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Abstract
Animal movement research relies on biotelemetry, and telemetry-based locations are 
increasingly augmented with ancillary information. This presents an underutilized op-
portunity to enhance movement process models. Given tags designed to record spe-
cific behaviors, efforts are increasing to update movement models beyond reliance 
solely upon horizontal movement information to improve inference of space use and 
activity budgets. We present two state-space models adapted to incorporate ancillary 
data to inform three discrete movement states: directed, resident, and an activity 
state. These were developed for two case studies: (1) a “haulout” model for Weddell 
seals, and (2) an “activity” model for Antarctic fur seals which intersperse periods of 
diving activity and inactivity. The methodology is easily implementable with any ancil-
lary data that can be expressed as a proportion (or binary) indicator. A comparison of 
the models augmented with ancillary information and unaugmented models confirmed 
that many behavioral states appeared mischaracterized in the latter. Important changes 
in subsequent activity budgets occurred. Haulout accounted for 0.17 of the overall 
Weddell seal time budget, with the estimated proportion of time spent in a resident 
state reduced from a posterior median of 0.69 (0.65–0.73; 95% HPDI) to 0.54 (0.50–
0.58 HPDI). The drop was more dramatic in the Antarctic fur seal case, from 0.57 
(0.52–0.63 HPDI) to 0.22 (0.20–0.25 HPDI), with 0.35 (0.31–0.39 HPDI) of time spent 
in the inactive (nondiving) state. These findings reinforce previously raised conten-
tions about the drawbacks of behavioral states inferred solely from horizontal move-
ments. Our findings have implications for assessing habitat requirements; estimating 
energetics and consumption; and management efforts such as mitigating fisheries in-
teractions. Combining multiple sources of information within integrated frameworks 
should improve inference of relationships between movement decisions and fitness, 
the interplay between resource and habitat dependencies, and their changes at the 
population and landscape level.
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1  | INTRODUCTION

In both aquatic and terrestrial realms, the study of animal movement 
increasingly relies on the use of biotelemetry methods (Hussey et al., 
2015; Kays, Crofoot, Jetz, & Wikelski, 2015). For many highly migra-
tory and cryptic marine species, telemetry provides the only practical 
means to determine critical components of life-history and ecological 
strategies, for example, spatial usage, migration pathways, site fidel-
ity, foraging behavior, and resource dependence. Behavioral strategies 
used by individuals and their fitness consequences have potentially 
important ecological, evolutionary, and conservation implications 
(Bolnick et al., 2003; Morales et al., 2010; Sutherland, 1996). Yet there 
has been a struggle to obtain sufficiently large data sets, in terms of 
number of individuals tagged, to truly help address applied manage-
ment questions at population and ecosystem levels, such as those of 
spatial conservation planning and ecosystem-based fisheries manage-
ment. However, with modern technological advances reducing tagging 
costs (Ropert-Coudert & Wilson, 2005), large-scale international col-
laborative projects (Biuw et al., 2007; Block et al., 2011) and state-of-
the-art analytical methods (Morales et al., 2010; Patterson, Thomas, 
Wilcox, Ovaskainen, & Matthiopoulos, 2008) are together beginning 
to realize these efforts.

State-space models are process-based models that are now widely 
used to draw population-level inferences about hidden behaviors 
from noisy and complex individual-based telemetry time-series obser-
vations (Jonsen et al., 2013; Schick et al., 2008). In general, research 
questions are moving beyond simply where groups of animals go, to 
what they are doing there. A commonly used approach (Jonsen, Myers, 
& Flemming, 2003; Langrock et al., 2012; Morales, Haydon, Frair, 
Holsiner, & Fryxell, 2004) models the movement process using some 
type of biased and/or correlated random walk (CRW) model. This 
may incorporate switching between two behavioral states (nominally 
directed or resident behaviors) as described by a mixture of CRWs, 
each having an associated set of governing parameters. Increasingly, 
efforts are being directed toward more sophisticated process mod-
els addressing, for example, behavioral associations, environmen-
tal influences, and the role of memory (Fagan et al., 2013; Langrock 
et al., 2014; McClintock et al., 2012). While precise Global Positioning 
System (GPS) location data can yield highly detailed insight into ani-
mal movement, even with error-free location data it can be important 
to consider additional information as different behaviors could have 
similar movement signatures at the scale of observation. Less precise 
location data, such as obtained via the Argos satellite system, often do 
not contain sufficient information alone to support inference of more 
than two behavioral states. However, many double tagging efforts 
(i.e., using more than one type of telemetry device) and/or increas-
ingly sophisticated telemetry devices mean that a great deal of useful 
ancillary information exists which can be used to support more com-
plicated behavioral models (Dean et al., 2013; McClintock, Russell, 
Matthiopoulos, & King, 2013; Russell et al., 2015).

Achieving greater biological realism in animal movement models is 
essential for making correct inferences about space use and behavior, 

and developing activity or energy budgets. For example, movement 
models frequently applied to marine mammals (Jonsen, Flemming, & 
Myers, 2005; Morales et al., 2004) may oversimplify complex behav-
iors (Beatty, Jay, & Fischbach, 2016; Ramasco, Barraquand, Biuw, 
McConnell, & Nilssen, 2015). Time spent in activities other than transit 
or forage can be important, for example, resting, predator evasion, or 
social behavior, so an increased harnessing of activity information may 
yield greater biological realism in movement process models. Models 
incorporating ancillary activity data may also be of significant practical 
use. Researchers often undertake the laborious task of breaking tracks 
into discrete trips, removing apparent resting, or haulout periods prior 
to subsequent analysis (Breed, Jonsen, Myers, Bowen, & Leonard, 
2009). Provision of a wider array of model structures will allow the 
biotelemetry community greater flexibility in appropriately addressing 
the ecology of their study species. The widespread uptake of such ana-
lytical approaches, however, can only be facilitated by making them 
readily available, understandable, and easy to implement.

