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Abstract A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints

under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to

degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under

constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the

volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new

joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing

the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in

shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in

shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a

valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint

sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints.

Keywords Hybrid FEM-DEM � Rock joint � Asperity sliding � Asperity shearing � Fragment grinding

1 Introduction

Asperity degradation and grinding during rock joint

shearing process play an essential role in the mechanical

and hydraulic behaviour of the rock joints. Numerous

laboratory experiments were conducted by various

researchers (Pereira and de Freitas 1993; Seidel and

Haberfield 1995, 2002; Lee et al. 2001; Hossaini et al.

2014) to describe the asperity sliding and damage caused

by overriding of asperities and overstressing upon shearing.

However, a number of outstanding issues of importance

relating to rock joint fracturing still remain (Barton 2013),

such as asperity degradation and breakage—induced gouge

production and grinding (Jing and Stephansson 2007). The

asperity degradation and associated gouge production and

grinding may affect the shape of a joint surface and the

subsequent response of the rock joints. Thus, improved

understanding of the asperity degradation and gouge

grinding is essential to characterize the mechanical and

hydraulic behaviour of the rock joints, which have

important applications in a variety of fields including rock

slope engineering, mining, tunnelling, petroleum engi-

neering and earth sciences.

Asperity degradation has been studied by directly

assessing the surface morphology of a rough rock joint

before and after shearing. Assuming the asperities on the

rock joint surface had identical shape and same inclination

angle, Patton (1966) developed the first theoretical model

to predict the shear strength of rough rock joints. Although

it took into account the effect of roughness of rock joint on

its shear strength by a two-dimensional simplification,

Patton’s model ignored the scale effect, interlocking effect
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between the asperities, and roughness evolution during the

shearing and damage process of the rock joint. Ladanyi and

Archambault (1969) proposed a non-linear theoretical

model to predict the shear strength of rough rock joints,

which provides better non-linear normal stress - shear

stress curves than Patton’s model. However, the application

of the non-linear model required more parameters and

some special tests, and some parameters couldn’t well

describe the irreversible effect of the roughness on the rock

joint shear strength. Barton and Choubey (1977) proposed

the well-known shear strength criterion for rough rock

joints with the roughness explicitly denoted using the joint

roughness coefficient (JRC). Plesha (1987) took into

account roughness degradation and developed a two-di-

mensional theoretical model for rough rock joints on the

basis of the theory of plasticity and the assumption of

uniform tooth-shaped asperities. Amadei and Saeb (1990)

developed a two-dimensional nonlinear elastic constitutive

model for rough rock joints, which considered the different

normal deformability of rock joints with mated and

unmated initial positions and the effect of the deformability

on the failure behaviour. Souley et al. (1995) extended the

Amadei-Saeb model to include the shear behaviour of

rough rock joints under cyclic loading. Haberfield and

Johnston (1994) developed a mechanically-based model for

rough rock joints capable of capturing the basic mecha-

nisms of movement and making reasonably accurate pre-

dictions of shear displacement behaviour. Maksimovic

(1996) proposed a non-linear joint failure model of

hyperbolic type with three parameters: the basic angle of

friction, the roughness angle and the median angle pres-

sure. More recently, many joint constitutive models have

been developed for the physical–mechanical behaviour of

rock joints (Indraratna and Haque 2000; Olsson and Barton

2001; Seidel and Haberfield 2002; Serrano et al. 2014;

Indraratna et al. 2015; Hencher and Richards 2015; Shri-

vastava and Rao 2015). However, these constitutive models

have difficulty in implementing the real geometry of rock

joints and the input parameters of these models are pre-

defined by the user, which hampers the predictive capa-

bility of these models (Bahaaddini et al. 2015). Moreover,

they are unable to trace the process of asperity shearing and

degradation, and gouge formation and grinding, and the

crack propagation inside the intact materials of the joint

surfaces.

With the development of computational geomechanics,

numerical method based on continuous and discontinuous

mechanics has been become a promising approach to study

the shear behaviour of rock joints. Son et al. (2004) con-

ducted elasto-plastic simulation of a direct shear test on

rough rock joints using a finite element method (FEM) with

a joint finite element of 6-node and zero thickness. Their

results reproduced salient phenomena commonly observed

in actual shear test of rock joints, including the shear

strength hardening, softening and dilation. Roosta et al.

