping method XBT bias correction Baseline climatology

DOM 16.5 (17.1) 16.7 (18.9) 11.8 (7.1)

LEV 16.5 (17.1) 11.1 (10.4) 3.5 (2.7)

PMEL_M 16.5 (17.1) 7.4 (11.5) 14.5 (4.7)

PMEL_R 16.5 (17.1) 12.1 (15.3) 6.6 (4.9)

ISH 16.5 (17.1) 9.5 (10.5) 8.6 (3.9)

EN 16.5 (17.1) 12.8 (15.1) 11.8 (5.6)

GOU 16.5 (17.1) 11.3 (15.2) 11.5 (9.8)

WIL* — (17.1) — (12.8) — (3.1)

Average 16.5 (17.1) 11.6 (12.2) 9.8 (5.2)
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(Argo period) climatology (recommended in Cheng and

Zhu 2015) may be appropriate for some mapping

methods but will cause larger uncertainties for methods

with variants on zero infill if applied to data-sparse

years. For other mapping methods, such as LEV and

WIL, the uncertainties due to baseline climatology are

small in comparison to other uncertainties. A further

study, resolving the caveats listed above, would help to

clarify the results given here.

d. Linear trend

Finally, we consider linear trend estimates for OHCA

in the global ocean (Table 4 and Fig. 10) for each map-

pingmethod and each case (XBT correction and baseline

climatology) examined here. Here standard errors are

given for linear trend uncertainties. Degrees of freedom

are estimated for each time series by dividing the time

series length by its decorrelation time scale and then

subtracting two. The decorrelation time scale for each

time series is estimated as twice the maximum value of

the lagged autocorrelation of the residual computed by

subtracting the linear trend from the time series (von

Storch and Zwiers 1999). For 1970–2008 [Table 4 (top)

and Fig. 10a], the DOM linear trend is highest in five of

the eight test cases including each baseline climatology,

while PMEL_R linear trend is highest in four (both have

the same value for the W08 C1_H case). The GOU,

DOM, and PMEL_R mapping methods form a distinct

group with an average linear trend over all cases greater

than14.0ZJyr21. These results make sense for PMEL_R

and GOU since they both explicitly infill data-sparse re-

gions with the average of well-sampled regions when

constructing a global mean. PMEL_M, ISH, and EN all

reach their lowest value using the C3_M baseline, the

warmest climatology. This result makes sense as well since

these mapping methods will tend to underestimate trends

using warm climatologies when earlier, colder years are

data sparse (Lyman and Johnson 2014). ISH consistently

exhibits the lowest trend value for all XBT correction ca-

ses, excepting C3_M. ISH, LEV, PMEL_M, and EN

form a group of mapping methods whose average linear

trend over all eight cases is less than13.5ZJyr21. Finally,

all cases for all mapping methods exhibit a warming trend

within the standard error over the period 1970–2008, even

the PMEL_M results using the C3_M baseline case

(Fig. 10), which has the lowest linear trend of all cases at

1.3 6 0.74ZJyr21. The reasons for that low result have

been carefully explained, along with the reason PMEL_R

is preferable for global integrals of OHCA (Lyman and

Johnson 2014).

For the period 1993–2008 [Table 4 (bottom) and Fig.

10b] WIL has the highest linear trend for all cases using

the C1_H baseline, except the GO12 XBT correction

case, where PMEL_R is higher.WIL also has the highest

linear trend for the C2_H case, while GOU has the

highest linear trend for the C3_M case. The highest

TABLE 4. Linear trends of OHCA (ZJ yr21) for 1970–2008 and 1993–2008 by mapping and test case with standard errors and degrees of

freedom (in parentheses). Degrees of freedom are estimated as described in the text. The W08 case is equivalent to the C1_H case. The

none case is not included in the mean value in the final row. The uncertainty of the mean in the last row and column is the standard

deviation of the included cases.