Here, we present two state-space model formulations that incor-
porate ancillary telemetry data to inform activity state. Our approach 
builds on Bayesian behavioral switching state-space models widely 
used for error-prone Argos locations (Jonsen et al., 2005) and GPS 
locations (Morales et al., 2004). Inference of a third behavioral state 
is supported by the ancillary information. The two model formulations 
are developed for particular case studies: (1) Weddell seals, which reg-
ularly haul out onto ice in Antarctic waters, and (2) Antarctic fur seals, 
which demonstrate a (potentially inconsistent) diel pattern in their 
diving activity and inactivity. These examples provide clear demon-
strations of how harnessing of activity information can deliver more 
robust behavioral inference. We discuss the broader utility and impli-
cations with reference to the assessment of present and future habitat 
requirements; estimation of energetics and consumption; and man-
agement efforts such as mitigating fisheries interactions.

2  | METHODS

2.1 | State-space model formulation: the movement 
process

The Bayesian state-space models described here comprise two com-
ponents: (i) the process model which statistically describes how the 
behavioral and location states evolve over time in a first-order Markov 
process framework, and (ii) the observation model which describes 
how the irregularly observed and error-prone locations are gener-
ated, conditional on the state of the system at regular time intervals. 
The process and observational models have been fully described 
elsewhere (Jonsen et al., 2005) and are reformulated in Appendix S1. 
Here, we focus on how the details specifying the process model dif-
fer between the typical two- or three-state model, and the three-
state formulations augmented with ancillary telemetry information. 
The SSMs are implemented using the freely available software JAGS 
(Plummer, 2013; http://mcmc-jags.sourceforge.net) and the R pack-
age rjags (Plummer, 2015). The code for each model formulation is 

http://mcmc-jags.sourceforge.net
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provided in the Supporting Information online (Appendix S2) together 
with worked examples (Data S1).

Consider the case where an animal may be in one of two unob-
servable behavioral states at time t, labeled here as “directed” (Dt, 
i.e., more transitory) and “resident” (Rt, i.e., more localized). The time 
dependence in the behavioral process is described by a Markov chain, 
specified by the probability of switching states from D at time t−1 to R 
at time t. The model is written in terms of a transition matrix determin-
ing the switching probabilities (�):

whose elements are constrained so that the rows sum to 1. The 
state variable bt represents the state at any time: bt=

[
Pr(Dt) Pr(Rt)

]
.  

The probability of each behavioral state is updated through time by 
bt=� ⋅bt−1. Extending this formulation to three or more states is in 
principle straightforward. Let us generalize to label the states using si, 
including i as the behavioral state index i∈[1,2,3] where 1 = “directed,” 
2 = “resident,” and 3 = “activity” (At) a third behavioral state. The 
switching probabilities are then determined by:

Now bt=[Pr(Dt) Pr(Rt) Pr(At)]= [Pr(S1,t) Pr(S2,t) Pr(S3,t)]. In the 
state-space model employed here, each behavioral state is associated 
with a distinct CRW behavior (Jonsen et al., 2005); see Appendix S2 
models (i) and (ii)). The CRWs, and the states they describe at time t, 
differ in their values of mean turning angle (ϑi), which controls the rota-
tional component, and movement persistence (γi). The latter param-
eter describes the degree to which the random walk is (first order) 
autocorrelated in both direction and move speed, where γ = 0 yields a 
simple random walk and 0 < γ < 1 yields a correlation in both direction 
and speed. The process model has a hierarchical formulation insofar 
as the parameters are estimated across multiple individual animals; 
examining individual variation in behavior via the implementation of 
a fully hierarchical model (Jonsen, Myers, & James, 2006) is a feasi-
ble future extension. The probabilities of switching from one state to 
another (φi,t) are static, although they may also be formulated to vary 
with time in relation to other behavioral and/or environmental covari-
ate influences (Bestley, Jonsen, Hindell, Guinet, & Charrassin, 2013).

The process model is specified without reference to the observed 
data. In practice, however, Argos location fixes are characterized by a 
heavy-tailed error distribution (Costa et al., 2010; Vincent, McConnell, 
Ridoux, & Fedak, 2002). This is aggravated by the life-history strate-
gies of diving marine animals, which typically result in a high propor-
tion of low-quality (inaccurate) location classes. Obtaining good model 
fits can prove challenging, depending on the nature of the move-
ments displayed by different species, such that it may be problematic 
to infer three (or more) behavioral states based solely on horizontal 
movement characteristics (Bestley, Jonsen, Hindell, Harcourt, & Gales, 
2015). To support the inference of more complex behavior, from such 

noisy observations, we therefore turn to the rich auxiliary activity 
information that is often available in tagging studies.

2.2 | Case study 1: a haulout model for Weddell seals

Weddell seals (Leptonychotes weddellii) are an ice-obligate Antarctic 
species that inhabits sea-ice year round (Heerah et al., 2013). As well 
as requiring fast ice as a substrate for breeding and molting, Weddell 
seals actively forage beneath the ice and can spend substantial peri-
ods hauled out upon it (Andrews-Goff, Hindell, Field, Wheatley, & 
Charrassin, 2010). Their movement tracks are typically highly local-
ized within coastal bays and along the Antarctic continental shelf, so 
the latter two activities are not easily inferred from error-prone Argos 
locations.