(2006) developed a visco-plastic multilaminate model to

model the shear stress-shear displacement and normal

displacement—shear displace of artificial joint specimen at

constant normal load conditions. Liu et al. (2009) imple-

mented the rock failure process analysis (RFPA) model

(Tang 1997) into the finite element software package

ABAQUS using its user subroutine UMAT interface to

simulate the shearing process of a three-dimensional (3D)

rough rock joints on the basis of the interface modelling

technique and found that a curved failure surface devel-

oped from the loading asperity and approximately inter-

sected the trailing face of the asperity. Lin et al. (2012)

used a continuum approach to simulate direct shear tests on

flat and wave-like rock joints. A new methodology is

proposed by Nguyen et al. (2014) to combine shear box

testing and corresponding continuous mechanics—based

numerical simulations with the natural joint roughness at

the micro-scale taken into account. However, most

numerical simulations of the shearing process of rough

rock joints are conducted using discontinuous methods,

especially the commercial discrete element method

(DEM)—Particle Flow Code (PFC) developed by Itasca

Consulting Group Inc. Cundall (1999) implemented a

bounded particle model into PFC2D to model the nonlinear

relation between peak shear strength and normal stress, and

the dependence of the peak dilation angle on the normal

stress in shearing rock joints and rough faults. Indraratna

and Haque (2000) used PFC2D to simulate the shear

behaviour of artificial regular rock joints. Guo and Morgan

(2008) simulated the breakdown of fault blocks using

PFC2D to study the frictional strength, mechanical beha-

viour and stress and strain rate of evolving fault gouge and

their dependence on normal stress and uniaxial compres-

sive strength. Park and Song (2009, 2013) carried out an

extensive series of simulations for direct shear tests of rock

joints using PFC3D to demonstrate the feasibility of

reproducing a rock joint using the bonded particle model

and examine the effect of the geometrical features and the

micro-properties of a joint on its shear behaviour. Shri-

vastava et al. (2011) used PFC2D to simulate direct shear

tests on rock joints with asperity inclinations of 15� and 30�
at different normal stresses. Zhao (2013) implemented

PFC2D to simulate single and multi-gouge particles in a

rough fracture segment undergoing shear. Huang et al.

(2014) simulated the dynamic direct-shear tests on the

rough rock joints with 3D both sinusoidal and random

surface morphologies using the discrete element method.

Bahaaddini et al. (2015) studied the shear behaviour of

rock joints in a direct shear test using the particle flow code

PFC2D taken into account the micro-scale properties of the

smooth joint model.
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As can be seen from the review on numerical modelling

of rock joint shear process above, the continuous method

usually model the joint shear process using either joint

elements or contact surfaces with complicated constitutive

models, which are developed on the basis of theoretical

analysis or experimental observation of the relationship

between shear stress and shear displacement when the rock

joint is subjected to shear load. Thus, the continuous

method has not modelled explicitly the asperity degrada-

tion and gouge grinding during the rock joint shear process.

Through the bounded particle model, the discontinuous

method has successfully modelled the fracture of asperity

and the formation of circular or sphere gouge. However,

the discontinuous method has the limitation of modelling

the asperity degradation before its fracture, the transition

from continuum to discontinuum through asperity degra-

dation and fracture, the formation of irregular-shaped

gouge, and the further fragmentation of the irregular-

shaped gouge through the gouge grinding. This study

implements a hybrid continuous-discontinuous method,

i.e., a recently developed hybrid finite-discrete element

method (Liu et al. 2015a), to model the asperity degrada-

tion and gouge grinding during the shearing process of

rough rock joints. Compared with FEM, the hybrid method

is more robust and efficient after the asperity degradation,

especially tracing the gouge formation, movement and

grinding. Compared with DEM, the hybrid method is more

versatile in modelling asperity degradation before fracture,

crack initiation and propagation during fracture, and

irregular-shaped gouge grinding. This study extends an

initial study on direct shearing of rock joints conducted by

the authors and presented in a conference (Liu et al.

2015b). In the following sections, the hybrid finite-discrete

element method is firstly introduced. Then the rock failure

processes in the basic rock mechanics tests, i.e., the uni-

axial compressive strength test and the Brazilian tensile

strength test, are modelled using the hybrid method and the

modelled results are compared with those well documented

in literatures to calibrate the hybrid method. After that, the

asperity degradation and gouge grinding in the direct shear

tests of a rough rock joint are studied using the hybrid

finite-discrete method. Finally, the hybrid method is used

to investigate the effect of various shearing rates and

roughness on the asperity degradation and gouge grinding

during the shearing processes of rock joints.

2 Hybrid finite-discrete element method
for modelling direct shearing of rock joints

A hybrid finite-discrete element method has been devel-

oped by the authors (Liu et al. 2015a) using C?? and

OpenGL on the basis of our 2D (Liu et al. 2004) and 3D

(Liu 2010) enriched finite element codes for modelling

progressive failure processes of geomaterials and the 2D

and 3D open-source finite-discrete element libraries origi-

nally developed by Munjiza (2004) and Xiang et al. (2009),

respectively. The hybrid finite-discrete element method

considers a problem to be modelled consists of a single

discrete body or a number of interactive discrete bodies

such as that shown in Fig. 1a. The interaction of the dis-

crete bodies is governed by the so-called contact law: a

stiffness (i.e., spring) in the normal direction and a stiffness

and friction angle (i.e., spring-slip) in the tangential

directions, as shown in Fig. 1a. The interaction forces

developed at contact points are determined using linear

functions of the deformations of the spring and/or spring-

slip surfaces and resolved into normal and tangential

components. Each individual discrete body is of a general

shape and size and is modelled by a single discrete ele-

ment. Each discrete element is then discretised into finite

elements to analyse its deformability, as shown in Fig. 1b.

