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Abstract  21 

Epidemiological studies have demonstrated an association between maternal vitamin D 22 

deficiency and an increased risk of chronic lung disease in offspring. While vitamin D, and 23 

UV induced non-vitamin D pathways, have the capacity to modulate immune function, this 24 

relationship may also be explained by an effect on lung development which is an independent 25 

predictor of lung function and the risk of lung disease later in life. To date there are not 26 

sufficient data to support a role for non-vitamin D pathways in this association, however, in 27 

vivo and in vitro data suggest there is a causal relationship between vitamin D and lung 28 

development. Despite this, equivocal results in recent high profile clinical trials have 29 

dampened enthusiasm for vitamin D as an important public health intervention for improving 30 

lung development. In this narrative review we summarise our current understanding of the 31 

link between UV exposure, vitamin D and lung development. 32 

  33 
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Background 34 

Exposure to ultraviolet (UV) radiation exposure from the sun has impacts on human health 35 

and disease. While UV radiation is well-known for its direct deleterious effects on the skin, it 36 

is also the major source of vitamin D synthesis [1] which is important in calcium homeostasis 37 

[2]. However, recent studies have also suggested a link between vitamin D and the 38 

development of non-communicable chronic lung diseases. In particular, epidemiological 39 

studies have consistently shown a relationship between low maternal vitamin D levels and the 40 

risk of developing asthma in children [3-5]. Vitamin D, and UV radiation through non-41 

vitamin D pathways, are well known for their potential to modulate immune function which 42 

is important in asthma pathogenesis [6]. However, this association may also be explained by 43 

the potential importance of this pathway in modulating lung growth, which is an independent 44 

predictor of susceptibility to the development of chronic lung disease [7].  45 

 46 

Several recent studies have highlighted the potential role for vitamin D in modulating lung 47 

development, which may explain this link, however the recent equivocal results in high 48 

profile randomised controlled trails examining the impact of maternal vitamin D 49 

supplementation on postnatal lung health suggest that this relationship is not straight-forward 50 

[8-10]. In this narrative review we will summarise our current understanding of the vitamin D, 51 

and the non-vitamin D effects of UV exposure, on lung development.  52 

 53 

Overview of lung development 54 

The lungs bud from the primitive foregut in utero at 3 weeks gestation [11]. Organogenesis of 55 

the lung is characterised by the embryonic, pseudoglandular, canalicular, saccular, and 56 

alveolar stages of development (summarized in Figure 1). Lung development is a complex 57 

and dynamic process such that any insults that occur during this process have the potential to 58 
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impact on normal lung development resulting in increased susceptibility to lung disease and 59 

long-term deficits in lung function [7].  60 

 61 

During the embryonic stage (3-6 weeks gestation), the human fetal lung makes its first 62 

appearance as a ventral diverticulum that arises from the caudal end of the laryngotracheal 63 

groove of the foregut [11]. By 4 weeks of gestation, the end of the diverticulum divides to 64 

form two primary bronchi buds, which then develop lobar buds that corresponding to the 65 

mature lung lobes (three on the right and two on the left). The primitive lung bud is lined by 66 

endoderm-derived epithelium, which eventually differentiates into both the airway and 67 

alveolar epithelium[12]. The pulmonary arteries bud off from the aortic arches and grow 68 

down into the mesenchyme, surrounding the lung tubules where they form a vascular plexus 69 

[13].  70 

 71 

During the pseudoglandular phase (5-17 weeks gestation) the primitive conducting airways 72 

begin to form as epithelial tubes push into the mesenchyme [14]. The primitive airway 73 

epithelium starts to differentiate to form neuroendocrine, ciliated and goblet cells, while 74 

mesenchymal cells begin to form cartilage and smooth muscle cells [15]. During this phase, 75 

mesenchymal-epithelial interactions play a critical role in the regulation of growth and the 76 

airway branching pattern. The mesenchyme is directly responsible for budding of the 77 

epithelial tube, and as the mesenchymal mass increases, epithelial differentiation is shifted 78 

from bronchial (ciliated and goblet cells) to alveolar (primarily Type II pneumocytes) [16]. 79 

The accompanying arterial branches are laid down during this phase [17]. Towards the end of 80 

the pseudoglandular stage, the major conducting airways to the terminal bronchioles are 81 

developed down to 16 generations [18]. 82 

 83 
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During the canalicular stage (16-27 weeks gestation) the compact acinar clusters grow by 84 

further peripheral branching, lengthening of the branches, and widening of the distal 85 

airspaces with a concomitant decrease in interstitial mesenchyme. The epithelium has 86 

differentiated into Type I and II pneumocytes by this stage, and surfactant synthesis begins 87 