To include haulout as an activity state in our behavioral pro-
cess model, we incorporate ancillary information available from the 
Satellite Relayed Data Loggers (SRDLs) manufactured by Sea Mammal 
Research Unit (SMRU, University of St Andrews, Scotland, UK). This 
tag provides the start and end times of a sequence of known haulout 
periods (recognizing a haulout when the tag was dry for 10 min, and 
ending the haulout once wet for 40 s). This enables the proportion of 
time spent hauled out to be calculated for each regular time interval 
within the movement model. We note that, depending on the uplink 
frequency and the specific cycling and ranking of data types await-
ing transmission, this may not comprise a complete record. For the 
demonstration here, we consider it sufficient; however, a more com-
plete treatment could also model the missing haulouts. The tagging 
data used (n = 7 adult females, N = 9,238 Argos locations, N = 793 
haulout observations) form part of the Australian Integrated Marine 
Observing System Davis station 2011 deployments (previously pub-
lished in Bestley et al. 2015), and are publicly available (http://www.
imos.org.au).

The important aspect for defining the structure of this process 
model is that the activity state (haulout) precludes any other behavior 
(i.e., directed or resident). In this case, reference is first made to the 
ancillary data to define Pr(At) and at=

[
Pr(At) 1−Pr(At)

]
 the haulout sta-

tus where at∈[1,2] and 1 = “haulout,” 2 = “not hauled out.” The switch 
probabilities into s3 (i.e. φ1,3 and φ2,3) therefore need not be estimated 
within the model; in practice, this is achieved by employing Dirichlet 
priors for φ and setting these two components to zero (see Appendix 
S2 model (iii)). Hence: bt=[001] where at=1 and bt=[Pr(Dt) Pr(Rt) 0] 
where at=2.

2.3 | Case study 2: an activity model for Antarctic 
fur seals

Antarctic fur seals (Arctocephalus gazella; AFS) are one of the most 
abundant top predators in the Southern Ocean, feeding on krill and/
or myctophid fish (Raymond et al., 2011; Staniland et al., 2010). While 
female AFS typically forage nocturnally, and are relatively inactive 
during the day, comparatively little is known about males and the 
available evidence suggests their dive behavior may exhibit greater 
variability (Staniland & Robinson, 2008).

�=

(
Pr(Dt|Dt−1) Pr(Rt|Dt−1)

Pr(Dt|Rt−1) Pr(Rt|Rt−1)
)

�=

⎛
⎜⎜⎜⎝

Pr(S1,t�S1,t−1) Pr(S2,t�S1,t−1) Pr(S3,t�S1,t−1)
Pr(S1,t�S2,t−1) Pr(S2,t�S2,t−1) Pr(S3,t�S2,t−1)
Pr(S1,t�S3,t−1) Pr(S2,t�S3,t−1) Pr(S3,t�S3,t−1)

⎞
⎟⎟⎟⎠

http://www.imos.org.au
http://www.imos.org.au
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We seek to capture the active versus inactive diving periods (puta-
tively foraging and nonforaging) to more accurately determine the 
activity budget, that is, the time allocation per state. This can have 
implications for how we infer habitat use: for example, identifying key 
Southern Ocean forage grounds, and also for scaling up to construct 
estimates of prey consumption on these forage grounds. The ancil-
lary data used for this can comprise any time-series of diving behavior, 
such as is commonly available from time–depth recorders (TDRs). We 
again use SMRU SRDL data, this time the 6 h binned summaries of the 
proportion of time spent diving. These tagging data (n = 5 adult males, 
N = 4,597 Argos locations, N = 1,800 dive summary observations) 
form part of the 2004 Heard Island Predators and Prey Ecosystem 
Study (Frydman & Gales, 2007) and are also publicly available (https://
data.aad.gov.au).

Using the process model described above for Weddell seals would 
be sufficient if we were primarily interested in discriminating the inac-
tive behavioral state, across a complete migration path. In principle, 
the activity state (inactive, meaning nondiving) does not preclude any 
other behavior (i.e., an animal may be nondiving while in a directed or 
resident state). It was, however, our objective to hone in specifically 
on the Southern Ocean foraging grounds and discriminate within the 
apparently resident phase when and where an animal is actively diving 
or inactive (nondiving). Construction of this process model is therefore 
subtly different. In practice, we estimate all switching probabilities, but 
switches into the directed state (φi,1) are estimated from the horizontal 
movements (see Appendix S2 model (iv)). For the remainder (i.e., φi,2 
and φi,3), the ancillary data are used to define the activity status Pr(At) 
and at=[Pr(At) 1−Pr(At)] where at∈[1,2] and 1 = “inactive,” 2 = “active 
diving.” Hence: bt=[001] where at=1 and bt=[010] where at=2.

For air-breathing divers, operating within some physiological 
threshold, the proportion of time spent diving can never be 100% 
for a time step sufficiently long (Russell et al., 2014, 2015). However, 
the proportion of time spent nondiving (inactive) may be, within rea-
sonable bounds. Our approach allocated the probability of being in 
an “inactive” state per time step as Pr(At) = 1 only where no diving 
behavior was recorded at all. Any dive behavior served to rescale 
Pr(At) < 0.5 with the highest proportional time spent diving serving to 
drive Pr(At)~0 (see Data S1). Missing data were treated as uninforma-
tive (i.e. Pr(At) = 0.5).

2.4 | Model implementation

For both case studies, the CRW time step was set at 6 h to match 
the availability of the ancillary tag data. To fit the SSMs, two Markov 
chain Monte Carlo (MCMC) chains of 40,000 iterations were run with 
a burn-in of 20 000. Each chain was thinned so that one in every 20 
samples was retained for a final posterior sample size of 2000. The 
deviance (D̄) and effective number of parameters (pD) were monitored 
along with the movement parameters, and here, we report mainly on 
ϑi, γi, φi,j, and bt.