An explicit and large strain Lagrangian formulation for the

10-node tetrahedral elements in 3D or constant strain ele-

ments in 2D is used to represent the element deformations.

The displacement field of the 10-node tetrahedral elements

varies nonlinearly and the faces of the elements become

curved while the displacement field the constant strain

elements varies linearly and the edges of the elements

remain planar. The 10-node tetrahedral elements are used

in 3D, which results in curved boundary surfaces, com-

plicates the contact-detection algorithms and in turn

increases computation times. Based on Gauss’ theorem to

convert volume integrals into surface integrals in 3D or

area integrals into line integrals in 2D, the increments of

element strain can be obtained for each time step. The

stress increments can then be obtained by invoking the

constitutive equations of the modelled materials.

In the hybrid finite-discrete element method, the discrete

elements may fracture and fragment depending on the

calculated stress and strain of the discretised finite elements

in the discrete elements. The fracture and fragmentation of

the discrete elements result in the transition from contin-

uum to discontinuum, which is the key component of the

hybrid finite-discrete element method and makes the hybrid

method different from the FEM originally developed for

continua, such as ABAQUS, ANSYS, PHASE and

PLAXIS, and the DEM originally developed for discon-

tinua, such as PFC, UDEC and 3DEC. As shown in

Fig. 1c), the finite elements are bonded together before

fracturing and the cracks are assumed to coincide with the

element surfaces during fracturing. Separation of these

surfaces induces a bonding stress, which is taken to be a

function of the size of separation. At any point on the

surfaces of a crack, the separation d can be divided into two
components in Eq. (1)
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d ¼ dnnþ dst ð1Þ

where, n and t are the unit vectors in the normal and tan-

gential directions, respectively, of the surface at such a

point, dn and ds are the magnitudes of the components of d.
Accordingly, the traction vector p during fracture and

fragmentation can be divided into two components in

Eq. (2)

p ¼ rnnþ st ð2Þ

where, rn and s are the normal and tangential stresses. In

the limit no separation of adjacent edges takes place, i.e.,

dn ¼ dtp ¼ 0 (tensile) or ds ¼ dsp ¼ 0 (shear) as shown in

Fig. 1c), the bonding stress is equal to the peak stress rn ¼
ftp (tensile) or s ¼ fsp (shear). With increasing separation

0\dn � dtp (tensile) or 0\ds � dsp. (shear), the bonding

stress decreases and the decreased bonding stress is a

function of peak strength and separation (Munjiza 2004),

which can be described using Eqs. (3) and (4)

rn ¼ 2
dn
dtp

� dn
dtp

� �2
" #

ftp ð3Þ

s ¼ 2
ds
dsp

fsp ð4Þ

With continuously increasing separation dtp\dn\dtu
(tensile) or dsp\ds\dsu (shear), the bonding stress

decreases and the decreased bonding stress is a function of

damage index D a peak strength fp. described using

Eqs. (5) and (6)

r ¼ g Dð Þftp ð5Þ

s ¼ h Dð Þfsp; ð6Þ

where, r and s are the bonding stress, D is the damage

index, ftp and fsp is the peak tensile and shear strength,

respectively, and g Dð Þ and h Dð Þ are the damage function.

At separation, dn � dtu (tensile) or ds � dsu (shear), the

bonding stress becomes zero and the crack is assumed to

propagate. However, in the case of shear, a friction stress

will develop if the fracture surface is rough, as shown in

Fig. 1c.

After fracture and fragmentation, an explicit central

difference scheme is applied in the hybrid finite-discrete

element method to integrate the equations of motion of

either the initially discrete elements or the discrete ele-

ments formed by the fracture and fragmentation algorithm.

The unknown variables, i.e., contact forces on the discrete

ements’ boundary or stresses in the internal elements are

determined locally at each time step from the known

variables on the boundaries and in the elements and their

immediateeighbours, as shown in Fig. 1d.