1970–2008

DOM LEV PMEL_M PMEL_R ISH EN GOU Mean

W08 3.9 6 0.65 (9.7) 3.1 6 0.48 (12.7) 3.2 6 0.61 (7.1) 3.9 6 0.65 (10.8) 2.9 6 0.47 (7.5) 3.4 6 0.60 (7.7) 3.7 6 0.70 (11.8) 3.4 6 0.4

L09 5.0 6 0.81 (6.8) 3.7 6 0.44 (14.2) 3.9 6 0.67 (4.4) 4.9 6 0.75 (7.9) 3.5 6 0.55 (4.8) 4.2 6 0.78 (5.0) 4.8 6 0.78 (10.7) 4.3 6 0.6

C13 3.7 6 0.66 (8.7) 3.0 6 0.44 (13.6) 3.5 6 0.67 (4.9) 4.2 6 0.77 (8.0) 2.9 6 0.50 (5.1) 3.4 6 0.70 (5.7) 4.0 6 0.79 (10.1) 3.5 6 0.5

I09 4.1 6 0.42 (17.0) 3.1 6 0.35 (17.0) 3.7 6 0.44 (7.6) 4.6 6 0.48 (14.2) 3.1 6 0.31 (8.97) 3.6 6 0.48 (8.0) 4.4 6 0.59 (14.7) 3.8 6 0.6

G11 4.1 6 1.0 (5.3) 3.3 6 0.69 (7.4) 3.5 6 0.73 (5.1) 4.4 6 0.85 (7.1) 3.1 6 0.83 (3.3) 3.6 6 1.1 (3.8) 4.1 6 1.0 (7.9) 3.7 6 0.4

GO12 4.8 6 0.75 (7.0) 3.7 6 0.44 (13.4) 3.4 6 0.91 (3.7) 4.3 6 1.11 (5.2) 3.4 6 0.79 (3.3) 3.7 6 1.1 (3.5) 4.1 6 0.87 (9.1) 3.9 6 0.5

None 3.9 6 1.4 (5.5) 2.9 6 0.78 (7.3) 4.4 6 0.67 (6.2) 5.3 6 0.95 (7.4) 3.1 6 0.66 (5.2) 3.5 6 1.0 (4.9) 5.1 6 1.1 (7.9) 4.0 6 0.9

C2_H 3.9 6 0.65 (9.7) 3.1 6 0.49 (12.7) 2.9 6 0.69 (6.6) 3.7 6 0.78 (9.0) 2.7 6 0.53 (6.7) 3.2 6 0.66 (7.2) 3.7 6 0.70 (11.8) 3.3 6 0.4

C3_M 4.7 6 0.70 (9.8) 3.4 6 0.61 (10.2) 1.3 6 0.74 (5.8) 4.0 6 0.82 (9.1) 2.0 6 0.51 (7.2) 2.3 6 0.58 (7.9) 3.6 6 1.1 (9.0) 3.0 6 1.1

Mean 4.2 6 0.4 3.3 6 0.3 3.3 6 0.8 4.4 6 0.5 3.0 6 0.4 3.4 6 0.5 4.2 6 0.5

1993–2008

DOM LEV PMEL_M PMEL_R ISH EN GOU WIL Mean

W08 3.3 6 3.4 (2.3) 4.0 6 2.5 (3.0) 6.2 6 3.0 (1.8) 7.0 6 2.7 (2.4) 5.1 6 2.4 (1.9) 5.8 6 3.2 (2.2) 6.0 6 2.7 (2.5) 7.1 6 2.7 (1.7) 5.6 6 1.3

L09 2.3 6 2.9 (2.5) 3.9 6 1.5 (5.2) 5.9 6 1.1 (5.3) 6.7 6 2.8 (3.0) 4.8 6 1.2 (3.5) 5.6 6 1.7 (4.6) 5.3 6 2.9 (3.3) 7.0 6 1.5 (3.2) 5.2 6 1.4