In general, weak priors were adopted throughout (Appendix S3, 
Table S3.1); however, in order to prevent state-flipping in the Weddell 
case study slightly more informative priors were used for ϑ2. To assess 

model convergence, the chains of the primary movement parameters 
were visually inspected to detect poor mixing and excessive autocor-
relation and the Gelman-Rubin diagnostic (potential scale reduction 
factor r̂) values checked (these should be less than ~1.1; Gelman & 
Rubin, 1992).

3  | RESULTS

For both case studies, the results are presented for (i) the original 
two-state behavioral switching model, (ii) the unaugmented three-
state model that is informed solely by horizontal location data, and (iii) 
the three-state models incorporating ancillary tag information (i.e., the 
“haulout” and “activity” models incorporating data on haulout status 
and vertical diving activity, respectively). For completeness, the model 
outputs are comprehensively documented in Appendix S4.

3.1 | Case study 1: Weddell seals

For the Weddell seal case study, no major convergence problems were 
diagnosed for the three model formulations from either the r̂ diagnos-
tics (Appendix S3, Table S3.2), nor inspection of the MCMC chains 
(Appendix S4), although there was some indication of poor mixing in 
the γ estimates from the unaugmented three-state model (Appendix 
S4, Fig. S4.2 P3). The general properties of the estimated state move-
ment parameters (ϑi and γi) were similar between the unaugmented 
three-state and haulout models (Appendix S4, Figs S4.2 and S4.3 P5).

Comparison of the allocation of behavioral states, relative to the 
known behavior from the ancillary data, clearly showed the unaug-
mented three-state model mischaracterized the major proportion of 
known haulout time steps (Table 1). Examination of the estimated 
state time-series (Figure 1a,b) and the spatial distribution of these 
(Figure 2a,b) indicated a portion of time steps, previously character-
ized as resident under the simplest two-state model, were fairly evenly 
redistributed among the other two states (see also Appendix S4, Figs 
S4.1 and S4.2 P1-2); in fact, these largely comprised those time steps 
with lowest haulout probabilities (i.e., less than 0.45, Table 1). Because 
the ancillary information is prioritized in the haulout model formula-
tion, this extra level of behavioral complexity was represented without 
mischaracterization (Table 1). The behavioral time-series and mapped 
behavioral states subsequently showed both good maintenance of 
directed and resident behavioral characterization and correct alloca-
tion of systematic haulout activity (Figures 1c and 2c and Appendix S4 
Fig. S4.3 P1-2). If deviance information criteria (DIC) values were to 
be used as a guide for model selection (Table 1), then the addition of 
the ancillary haulout information implies an improvement in model fit 
relative to the unaugmented three-state model.

3.2 | Case study 2: Antarctic fur seals

There was a clear lack of convergence in the unaugmented three-state 
model for the AFS case study. Diagnostics for this model formulation 
showed r̂ values well above 1.1 (Appendix S3, Table S3.2) specifically 

https://data.aad.gov.au
https://data.aad.gov.au
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in the γ1, γ3, and ϑ3 parameters, and nonconvergence was visible in 
these MCMC chains (Appendix S4 Fig. S4.5 P3-4). The state time-
series estimates (Figure 1e) and the mapped distributions (Figure 3b) 
showed a very low allocation of state 3 (inactive) behavior overall (see 
also Appendix S4, Fig. S4.5 P1-2) and also that directed behavior was 
very poorly defined in comparison with the original two-state model 
(Figures 1d and 3a).

The “activity” model, informed by the ancillary dive data, discrimi-
nated all three states well with periods of diving inactivity regularly inter-
spersed within the resident state (Figures 1f and 3c). Characterization 
of the state three inactivity did not suffer from false-positive mis-
characterization (Table 1) with the majority of known inactive periods 
clearly and correctly allocated. Note here again that diving inactivity 
within directed periods (12.8%) is permitted and classified as state 1 
(see Methods). If the DIC values were to be used as a guide, the original 
two-state model provided the apparently best fit (Table 1). As the initial 
objective was to discriminate activity status at apparently high-focus 
residential locations, model evaluation may be better addressed based 
on improvements in state characterization, which may not necessarily 
correspond to improvements in fit according to information criterion.

3.3 | Movement state properties

Compared to the directed (state 1) movements, the resident (state 
2) and haulout/inactive (state 3) movements exhibited substantially 
less movement persistence and higher turn angles for both case study 

implementations. However, the estimated movement parameters 
were more strongly divergent in the AFS case study.

In the haulout model for Weddell seals, the directed movement 
state was characterized by relatively high estimated persistence values 
(posterior median for γ1 = 0.72 (0.66–0.79); 95% highest posterior den-
sity interval [HPDI]) and mean turn angles close to zero (Table 3); the 
persistence parameter estimates steadily declined in the resident and 
haulout states, and these were both characterized by high mean turn 
angles close to π (i.e., 180°, Table 2; see also Appendix S4, Fig. S4.3 P5). 
High persistence values translate to greater movement displacements, 
that is, greater speed of travel. Step length distributions (Figure 4a) can 
be empirically derived by application of great circle distance calcula-
tions to the resultant most probable fitted tracks, which subsequently 
gave mean displacements of 11.72 ± 5.52 km per 6-h time step in the 
transit state, compared with 3.91 ± 3.51 km and 3.54 ± 3.14 km in the 
resident and haulout states, respectively. The actual turn angles per 
modeled move step, also derived by calculation from the most proba-
ble fitted tracks, were as expected close to zero in transit, whereas in 
the other two states these showed a high tendency to reverse direction 
but also a high variance around this tendency (Figure 4b).