In sum, the hybrid finite-discrete element method

involves in the following algorithms: (1) the numerical

model is assumed to consist of an assemblage of discrete

deformable bodies and the interaction between discrete

deformable bodies is solved using the contact law. (2) The

rigid body movement of the discrete deformable bodies is

solved to produce the inertial and interaction forces for

each of the discrete bodies and gross rigid body transla-

tional and rotational displacement of the discrete body as a

whole. (3) The inertial and interaction forces are applied on

each of the discrete deformable bodies to determine its

deformation, displacement and strain and stress fields

according to the finite element method. (4) If the calculated

deformation and stress fields satisfy the failure criteria,

fracture and fragmentation occur and the discrete deform-

able body is fragmented into two or more discrete

deformable bodies through fracture and fragmentation

algorithms. (5) The calculated deformation fields are sup-

posed over the gross rigid body motion displacements to

calculate new positions of each of discrete deformable

body. Thus, the hybrid finite-discrete element method uses

the continuous method, i.e., FEM, to model continuum-

based phenomena and the discontinuous method, i.e.,

DEM, to model discontinuum-based phenomena. Com-

pared with FEM, the hybrid finite-discrete element method

is more robust in modelling rock failure, especially frac-

ture, fragmentation, and fragment movements resulting in

tertiary fractures. Compared with DEM, the hybrid finite-

discrete element method is more versatile in dealing with

irregular-shaped, deformable and breakable particles.

Please refer to our recent paper (Liu et al. 2015a) for the

detail coding and implementation of the hybrid finite-dis-

crete element method in computers.

Moreover, in order to consider the effect of loading rate

on the deformation and fracture behaviour of rock during

dynamic shearing of rough rock joints, Eq. (7) initially

proposed by Zhao (2000) is implemented into the hybrid

finite-discrete element method

rcd ¼ Alog
_rcd
_rc

� �
þ rc ð7Þ

where, rcd is the dynamic uniaxial compressive strength

(MPa), _rcd is the dynamic loading rate (MPa/s), _rc is the

quasi-static loading rate (approximately 5� 10�2 MPa/s),

rc is the uniaxial compressive strength at the quasi-static

loading rate (MPa) and A is a material parameter, which is

11.9 for the Bukit Timah granite (Zhao 2000).

bFig. 1 Calculation cycles in the hybrid finite-discrete element

method. a Interactive discrete bodies through contacts in hybrid

finite-discrete element model, b Finite element discretisation of

discrete bodies and their deformabilities, c Fracture and fragmentation

of discrete bodies, d Motion of discrete element after fracturing
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3 Calibration of the hybrid finite-discrete element
method by modelling UCS and BTS

In this section, the failure processes in the uniaxial com-

pressive strength (UCS) test and Brazilian tensile strength

(BTS) test, which are usually conducted in rock mechanics

laboratory, are modelled using the hybrid finite-discrete

element method. The modelled results are compared with

those documented in literatures to calibrate the hybrid

finite-discrete element method. Figure 2 depicts the

numerical models constructed for the UCS and BTS tests

following the standards of International Society of Rock-

echanics (ISRM 1978, 1979). The material properties of

the rock specimens are Young’s modulus E ¼ 60GPa,

Poisson’s ratio v ¼ 0:25, density q ¼ 2600 kg=m3, tensile

sength rt ¼ 20MPa, compressive strength rc ¼ 200MPa,

internal friction angle ; ¼ 30
�
, surface friction coefficient

l ¼ 0:2, and fracture energy Gf ¼ 50N=m. The material

properties of the loading plates follow those of standard

steel. The penalty terms of the rock specimen and loading

plates are assumed to be equal to elastic modulus of the

rock specimen and half of that of the steel, respectively.

During the UCS test, a constant displacement increment of

1 m/s is applied on the top loading plate in the vertical

direction while the bottom loading plate is fixed in both

vertical and horizontal directions. During the BTS test, the

constant displacement increment of 1 m/s is applied on

both the top and bottom loading plates in the vertical

direction but both the top and bottom loading plates are

fixed in the horizontal direction.

Figure 3 depicts the modelled rock failure process in

terms of the distributions of the maximum shear stress and

the initiated cracks during the UCS test. It can be seen from

Fig. 3a that the load is applied on the top loading plate and

transferred to the rock specimen through the contact

between the top loading plate and the rock specimen. T

load then propagates through the rock specimen to form a

uniform stress field between the top and bottom plates. As

the load increases, two shear cracks are formed, as shown

in Fig. 3b, which divide the rock specimen into three pie-

ces. Further loading causes the three pieces sliding along

the formed two shear cracks. Microstructure or statistical

methods, such as those proposed by Liu et al. (2012), may

be introduced based on the actual texture of rock to obtain

reasonable failure pattern as observed in experiments.