[19]. As the peripheral airways grow and mature the capillary network develops [13], and 88 

airway branching is completed by ~24 weeks gestation [20]. During the saccular phase (26 89 

weeks to birth), interstitial tissue projects into the distal airspaces and divides them into 90 

saccules [11], and true alveoli appear [19]. Along with the expansion of respiratory airways, 91 

blood vessels grow in length and diameter and new bronchial arteries and veins are formed 92 

[21].  93 

 94 

Alveolarization begins around 29 weeks gestation and continues postnatally [22]. Studies 95 

have shown postnatal alveolar number increases dramatically within the first 2-3 years of life 96 

[23]. While there is some debate about when this process finishes, recent evidence suggests 97 

that human lung growth continues through late adolescence [24], and the alveoli may 98 

continue to increase in size and number into early adulthood [25]. During the alveolar stage, 99 

alveoli are formed through a septation process that greatly increases the gas-exchange surface 100 

area [13]. From birth until maturity, there is a 20-fold increase in gas-exchange surface area 101 

and 30-fold increase in lung volume [23].  102 

 103 

Lung development and susceptibility to lung disease 104 

Due to the complexity of normal lung development [11], any environmental insults that occur 105 

during fetal and early post-natal growth can have profound and lifelong impacts on lung 106 

structure and function [26]. This is because deficits in lung development persist throughout 107 

life such that infants born with low lung function have a persistent deficit in lung function, 108 
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relative to their peers, throughout life [27, 28]. Importantly, these early deficits in lung 109 

function are associated with an increased susceptibility to chronic lung disease [29-31].   110 

 111 

While the mechanisms linking in utero and early post-natal environmental exposures with 112 

altered lung development will depend on the type of exposure, alterations in somatic growth 113 

are associated with a range of developmental insults. Interestingly, somatic growth has been 114 

associated with poor post-natal lung function in a number of cohort studies whereby, after 115 

adjusting for other maternal factors, there is an association between birth weight (as a crude 116 

marker of somatic growth) and lung function in adulthood [32, 33]. In addition, young adults 117 

born at very low birth weight have reduced airflow [34, 35]. A recent meta-analysis of data 118 

from 25,000 children found that younger gestational age, being smaller for gestational age 119 

and having lower infant weight gain were independent risk factors for the development of 120 

asthma [7]. Thus, maternal exposures that impact on somatic growth also have the potential 121 

to have a long-term influence on lung health.  122 

 123 

Season, latitude and lung development  124 

Ambient UV levels depend on season, latitude, climate, and atmospheric pollution [36]. 125 

Given that vitamin D production is strongly and consistently associated with the duration of 126 

the photoperiod, which in turn is influenced by latitude and season [37, 38], an impact of 127 

early life vitamin D levels or UV exposure, should be evident in associations between season 128 

of birth or latitude and post-natal lung function. However, to our knowledge, there are no 129 

studies examining the relationship between latitude at birth and objective measures of post-130 

natal lung function. Likewise, there are few studies that have examined the association 131 

between season of birth and lung function. One study on mortality in extremely pre-term 132 

infants, who are at a high risk for death due to respiratory insufficiency, showed improved 133 
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survival if they were exposed to higher levels of UVB at 17 and 22 weeks gestation [39]. 134 

Another study that examined the link between a range of early life factors, including season 135 

of birth, using data from two European population cohorts found that individuals born during 136 

winter had a greater decline in lung function in mid-late adulthood [40]. However, due to the 137 

lack of experimental models that have attempted to isolate the effect of UV on lung 138 

development it is not clear whether these associations are due to UV exposure or vitamin D 139 

synthesis.  140 

 141 

While data linking season of birth and post-natal lung function are limited, a number of 142 

studies have examined the relationship between season of birth and birth weight which, as 143 

detailed earlier, may be linked to lung development. However, the relationship that has been 144 

described is inconsistent. For example, an Australian study examined within-year fluctuations 145 

in birth weight and found peak birth weight occurred in Spring and Autumn [41]. In contrast, 146 

a Northern Ireland study found that individuals born during late spring and summer were 147 

lighter than those born in winter [42] while a more recent study in UK found that children 148 

born in summer had higher mean birth weight, later pubertal development, and taller adult 149 

height [43]. So, while season, and perhaps UV/vitamin D, seems to influence birth weight the 150 

nature of the relationship is unclear. This may reflect the complex processes that may be 151 

driving this association including other environmental factors (e.g. infection) that may differ 152 

geographically and be related to season and/or lung development. Further complicating these 153 

relationships is the fact that season of birth and birth weight are examples of a single snapshot 154 

in time that ignores the fluctuating UV exposure, and hence vitamin D levels, that would 155 

occur during the entire gestation period.  156 

 157 

Maternal vitamin D and post-natal lung function  158 
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A number of longitudinal epidemiologic studies have reported associations between maternal 159 

vitamin D status during pregnancy (which reflects fetal vitamin D status [44]), post-natal lung 160 

function, as a marker of lung development, and the susceptibility to respiratory disease. A 161 

cohort study in the United States found an association between a higher maternal vitamin D 162 

intake during pregnancy and a reduced risk of recurrent wheeze in children at 3 years of age 163 