In the AFS case study, the directed state persistence parameter was 
substantially higher (γ1 = 0.85 (0.81–0.89 HPDI)) and extremely low 
during the resident and inactive states (ϑ2 and ϑ3 ~ 0.04) (see Table 2 
and also Appendix S4, Fig. S4.6 P5). Similarly to Weddell seals, the ϑi 
estimates were close to zero; however, the remaining ϑi parameters 
were not well resolved and remained relatively unconstrained. The 

TABLE  1 Model assessment: deviance information criteria (DIC) and the characterization of behavior in relation to observed proportions

Percentage (%) of time steps

Weddell seals
Pr(h) =  
0–0.45

Pr(h) =  
0.45–0.55

Pr(h) =  
0.55–1

Observed 81.8% 2.1% 16.1%

Modeled pD D̄ DICa ΔDIC s1 s2 s3 s1 s2 s3 s1 s2 s3

Two stateb 4,585 −49,968 −45,383 38 17.2 64.5 NA 0.2 2.0 NA 1.4 14.7 NA

Three state 4,576 −49,958 −45,382 39 26.7 44.2 10.8 0.4 1.6 0.2 3.8 10.1 2.2

Haulout 4,581 −50,002 −45,421 0 17.9 63.9 0 0.1 1.0 1.1 0 0 16.1

Antarctic fur seals
Pr(i) =  
0–0.45

Pr(i) =  
0.45–0.55

Pr(i) =  
0.55–1

Observed 48.8% 10.8% 40.4%

Modeled s1 s2 s3 s1 s2 s3 s1 s2 s3

Two state 3,273 −40,946 −37,673 0 19.9 28.9 NA 5.3 5.5 NA 13.0 27.3 NA

Three state 3,277 −40,931 −37,654 18 21.1 25.8 1.9 5.3 5.0 0.5 12.7 25.0 2.7

Activity 3,277 −40,939 −37,662 11 21.6 27.1 0.1 5.9 3.1 1.9 12.8 0 27.5

aThe DIC (Spiegelhalter, Best, Carlin, & van der Linde, 2002) is calculated from D̄ + pD and can be used to compare the fit of the models; like AIC, BIC, and 
similar criterion, lower values indicate better fit. The pD value is the effective number of parameters and is used to penalize models with more parameters. 
D̄ is the posterior mean of the deviance.
bStates refer to: directed (state 1), resident (state 2), and haulout/inactive (state 3).
Lowest DIC values are shown in bold.
The  ΔDIC column (column four in upper and lower part of table) will then line up properly underneath each other.
Pr(h), Pr(haulout); Pr(i), Pr(inactive).
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AFS empirically derived step lengths (SL) were therefore higher than 
in the Weddell case study (SL1 = 19.22 ± 11.36; SL2 = 7.66 ± 5.10; 
SL3 = 5.16 ± 4.67 km per 6-h time step; see Figure 5a). The derived turn 
angles during transit were again close to zero but, consistent with the 
unconstrained ϑi estimates, were highly variable for the nontransit states 
and freely spanned the available range 0–2π (i.e., 0–360°, Figure 5b).

Some differences were found with respect to state transition prob-
abilities although, as the ancillary behavioral data influenced these, not 
all are informative (Appendix S3, Table S3.3). Weddell seals, however, 
were highly likely to remain in the resident state φ2,2 = 0.81 (0.75–0.86) 
and the switch from transit into residency occurred reasonably often 
φ1,2 = 0.34 (0.26–0.41). Similarly, switches into transit state occurred 

F IGURE  1 Example time-series of behavioral state estimates for the Weddell (a–c) and Antarctic fur seal (d–f) case studies. The posterior 
means are presented for the (a, d) two-state, (b, e) three-state and (c, f) three-state augmented models (haulout and activity, respectively). Colors 
are scaled from blue (1 = “directed”), through red (2 = “resident”) to green (3 = “haulout/inactive”). Time-series for a single individual seal are 
shown in each case for clarity (WED896 and AFS07), but the full results are available in Appendix S4
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with reasonable frequency (φi,1∼0.19). In contrast, the parameter esti-
mates for these switch rates were very low for AFS, likely reflecting 
the nature of their long migration path (Figure 3). Switches between 

resident and inactive (nondiving) states, as determined by the ancillary 
tag data, occurred frequently (Table 3 and Figure 1f). With a 6-h model 
time step, the inactive periods show a consistent correlation at lag 4 

F IGURE  2 Map of estimated positions and inferred behavioral states for the Weddell seal (N = 7) case study. Results are presented from the 
(a) two-state, (b) three-state, and (c) haulout models. Positions are colored as in Figure 1. For clarity, only three individual seals are shown (WED 
IDs 880, 882 and 896), but the full results are available in Appendix S4. The Antarctic continent is shown in gray, Antarctic coastline in black, and 
positions of the major ice shelves in white. Bathymetric contours are at 500 m, 1,000, 2,000, and 3,000 m depth (gray shading). Yellow crosses 
connected by a dotted line indicate the irregular Argos observations

TABLE  2 Posterior distributions of the movement parameters (persistence: γi; and turn angle: ϑi) in three behavioral states (directed, 
resident, and inactive) inferred using the haulout and activity models (see Methods) for the Weddell and Antarctic fur seal case studies, 
respectively. Results present the posterior median (lower–upper 95% highest posterior density interval, HPDI)