Figure 4 visually illustrates the modelled rock disc

splitting failure process in terms of the distributions of the

minor principal stress (the compressive stress) and the

initiated cracks during the BTS test while the correspond-

ing force and displacement curve is shown in Fig. 5. As the

top and bottom loading plates contact the rock specimen,

high stress concentrations are induced at the loading areas

(Fig. 4a-A). As the loading plates further move toward

each other, the induced stress propagates through the rock

disc (Fig. 4a-B) to form a rather uniform stress distribution

near the central line of the disc (Fig. 4a-C). According to

literatures (Liu et al. 2007), a constant tensile stress in the

horizontal direction is generated along the loading line,

which forces the specimen to fail in tension along the

loading line. As modelled in Fig. 4b-C, a tensile crack is

initiated at the centre of the specimen and then propagates

along the loading line (Fig. 4b-D). It should be noted that,

in Fig. 4b, tensile crack is marked using the red colour

while the compressive crack and the boundaries are

denoted using the blue colour. After that, the formed tensile

crack unstably propagates radially towards the two loading

areas at the two ends of the specimen, where compressive

cracks are initiated due to the high compressive stress

concentration and the release of the confinement through

the central tensile crack, as shown in Fig. 4b-E. At the

same time, the specimen gradually loses its load bearing

capacity (Fig. 4F). Finally, as the loading plates further

move towards each other, the central tensile crack splits the

specimen into two halves (Fig. 4G) while at the same time,

more cracks are initiated around the two loading areas and

the central tensile crack.

The force–displacement curve of the BTS test recorded

in Fig. 5 presents the typical behaviour of brittle rock under

compression: a compressive deformation region (AB), a

linear-elastic deformation region (BC), a non-linear defor-

mation region (CD), a strain-softening deformation region

(DEF) and a residual deformation region (FG), in which the

alphabets correspond to those in Fig. 4. The maximum load

Pmax at Point D can be used to calculate the tensile strength

rt of the Brazilian disc at failure according to Eq. (8):

rt ¼
2Pmax

pDt
¼ 2� 2869814

3:14� 0:054� 1
¼ 33:85� 106N=m2

¼ 34MPa ð8Þ

where, rt is the tensile strength, Pmax is the maximum load

at the peak of the force–displacement curve, D is the

(a) (b)

Fig. 2 Numerical models for calibrating the hybrid finite-discrete

element method. a UCS test, b BTS test
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diameter of the specimen and t is the thickness of the

specimen. It can be seen that the obtained dynamic strength of

the specimen (34 MPa) is higher than the input static strength

of the specimen (20 MPa), which is probably caused by the

effects of the loading rate. As mentioned previously, the

loading rate used in the BTS modelling is 1 m/s, which is

much higher than that used in laboratory static experiments

(around 0.01 mm/s). According to literatures (Zhang et al.

1999; Zhao 2000), the loading rate has important influences

on rock properties. To take the influence into account, Eq. (7)

is implemented into the hybrid finite-discrete element

method. According to the modelled dynamic strength of the

specimen and the input static strength, the material parameter

A in Eq. (7) should be chosen as 20 for this specimen. In this

case, theynamic strength of the specimen can be calculated

according to Eq. (9)

rcd ¼ A log
_rcd
_rc

� �
þ rc ¼ 20� log

1m=s

0:01mm/s

� �
þ 20

¼ 34MPa

ð9Þ

However, further studies are needed for the hybrid finite-

discrete element method to model the effect of the loading

rate on the dynamic strength of rock through implementing

Eq. (7).

4 Hybrid finite-discrete element modelling of rock
joint failure in direct shear test

After the calibration in Sect. 3, the hybrid finite-discrete

element method is implemented in this section to model the

asperity shearing and degradation, and the resultant gouge

sliding and arching during the direct shear test of a rough

rock joint. The majority of direct shearing tests of rock

joints have been conducted under normal stress constraint

in literatures (Roosta et al. 2006; Park and Song 2013;

Indraratna et al. 2015). However, several researchers

(Seidel and Haberfield 2002; Thirukumaran and Indraratna

2016), argued that progresses in the direct shear tests under

constant displacement would provide a better understand-

ing of the mechanical behaviour of rock fractures under

confined situations such as underground rock engineering

since shear strengthening is the major feature of rocks

fractures under this loading condition, contrary to the shear

weakening under constant normal stress corresponding to

Fig. 3 Hybrid finite-discrete element modelling of uniaxial compressive strength test, a Max shear stress distribution, b Failure process
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near free surface conditions. Correspondingly, the direct

shearing test under constant displacement is studied here.

As shown in Fig. 6a-A, the numerical model consists of

two discrete rock blocks, which perfectly match each other

along a saw-tooth shape joint. The upper and bottom dis-

crete rock blocks are forced to move in the opposite

directions, i.e., the right and left directions, respectively,

with an initial velocity of 1 m/s, to shear the upper and

bottom discrete rock blocks along the saw-tooth shape

joint. The top and bottom boundaries of the upper and

bottom discrete rock blocks, respectively, are fixed in the

vertical direction to provide constraints for the constant

displacement conditions. Each of the discrete rock blocks is

discretised into triangular finite elements using the Delau-

nay triangulation algorithm shown in Fig. 6b-A. As argued

by Kazerani (2013), this kind of polygonal configuration

generated through the Delaunay triangulation algorithm or

the Voronoi diagram generator may be the most repre-

sentative of the mineral structure observed in rocks

although the vast majority of micromechanical models

have been carried out by rounded (disc-shaped) particles

(e.g. Potyondy and Cundall 2004). The material properties

of both rock blocks are the same as those of the UCS and

BTS specimens described in Sect. 2.