C13 1.5 6 1.6 (3.6) 3.2 6 1.3 (5.5) 5.1 6 1.2 (4.9) 5.7 6 2.3 (3.8) 4.2 6 0.88 (3.8) 4.7 6 1.6 (4.5) 4.5 6 0.23 (3.6) 6.1 6 1.3 (3.0) 4.4 6 1.4

I09 2.0 6 1.3 (4.5) 3.3 6 1.4 (5.0) 5.5 6 1.0 (5.4) 6.1 6 2.3 (3.0) 4.4 6 1.0 (3.59) 5.0 6 1.4 (4.6) 5.0 6 1.8 (4.4) 6.3 6 1.3 (2.9) 4.7 6 1.4

G11 3.7 6 0.95 (14) 4.2 6 1.5 (5.0) 6.3 6 1.3 (5.1) 7.1 6 1.7 (5.3) 5.4 6 1.1 (4.2) 6.2 6 1.7 (4.8) 6.2 6 1.8 (0.78) 7.5 6 1.3 (3.6) 5.8 6 1.2

GO12 6.0 6 2.0 (2.8) 5.7 6 1.5 (4.8) 8.0 6 1.3 (4.7) 9.4 6 2.4 (3.7) 6.7 6 1.2 (3.1) 8.7 6 1.7 (4.2) 8.4 6 2.3 (3.7) 9.0 6 1.6 (2.7) 7.7 6 1.3

None 22.8 6 5.4 (1.6) 0.7 6 2.2 (4.0) 2.5 6 2.0 (3.2) 2.2 6 5.0 (1.8) 1.8 6 2.4 (2.0) 1.8 6 2.2 (3.6) 0.53 6 4.7 (2.0) 3.4 6 3.0 (2.1) 1.3 6 1.8

C2_H 4.2 6 3.7 (2.1) 4.0 6 2.6 (3.0) 6.6 6 3.1 (1.8) 7.7 6 3.1 (14) 5.6 6 2.4 (1.9) 6.4 6 3.2 (2.2) 6.0 6 2.7 (2.5) 7.4 6 3.1 (1.6) 6.0 6 1.3

C3_M 5.6 6 4.0 (2.0) 4.8 6 3.1 (2.6) 6.0 6 1.9 (2.5) 7.9 6 3.6 (2.0) 4.9 6 1.8 (2.3) 5.5 6 2.2 (2.9) 8.2 6 3.9 (1.9) 7.2 6 2.8 (1.7) 6.3 6 1.2

Mean 3.6 6 1.5 4.1 6 0.8 6.2 6 0.8 7.2 6 1.1 5.1 6 0.7 6.0 6 1.2 6.2 6 1.3 7.2 6 0.8
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FIG. 10. Linear trends (filled circles) of annual globally integratedOHCA(ZJ yr21)

with standard errors of the mean (error bars) for (a) 1970–2008 and (b) 1993–2008 by

mapping method (see legends) and for all test cases (see horizontal axis labels). The

C2_HandC3_Mcases usedW08XBTbias corrections. TheW08, L09, C13, I09,G11,

GO12, and none cases used C1_H baseline climatology.
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linear trend in the study is the PMEL_RC1_M case with

the GO12XBT correction (9.46 2.4ZJ yr21). For 1993–

2008, PMEL_M, EN, and GOU all have average linear

trends between 16.0 and 16.2ZJ yr21, while DOM,

LEV, and ISH all have average linear trends less than or

equal to 15.1 ZJ. PMEL_R and WIL have the highest

trend, both at 17.2ZJ yr21 for 1993–2008. The DOM

average linear trend for 1993–2008 over all cases is the

lowest of all mapping methods, at 13.6 6 1.5ZJ yr21,

while the DOM method produces the second highest

average linear trend over 1970–2008 (with PMEL_R

highest), with ISH lowest for 1970–2008. While the

standard error of the mean for cases over 1993–2008 are

higher than the same cases over 1970–2008, warming

trends are all positive within the standard error, except

the W08, L09, and C13 (C1_H) cases for the DOM

method (3.3 6 3.4ZJ yr21, 2.3 6 2.9ZJ yr21, and 1.5 6
1.6ZJ yr21, respectively).