Species 1. Directed 2. Resident 3. Haulout/Inactive

Weddell seal γi 0.72 (0.66 to to 0.79) 0.48 (0.40 to 0.55) 0.24 (0.15 to 0.34)

ϑi 0.01 (−0.05 to 0.03) 3.16 (3.09 to 3.22) 3.04 (2.82 to 3.21)

Antarctic fur seal γi 0.85 (0.81 to 0.89) 0.04 (0.00 to 0.19) 0.04 (0.00 to 0.13)

ϑi −0.06 (−0.09 to −0.02) 2.84 (0.37 to 5.86) 0.56 (−2.08 to 2.40)

F IGURE  3 Map of estimated positions and inferred behavioral states for the Antarctic fur seal (N = 5) case study. Results are presented as in 
Figure 2 from the (a) two-state, (b) three-state, and (c) activity models
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and a high periodicity at 0.25, strongly indicative of a diurnal cycle 
(Appendix S3, Fig. S3.1). While the time step is relatively coarse, a 
comparison with solar position showed 86% of the inactive time steps 
occurred during day/dawn periods compared with only 14% during 
dusk/night periods and this is consistent with expectations that AFS 
are predominantly nocturnal foragers.

3.4 | Time budget allocation

As expected, substantial differences in the overall time allocation 
budgets were estimated for the two case studies depending on the 
specific movement process model. Moving from the simpler two-state 
switching model to an augmented three-state formulation reduced 
the estimated proportion of time spent in resident state from 0.69 
(0.65–0.73 HPDI) to 0.54 (0.50–0.58 HPDI) in the Weddell seal case 
study (Table 3). Haulout accounted for 0.17 of the overall Weddell 
seal time budget. The drop in resident time was more dramatically 
pronounced in the AFS case study, from 0.57 (0.52–0.63 HPDI) to 
0.22 (0.20–0.25 HPDI), with 0.35 (0.31–0.39 HPDI) of time spent 
in the inactive (nondiving) state. Although the prioritization of 

behavioral data (“haulout” model) or movement data (“activity” model) 
differed between the model formulations, the overall time estimated 
in directed state remained relatively stable in both cases: near 0.30 
for Weddell seals and slightly above 0.40 for AFS (Table 3). The com-
parative results indicated AFS spent a much greater portion of time in 
the inactive and also directed states than Weddell seals and a much 
smaller portion of time in the resident state overall.

4  | DISCUSSION

Biotelemetry studies tracking cryptic or migratory species often col-
lect detailed behavioral information in conjunction with location data 
(Hussey et al., 2015). This presents a real, but largely underutilized, 
opportunity to extend modeling frameworks for animal movement 
to capture more biologically meaningful processes. The two model 
formulations we present here incorporate ancillary information col-
lected by tags about haulout and diving behavior in two seal species. 
This methodology could be implemented with any other source of 
data that may usefully serve to inform behavioral state. For example, 

F IGURE  4  (a) Step length (km per 6-h time step) and (b) turn angle (0–360°) distributions calculated from the most probable fitted tracks 
in three behavioral states (directed, resident, and inactive) inferred using the “haulout” model for the Weddell seal case study. These represent 
the actual modeled move displacements and turn angles which resulted from the correlated random walk process as governed by the state 
movement parameters (γ and ϑ; these parameter distributions are given in Table 2 and displayed in Appendix S4)
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increasingly sophisticated biotelemetry applications can provide 
direct information about prey capture attempts (Carroll, Slip, Jonsen, 
& Harcourt, 2014) or indirect information on internal state condi-
tion such as lipid gain (Biuw et al., 2007). Our results highlight that 
simple but important changes in inference of movement state and 

subsequent activity budgets can arise by incorporating behavioral 
data. Model frameworks that combine multiple sources of information 
will clarify relationships between movement decisions and fitness, and 
ultimately can be applied to monitoring changes in habitat and prey 
resources at the land- or seascape level.

TABLE  3 Estimated time allocation budgets for Weddell and Antarctic fur seal case studies. Results are shown as the median proportion of 
6-h time steps (Weddell: N = 3,264, AFS: N = 1,534) assigned to three movement behavior states (lower–upper 95% HPDI). The species case 
studies use the haulout and activity model formulations, respectively, which each handle periods of behavioral inactivity differently (see 
Methods). In each case, the third state represents individual animals being hauled out of the water, or being in the water but nondiving, 
respectively. NA indicates not applicable

Species Model

Behavioral state time allocation

1. Directed 2. Resident 3. Haulout/Inactive

Weddell seal Two state 0.31 (0.27–0.35) 0.69 (0.65–0.73) NA

Three state 0.30 (0.25–0.35) 0.48 (0.41–0.55) 0.22 (0.17–0.28)

Haulout 0.29 (0.25–0.33) 0.54 (0.50–0.58) 0.17 (0.17–0.17)a

Antarctic fur seal Two state 0.43 (0.37–0.48) 0.57 (0.52–0.63) NA

Three stateb 0.34 (0.24–0.46) 0.48 (0.35–0.57) 0.17 (0.11–0.25)

Activity 0.42 (0.38–0.48) 0.22 (0.20–0.25) 0.35 (0.31–0.39)

aRecall first reference is made to the ancillary data to define in the haulout model so this state is discriminated without error (see Methods).
bNonconvergence between chains, refer to Appendix S3, Table S3.1 for Gelman-Rubin diagnostics (potential scale reduction factors, r̂).
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F IGURE  5   (a) Step length (km per 6-h time step) and (b) turn angle (0–360°) distributions, calculated as in Figure 4, for three behavioral 
states (directed, resident, and inactive) inferred using the “activity” model for the Antarctic fur seal case study
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Weddell seals provide an appealing case study for a number of rea-
sons relating to their ecology. As a highly residential and ice-obligate 
species that are rarely recaptured, Weddell seals typically provide satel-
lite tracking data that are difficult to interpret, given both the position 
error scales relative to their movement scales and their tendency to fre-
quently haulout on sea ice and remain relatively stationary. Our results 
confirmed a large proportion of time steps were mischaracterized 
when three behavioral states were inferred from horizontal trajectory 
alone. However, very good results were obtained in resolving this extra 
behavioral complexity with the support of the ancillary haulout data.