Figure 6 records the modelled rock joint fracturing

process during direct shearing in terms of the distribution

of the initiated cracks and the maximum shear stress while

the corresponding vertical force versus horizontal shear

displacement curve is plotted in Fig. 7, in which the

alphabetical labels correspond to those in Fig. 6. It should

bFig. 4 Hybrid finite-discrete element modelling of Brazilian tensile

strength test. a Major principal stress distribution, b Failure process
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Fig. 5 Force–displacement curve obtained during hybrid modelling
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cFig. 6 Hybrid modelling of rock joint fracture process during

shearing. a Fracture process, b Max shear stress distribution
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be noted that, in Fig. 6a, the shear cracks are marked using

the red colour while the blue colour is used to denote the

boundaries and the tensile cracks. As can be seen from

Fig. 6, before shearing, the two halves of the rock joint are

assumed to be in intimate contact with both faces of each

asperity in full contact. As soon as the horizontal shear

displacement is applied on the top and bottom rock blocks,

the interface slip is initiated (Fig. 6a-B) and the contact

area between the two halves of the joint is restricted to one

asperity face (Fig. 6b-B). The contact area progressively

reduces as shear displacement progresses, which is the

asperity sliding phase (Fig. 7A-B). There is little damage

and fracture induced during the asperity sliding phase, as

show in Fig. 6A-B. As the shear displacement increases,

local normal stresses increase both as a consequence of the

reduced contact area and as a result of the increasing

normal stresses due to the contact normal stiffness condi-

tion. A critical normal stress (Fig. 7B) is reached at which

the asperity can no longer sustain the loading and indi-

vidual asperity failure results. Since the rocks on both sides

of the interface have the same physical–mechanical prop-

erties, failures occur at localized regions of high stress at

both leading and trailing points of contact of each asperity,

as shown in Fig. 6C and D. It can be seen from Fig. 6C and

D, the majorities of the failures are initiated in shear mode

(the red colour in Fig. 6a-C) but further propagate in the

tensile mode (the blue colour in Fig. 6a-C) due to the low

tensile strength of the rock compared with its shear

strength. As the shear displacement increases, failures

gradually progressed from these localized regions until

complete failure of most asperities and therefore of the

whole interface) occurred, which is the asperity shearing

phase. This resulted in a significant reduction in the mea-

sured force–displacement curve, as shown in Fig. 7B-D.

Further shear displacement causes shear sliding (Fig. 6D-

E) again, which results in the recorded load increases again

due to the residual asperities and failure-resultant gouges,

as shown in Fig. 7D-E. After that, the shearing phase

occurs again due to the failure of the residual asperities and

the resultant gouges (Fig. 6E, F), and the recorded load

decreases (Fig. 7E, F) correspondingly. The sliding and

shearing phases may repeat in several cycles (Figs. 6, 7F–

H) with the residual asperities and failure-resultant gouges

being subjected to further shear until a smooth shear sur-

face is formed and the residual shear strength of the rock

joint is achieved.

Figure 8 compares the obtained shear failure pattern

from the numerical simulation with that predicted by Seidel

and Haberfield (2002). Seidel and Haberfield (2002) con-

ducted a number of direct shear tests on rough rock joints

with regular triangular asperities and concluded that, dur-

ing the asperity shearing phase, the shear failure developed

along a curved failure surface emanating from the apex of

the loading concrete asperity and intersected the trailing

face of the rock asperity, as shown in Fig. 8a. It can be seen

from Fig. 8b, the modelled shear failure develops follow-

ing the trend proposed by Seidel and Haberfield (2002) but

the details of the shear failure development are much more

complicated than that predicted in the theoretical model.

This may be caused by the shearing of both sides of the

joint interface since the top rock block and the bottom rock

block have the same physical–mechanical properties in this

study while only the rock on one side of the joint interface

is supposed to fail in the theoretical model proposed by

Seidel and Haberfield (2002). Moreover, Seidel and

Haberfield (2002) also observed that further shear dis-

placement did not occur on the curved failure surface, but

rather on a chord linking the intersection points of the

initial failure surface with the leading and trailing asperity

faces. The numerical model again presented much more

complicated shear failure envelope, as depicted in Fig. 8b.