For some perspective, the recent estimate of OHCA

linear trend over 1970–2005 of 5.6 6 0.15ZJ yr21 from

Cheng et al. (2015) is higher than any of the present

results, although within uncertainty of all DOM, PMEL_

R, and GOU cases and all but one historical baseline

climatology PMEL_M case. This is due to a combination

of all factors tested here (mapping method, XBT cor-

rection, and baseline mean) as well as input dataset/

quality control. There are also three fewer years in Cheng

et al. (2015), but their 1970–2014 linear trend (5.56 0.15

ZJ) is nearly identical to their 1970–2005 trend.

Of the five estimates of 1993–2014 OHCA linear trend

from Johnson et al. (2015), all are within uncertainty of the

most similar case from thepresentwork for 1993–2008,with

four higher linear trends [their PMEL–JPL–Joint Institute

for Marine and Atmospheric Research (JIMAR) com-

pared with PMEL_R, their NODC compared with LEV,

their CSIRO–ACE CRC–IMAS–University of Tasmania

(UTAS) compared with DOM, and their Met Office

Hadley Centre compared with EN] and one lower linear

trend [their Meteorological Research Institute (MRI)–

JMA compared with ISH]. Differences are due in part to

the different time period covered but also to factors such as

baseline climatology and dataset/quality control used.

4. Conclusions

By holding input data constant, we isolate the sensi-

tivity of global OHCA estimates in the upper 700m of

the ocean over a 39-yr period, 1970–2008, to mapping

method, XBT bias correction, and baseline climatology.

Annual differences of roughly 17.1 ZJ in OHCA es-

timates can be attributed to differences in mapping

methods used by seven groups (eight methods) actively

performing such calculations (Table 3). These differences

in calculations are not simply due to infilling of data gaps

but also to smoothing or filtering of fields geographically

where data are present. The smoothing or filtering

inherent in each mapping method is performed over

different length scales. Quality flags for the input data

will also affect calculated OHCA differently based

on the length scale and amount of smoothing of each

mapping method.

The choice of XBT bias correction has an effect on

differences in calculated OHCA, as previously re-

ported by Lyman et al. (2010). However, in the present

study, we find that mapping method is generally the

largest source of uncertainty (in six of seven calcula-

tions for 1970–2008 and five of eight calculations for

1993–2008, as shown in Table 3). Only for the DOM

mapping method does the choice of XBT correction

have a larger impact on OHCA estimates over both

periods than does the overall choice of mapping

method. For other mapping methods, the choice of

XBT correction has a smaller impact for 1970–2008

(between 8.0 and 12.6 ZJ; Table 3) than the choice of

mapping method (16.5 ZJ). The relative uncertainty of

mapping method and XBT correction for 1993–2008 is

somewhat more dependent on mapping method, with

DOM, PMEL_R, and GOU having higher uncer-

tainties for XBT correction than mapping method un-

certainty. The XBT community is approaching, but has

not yet reached, a consensus on the annually varying

corrections of both depth (probe fall rate) and tem-

perature to minimize the uncertainty of tempera-

ture measurements associated with XBT corrections

(Cheng et al. 2016). Once a consensus is reached, this

particular uncertainty should be further reduced (but

not eliminated) as a source of uncertainty in historical

and future OHCA calculations.

The choice of baseline climatologicalmonthlymean also

has an effect on OHCA calculations that is different for

the different mapping methods. As Lyman and Johnson

(2014) describe, for some mapping methods, this may be

due to the relation between the infilling method and the

warm time period over which the 2005–12 climatology was

calculated. The warmer climatology will engender larger

cool anomalies in earlier years (compared to a historical

mean climatology), the effects of which are damped in the

integral by infilling zero anomaly in data-sparse regions.