Many modern marine telemetry studies focus on elucidating where 
and how marine predators successfully forage in a dynamic and het-
erogeneous three-dimensional ocean environment (Block et al., 2011; 
Hussey et al., 2015; Raymond et al., 2014). Of increasing importance 
is how these forage resources are likely to change in the future (Hazen 
et al., 2013). In many cases, species are operating within the confines 
of both physical and physiological constraints, for example, being 
physically limited by land-based breeding and physiologically limited 
by their diving capacity. In the case of Weddell seals, the dynamic ice 
habitat adds a further layer of complexity. Availability of suitable fast-
ice substrate for resting, molting, and breeding is likely to be of first-
order importance in developing habitat suitability distribution models 
(Raymond et al., 2014). Availability of forage areas suitably proximate 
to fast ice then becomes a necessity for survival. Being able to more 
accurately discriminate between resident (nominally forage) and inac-
tive/haulout behavior makes it possible to identify key ice areas in 
regular use for either purpose and presents the opportunity to eval-
uate the future status of these areas under specific climate change 
scenarios.

The Antarctic fur seal case study also demonstrated that activity 
status is likely to have important implications for activity budgets and, 
potentially, broader efforts to estimate food consumption by marine 
predators in the Southern Ocean and elsewhere. All of the southern 
fur seals were historically hunted almost to extinction, but Antarctic 
fur seal populations are now considered fully recovered with many still 
increasing (Committee 2011). The species feeds mainly on Euphausiids, 
including Antarctic and other krill species, as well as a variety of fishes, 
including icefishes (Channichthyidae and Nototheniidae) and lantern-
fishes (Myctophidae) (Raymond et al., 2011). Because AFS are depen-
dent on prey targeted by commercial Southern Ocean fisheries (i.e., 
Antarctic krill and icefish), they are consequently monitored by the 
Convention for the Conservation of Antarctic Living Marine Resources 
(CCAMLR) Ecosystem Monitoring Program (CEMP). Attempts to esti-
mate food consumption are central to defining the ecological role 
of marine predators (Boyd, 2002; Southwell, Emmerson, Forcada, & 
Southwell, 2015) and assessing predator–prey fishery interactions. 
This is particularly a priority in CCAMLR Subareas 48.1 and 48.2 near 
the Antarctic Peninsula where the krill fishery is concentrated.

Consumption estimates (Boyd, 2002; Southwell et al., 2015) rely on 
many uncertain demographic (e.g., survival rate and offspring produc-
tion) and individual-level parameters, one of which is the measurement 
of metabolic rate. Metabolic rate is challenging to measure directly in 
wild animals (Iverson, Sparling, Williams, Lang, & Bowen, 2010) and has 

not been measured directly in male AFS. The daily gross energy require-
ment of an individual varies across particular stages of the annual cycle 
(e.g., breeding ashore, at sea, molting) and is generally expected to be 
high (i.e., using some multiplier above baseline) while at sea. Our results 
clearly demonstrate that AFS energetic costs are likely to vary among 
at-sea movement states, with the highest costs expected during transit 
but potentially significant energy savings expected during diurnal inac-
tivity while on their forage grounds. Movement rates near 0.24 m/s 
are consistent with rates that might be expected from passive drift 
(Meijers, Klocker, Bindoff, Williams, & Marsland, 2010), and at least 
some of these inactivity periods are likely to involve use of sea ice for 
haulout, as in Weddell seals. Ignoring reduced energy expenditure from 
these movement switches between activity/inactivity may lead to a 
gross positive bias in field metabolic rate and the estimate of the mean 
amount of food consumed (Boyd, 2002).

The approach outlined here has applications well beyond the case 
studies presented. Conservation and management of seabird inter-
actions with fisheries would very likely benefit from incorporating 
ancillary tag information into modeling of at-sea activity budgets. 
Recent attempts have quantified the influence of fishing activity (ves-
sel distance, type, and activity: drifting, fishing, or steaming) on state-
switching probabilities of Northern gannets (Morus bassanus) between 
“commuting” and “foraging” behaviors (Bodey et al., 2014). Ancillary tag 
information, from miniature saltwater immersion switches and/or TDRs 
(Weimerskirch, Corre, Jaquemet, & Marsac, 2005), can further discrimi-
nate the time engaged in active foraging from periods of inactivity when 
birds are sitting on the sea surface (Dean et al., 2013). By combining 
movement and activity data from multiple loggers to provide finer scale 
estimation of at-sea behaviors, there is a high likelihood of improved 
quantification of spatiotemporal patterns in active fishing interactions. 
Moreover, further practical applications include distinguishing specific 
behavioral characteristics and their timing, such as nocturnal patterns 
in at-sea resting or other environmental associations with periods of 
high landings and takeoffs, all of which can contribute toward devel-
oping seabird-vessel interaction and bycatch mitigation strategies via 
altered timing and practice of setting and/or hauling fishery gear (Bull, 
2007; Robertson, Candy, Wienecke, & Lawton, 2010).