The force-shear displacement curve depicted in Fig. 7 and

introduced above agrees with the evolvement of the rock

joint strength described in literatures (Huang et al. 2002;

and Morgan 2004). First of all, the rock joint strengthens

rapidly from zero to a peak. After the peak, it weakens

exponentially from the peak to a steady state value over a

critical slip distance. Finally, the rock joint strength stays

approximately constant, with some fluctuations caused by

local stick–slip events.

Therefore, as can be seen from Figs. 7 and 8, the hybrid

finite-discrete element modelling explain the shear resis-

tance evolution mechanism of the joint during the direct

shear test. At the early stage of the direct shear test, the

shear resistance of the joint is completely provided by the

increasing static friction. As the shear displacement

increases, the static frictions in some joint asperities con-

sistently lose and transform into the sliding friction, but the

static friction in the surrounding asperities gradually

increases. During the asperity sliding process, the intact

asperities on the two surfaces of the joint ride up each other
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to provide increasing joint shear resistance through a

combination of the static and sliding frictions. The joint

shear resistance reaches its peak when the intact asperities

start to damage and break forming gauges between the two

joint surfaces. During the asperity shearing process, the

joint resistance gradually decreases and the majority of the

asperities becomes damaged and broken although there

may be still unbroken joint asperities. During the strain-

softening stage after the peak, the broken joint asperities

provide the joint shear resistance through sliding friction

while the unbroken joint asperities and the resultant gauges

formed between the two joint surfaces may ride up to

provide the joint shear resistance by a combination of the

static, sliding and rotating frictions. The break of the joint

asperities leads to the stress concentrations in surrounding

unbroken joint asperities and gauges, which may cause the

joint shear resistance does not decrease monotonically but

increase a little bit in some stage. This process may repeat

in several cycles depending on the matching of the formed

new joint surfaces and the grinding and rotation of the

resultant gauges. Finally all of the asperities are broken and

it becomes easy for the resultant gauges to grind or rotate

between the formed new joint surface, in which the shear

resistance is completely provided by the sliding and

rotating frictions. Correspondingly, the shear resistance

decreases to the residual shear stress. In sum, the hybrid

finite-discrete element modelling reproduces all the shear

failure mechanisms during the rock joint shearing process

described in literature (Guo and Morgan 2008): asperity

damage, contact sliding and grain rotation except the vol-

ume change, which is, however, indirectly reproduced

through the increased asperity degradation since the con-

stant displacement conditions in the vertical boundaries of

the model suppressed the dilation and compaction but

promotes the asperity degradation.

5 Discussions

5.1 Dynamic shear behaviour of rock joints

under different shearing rates

The dynamic shear behaviour of rock joints is significant to

a number of mining and civil engineering applications

(Huang et al. 2014). Moreover, the studies on the dynamic

shear behaviour of rock joints can shed light on the origin

and evolvement of fault slip, which consequently leads to

earthquakes and landslides (Marone 1998). Correspond-

ingly, the same numerical model with the same rock joint is

sheared under different shearing rates to investigate the

dynamic shear behaviour of rock joints. Figures 9a–c

depict the normal force–shear displacement curves and

final failure patterns obtained from the direct shear tests of

the same rock joint under the shearing rates of 1, 10 and

100 m/s, respectively. The comparison among the obtained

three fracture patterns indicates higher shearing rate causes

more severe joint asperity degradation and gouge grinding

and then smoother residual joint surface. The comparison

among the obtained three normal force–shear displacement

curves shows that the higher the shearing rate, the bigger

the peak shear load is, the more severe non-linear the pre-

peak curve is, the smoother the post-peak curve is and the

lower the residual load is. All these observed phenomena

can be explained through the asperity degradation and

gouge grinding occurred in the direct shear tests. Accord-

ing to Eq. (7), high loading rates increase the rock strength,

i.e., the joint asperities have higher dynamic strength in the

direct shear test under higher shearing rates, which sup-

presses the joint asperity degradation but promotes the

shearing sliding along the joint asperities. The shearing

sliding should cause the volume dilation. However, since

the direct shear test is conducted under the constant

Fig. 8 Comparison between the fracture patterns obtained by theoretical model and numerical simulation. a Schematic representation according

to theoretical model (Seidel and Haberfield 2002), b Two steps from numerical simulation
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displacement loading condition instead of the constant

normal stress loading condition, the fixed top and bottom

boundaries of the model do not allow the volume dilation

to occur. Correspondingly, the normal forces at these

boundaries increase to provide strong confinements, which

explains why the higher the shearing rate, the bigger the

normal force is. Moreover, the strong confinements sup-

press the shearing sliding along the joint asperities. At the
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same time, the higher shearing rate induces higher stress