Taking into account the small 2008 offset compared to

total heat content offset between C1_H and C3_M cli-

matologies (103 vs 157 ZJ), the LEV mapping method is

not very sensitive to the baseline climatology used, despite

using a variation on relaxation to climatology as infill

method. For LEV, this insensitivity may be due to the

more liberal definition used for the area over which the

mapping method can incorporate data for each grid
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box (Fig. 3). Choosing a proper baseline climatology

can be method dependent, as the PMEL_M method

should not be (and is not) employed with a climatology

consisting of recent data only, as per the reasons out-

lined in Lyman and Johnson (2014). For the DOM

method, further investigation would reveal which

baseline climatology produces the most realistic results,

possibly on a regional level.

Mean linear trends for each mapping method from all

cases listed in Table 1 (except none) range from 13.0

(ISH) to 14.4ZJ yr21 (PMEL_R) for the 1970–2008

period and from13.6 (DOM) to17.2ZJ yr21 (WIL and

PMEL_R) for 1993–2008. Expressing these values in

terms of watts per square meter, the unit in which the

earth’s heat budget is usually discussed, the trends are

from 0.08 to 0.31Wm22 for 1970–2008 and from 0.09 to

0.58Wm22 for 1993–2008, using the global surface area of

5.1443 1014m2. These linear trends are small compared to

the yearly uncertainties calculated here. However, all

(XBT corrected) upper-OHCA estimates regardless of

baseline climatology or mapping method show a distinc-

tive increase over the 1970–2008 period and, except for the

DOMmethod, a higher warming rate over the 1993–2008

period. Regardless of mapping method, OHCA calcula-

tions do reveal an increase in ocean heat content on both

the multidecadal and decadal time scales.

We find that the uncertainty in calculation of OHCA

from irregular spatial and temporal data distribution is

larger than interannual variability in OHCA, but long-

term trends are still statistically robust, in agreement with

Lyman et al. (2010), even when extending the time series

back to 1970 and including years with relatively sparse

data distribution. The mapping method is shown here

to be a source of uncertainty on the order of 17 ZJ. XBT

corrections and baseline climatological mean add un-

certainties dependent on the mapping method used,

but at least the uncertainty due to the XBT correction

should be reduced if a consensus can be reached on the

optimum corrections. Furthermore, care is indicated in

choosing the best baseline climatology, perhaps on a

method-dependent basis.

The present work carries forward understanding of

the uncertainties affecting in situ estimates of OHCA,

but there is still much work to do. Future work will

include the following:

d Refinement in understanding the role of the baseline

climatology in OHCA uncertainty, with a fuller ex-

ploration of the relative effects of the more uniform

spatial and seasonal coverage versus shorter time span

inherent in Argo-float-era climatologies—for instance, a

10-yr Argo-period climatology constructed from sub-

sampledmodel data is unbiased when compared to the

spatially complete model data for the same period,

but a shorter-term Argo-era climatology results in

larger errors than a longer-term climatology in some

regions (Good 2016).
d Exploring the benefits and deficiencies in filtering

OHCA signals at different spatial scales as well as

differences due to nonseasonal signals (e.g., El Niño).
d Testing whether different grid sizes for averaging

in situ data affect OHCA calculations (same mapping

method, varying grid size).
d Quantifying the uncertainty introduced by dataset

choices and quality control choices.
d Quantifying XBT correction schemes effectiveness

compared with CTD reference data.
d Better understanding the effects of vertical sampling,

both spacing between adjacent measurements and the

absence or presence of data in different depth ranges.
d Augmenting the current historic temperature profile

database especially for data-sparse regions.

In summary, although the present work helps to

quantify the uncertainties in OHCA estimation from

in situ oceanographic profile data, there is still much

work to be done to refine the process and interpret the

results.
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