Our approach is similar in concept to that of (McClintock et al. 2015; 
McClintock et al., 2013) but relies on a more simplistic incorporation of 
ancillary tag information. McClintock et al. (2013, 2015) formally incor-
porate ancillary tag information as an additional likelihood component 
with additional distributions and parameters that inform behavioral 
state switching. Our approach directly uses the proportion of time 
step hauled out or diving to determine the probability of being in the 
“haulout” or “inactive (nondiving)” state. Our behavioral state estima-
tion has a relatively straightforward hierarchy: in the haulout model, 
Weddell seals can only transition into the directed or resident state if 
they are not hauled out, and in the activity model AFS can only transi-
tion between inactive (nondiving) and active (diving) states when they 
are in the resident state. These configurations are suitable for the spe-
cific cases treated here, yet it is conceivable that cases may arise with 
multiple types of ancillary data, for which a more complicated hierarchi-
cal structure might be designed. Else, the more generalized approach of 
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McClintock et al. (2013, 2015), treating the ancillary data similarly to 
the location data, that is, as random variables, could be implemented. 
Information about vertical movements is one of the most common 
ancillary data types collected in studies of aquatic movement ecology 
(Hussey et al., 2015). Furthermore, the SMRU-SRDL tags documenting 
haulout, diving, and other behavioral summaries (Photopoulou, Fedak, 
Matthiopoulos, McConnell, & Lovell, 2015) are being ever more widely 
deployed across species including seals (Hindell et al., 2016), narwhals 
(Lydersen, Martin, Gjertz, & Kovacs, 2007), salmon sharks (Block et al., 
2011), turtles (Benson et al., 2011), sea lions (Lowther, Harcourt, Page, 
& Goldsworthy, 2013), and walruses (Beatty et al., 2016). The approach 
presented here may be easily up-taken and fit by ecological users across 
a range of appropriate data sets.

This methodology can be readily implemented with any source of 
ancillary data that can reasonably be expressed as a proportion (or 
binary) indicator to inform behavioral state. Irregular location observa-
tions typically have a temporal mismatch with tag-recorded ancillary 
behavioral data. In the examples presented here, the time step of the 
modeled CRW was selected to match the temporal resolution (6 h) of 
the available ancillary data, and to be adequate to represent the move-
ment process. However, the choice of time step exercised by the user 
should simply be reasonable given the (1) temporal resolution of the 
available data (location and activity), and (2) temporal scale over which 
the behaviors are expected to occur. For example, consider a terres-
trial species with more frequent and precise location observations 
(e.g., GPS) together with high-resolution accelerometry data (Mosser, 
Avgar, Brown, Walker, & Fryxell, 2014). Within the same SSM frame-
work, the ecologist would update the observation model to use the 
scale of location error appropriate for the telemetry device, and select 
a short time interval (e.g., 15-min time step) appropriate to the fine-
scale nature of the observed movement and activity. Accelerometry 
is itself a burgeoning discipline warranting new analytical methods 
(Carroll et al., 2014; Leos-Barajasa et al., 2016; Nathan et al., 2012), 
but useful summaries can be made. For example, a proportional index 
(0–1) for how much “active” time (Mosser et al., 2014) was recorded, 
or how much a specific activity such as grazing occurred (Yoshitoshi 
et al., 2013), per time interval. Alternately a binary index (0 or 1) such 
as whether head jerks, indicative of prey capture attempts, occurred 
during each time interval (Ydesen et al., 2014). These indices could be 
directly incorporated within the existing SSM framework as an ancil-
lary data input; or more complex parameterizations (e.g., modeling the 
actual number of head jerks) explored.

While our study represents a contribution toward modeling more 
realistic movement processes, it is obvious that animals can have 
complex ecologies. Flexible approaches that aim to detect an arbi-
trary number of behavioral shifts may therefore be appealing (Gurarie, 
Andrews, & Laidre, 2009; Nams, 2014). However, it is worthwhile re-
emphasizing here a clear distinction between differing approaches 
for analyzing animal movement data. The models provided here, and 
similar (Forester et al., 2007; Langrock et al., 2012; McClintock et al., 
2013; Ovaskainen, 2004; Patterson et al., 2008), explicitly describe 
movement mechanisms via a stochastic process model. While these 
are simplified relative to the true biology, they nonetheless rely on 

biologically meaningful parameters which may be estimated from data. 
Further, they neatly deal with many of the key statistical issues plagu-
ing analysis of movement data, such as temporal and spatial depen-
dence and errors in location data. The alternative approaches do not 
provide an explanatory model but an empirical, descriptive distillation 
of movement data (Gurarie et al., 2009) often requiring biological 
inference to be conducted post hoc. These empirical approaches are 
less powerful in their ability to aid direct inference about movement 
processes but may provide useful synergies in motivating the develop-
ment of improved mechanistic models.

Our study adds to a growing body of literature working toward 
inference about animal behavioral states based upon more than just 
horizontal movement information. Modern biotelemetry instruments 
now collect a wealth of information about animal behavior, physiol-
ogy, and the surrounding ocean environment that all provide valuable 
context about individual space use. Analytical methods that harness 
this contextual information can provide improved inference of animal 
movement ecology at individual to population levels. Greater biolog-
ical realism in movement models should facilitate more robust quan-
tification of environmental and biotic factors predictive of movement 
behavior, and the implications for foraging success, energy budgets, 
and more broadly current and future habitat dependencies for key life-
history stages. Movement ecology is fundamental to understanding 
the role marine predators play within ocean ecosystems, and identify-
ing synthetic patterns across guilds as well as keying in on the unique 
niches and dependencies exhibited by particular species.
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