concentrations in the joint asperities, which promotes the

asperity degradations and the gouge formation. That is why

the force–shear displacement curve becomes more non-

linear before the peak and why more joint asperities are

sheared and more gouges are formed and grinded between

the two joint surfaces in the direct shear test of the rock

joint under higher shearing rate. During the post-failure

stage, almost all joint asperities are damaged and broken

and almost all formed gouges are grinded between the two

joint surfaces, which results in the smooth new joint sur-

faces and the smooth post-failure force-shear displacement

curve. However, in the direct shear test under the low

shearing rate, the low normal force provides low

confinements, which promotes the shearing sliding and

suppresses the asperity degradation. That is why less

joint asperities are sheared, smaller peak load is pre-

sented, less gouges are formed, and rough new joint

surfaces are resulted. During the post-failure stage, the

newly formed rough joint surfaces, the shearing sliding

and the resultant gouge rotation together cause some

joint asperities are not completely sheared at once and

the gouges are not completed grinded at once but they

are gradually sheared or grinded, which is why there are

more fluctuations during the post-peak stage of the force-

shear displacement curve. In sum, the higher shearing

rate promotes the joint asperity degradation and the

resultant gouge grinding.

Fig. 10 Numerical model for direct shearing of rock joints with various roughness. a Geometrical model, b Numerical model and c Various

roughness profiles

Fig. 11 Effects of roughness on the fracture patterns of rock joints during shearing (Top Max shear stress distribution. Bottom Failure pattern).

a 27.5� 9 23 mm, (b) 17.5� 9 9.5 mm and (c) 5� 9 3.75 mm
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5.2 Direct shearing of rock joints with various

roughness

In this section, the direct shear tests of rock joints with

various roughness are modelled using the hybrid finite-

discrete element method to investigate the effect of joint

roughness on the shear failure process. Figure 10 depicts

the geometric and numerical models of rock joints with

various roughness profiles. The roughness profile is defined

according to the height and inclination of the joint asper-

ities. For example, 17.5� 9 9.5 mm means the joint

asperity is inclined to the horizontal direction with an angle

of 17.5� and has a height of 9.5 mm above the horizontal

joint surface. Figure 11 compares the modelled fracture

patterns of the rock joints with various roughness profiles

in terms of the distributions of the maximum shear stress

and the initiated cracks. It should be noted that only the

fracture patters for three roughness profiles depicted in

Fig. 10 are illustrated in Fig. 11 in order to save spaces. As

can be seen from Fig. 11 and the failure process of rock

joints under shearing introduced in detail in Sect. 4, for

rough rock joints with deep asperities, the joint asperity

degradation and the gouge formation and grinding are the

main mechanism of the joint shear resistance evolution.

However, for the relatively smooth rock joints with shallow

asperities, the joint asperity sliding is the main mechanism

of the joint shear resistance evolution.

6 Conclusions

In this study, a hybrid finite-discrete element method is

implemented to model the shear failure process of rough

rock joints in direct shear tests under the constant dis-

placement loading conditions. The calculation cycles of the

hybrid finite-discrete element method are firstly introduced.

The hybrid finite-discrete element method is then cali-

brated by simulating the rock failure processes in the UCS

and BTS tests and comparing them against these in liter-

atures. After that, the direct shear test of a rough rock joint

is modelled using the hybrid finite-discrete element method

to investigate the joint shear resistance evolution by

focusing on the joint asperity degradation and gouge

grinding. Finally, the effects of the shearing rate and the

joint roughness on the asperity sliding and degradation, and

the gouge formation and grinding are discussed.

Throughout this study, the following conclusions can be

drawn:

(1) The hybrid finite-discrete element method repro-

duces the joint shear resistance evolution process

during the direct shear test of rough rock joints, such

as from asperity sliding to degradation and from

gouge formation to grinding. Compared with FEM,

the hybrid method is more efficient in modelling the

asperity sliding and the gouge formation and grind-

ing due to the asperity degradation, which FEM has

difficulty to deal with. Compared with DEM, the

hybrid method is more robust in modelling the

transition from continuum to discontinuum due to

the asperity degradation and the formation and

grinding of irregular-shaped gouges. Thus, the

hybrid finite-discrete element method is a valuable

numerical tool better than FEM and DEM for the

studies on the asperity degradation and gouge

grinding during the shear resistance evolution pro-

cess of rock joints under shearing and even the

fracture and fragmentation of rocks under static and

impact loads.

(2) Higher shearing rate in the direct shear tests of rough

rock joints under the constant normal displacement

loading conditions promotes the asperity degradation

but constraints the volume dilation, which result in

higher peak shear resistance, more gouge formation

and grinding, and smoother new joint surfaces.

(3) Roughness affects the joint shear resistance evolu-

tion through influencing the joint fracture micro-

mechanism. The asperity degradation and gouge

grinding are the main micro-mechanism occurred in

shearing rough rock joints with deep asperities while

the asperity sliding is the main micro-mechanism

happened in shearing smooth rock joints with

shallow asperities.
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