[3]. This observation was supported by a birth cohort study from the United Kingdom [4]. A 164 

more recent study, using objective measures of vitamin D status (serum 25(OH)D) and lung 165 

function, found an association between maternal vitamin D deficiency at 16-20 week’s 166 

gestation, impaired lung function and an increased risk of asthma at 6 years of age [45]. 167 

However, other similar studies have shown no association between maternal vitamin D status 168 

and early post-natal lung outcomes [46-48]. Given the range of experimental evidence 169 

supporting a role for maternal vitamin D in fetal lung development (outlined below), it is 170 

possible that this variability is due to the method of assessing vitamin D status and the 171 

gestational time point used for assessing maternal vitamin D status. Of course, these studies 172 

could also be confounded by an as yet undetermined role for maternal UV exposure in lung 173 

development via non-vitamin D related pathways. 174 

 175 

Evidence supporting a causal role for vitamin D in lung development comes from a number 176 

of sources. For example, a principal component analysis of vitamin D sensitive genes derived 177 

from PubMED and Gene Ontology surveys found common vitamin D related genes in both 178 

the human and mouse lung transcriptome; particularly in the later stages of lung development 179 

[49]. Many of these genes were also upregulated in cells from asthmatics providing a link 180 

between vitamin D, lung development and the susceptibility to chronic lung disease. This link 181 

is supported by a number of in vivo rodent studies. 182 

 183 
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An early study found that rachitic rats had decreased lung compliance and altered lung 184 

structure characterised by disturbed alveolar formation and increased connective tissue [50]. 185 

A subsequent study in mice, that had sufficient calcium levels, showed that early life vitamin 186 

D deficiency cause impaired lung function at 2 weeks of age (early alveolar stage of lung 187 

development; see Figure 1) including increased airway resistance, increased tissue stiffness 188 

and a smaller lung volume (Figure 2) suggesting that this effect is mediated by vitamin D 189 

rather than impaired calcium homeostasis [51]. Similarly, 3 weeks old rats born to vitamin D 190 

deficient mothers have increased airway resistance [52] while vitamin D receptor (VDR) 191 

knockout mice, which have severe physiological phenotype characterised by hair loss and 192 

impaired bone development, show evidence of early-onset emphysema and lung function 193 

decline as a result of matrix metalloproteinase (MMP) upregulation in the lung [53].  194 

 195 

One of the characteristic features of asthma is airway hyperresponsiveness (AHR); an 196 

increased propensity for the airway constrict in response to bronchoconstricting stimuli [54]. 197 

While the mechanisms of AHR are complex it is consistently associated with altered airway 198 

structure; including the increased airway smooth muscle (ASM) mass that is typical of the 199 

asthmatic airway [55]. Thus, it is interesting to note that in utero vitamin D deficiency in 200 

mice increases ASM in adulthood with the addition of post-natal deficiency also causing 201 

AHR [56] (Figure 2). This link between vitamin D and ASM has also been demonstrated in 202 

severe steroid resistant asthmatic children, where lower vitamin D levels were associated 203 

with increased ASM mass and worse lung function [57]. Taken together, these data suggest 204 

that there is a causal relationship between in utero vitamin D deficiency, altered airway 205 

structure and impaired post-natal lung function. The mechanisms underlying this link will be 206 

discussed in more detail below.  207 

 208 

Page 9 of 26 Photochemical & Photobiological Sciences

P
ho

to
ch

em
ic

al
&

P
ho

to
bi

ol
og

ic
al

S
ci

en
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
8 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
T

as
m

an
ia

 o
n 

31
/1

0/
20

16
 2

0:
55

:0
9.

 

View Article Online
DOI: 10.1039/C6PP00278A

http://dx.doi.org/10.1039/C6PP00278A


10 

 

Mechanisms linking maternal vitamin D and lung development  209 

A recent proteomic analysis of the effects of vitamin D deficiency on fetal and neonatal 210 

mouse lung during the key stages of lung development suggested that maternal vitamin D 211 

deficiency affected lung development by reducing surfactant production and enhancing 212 

collagen synthesis [58], which are both likely to increase lung stiffness [51]. Interestingly, 213 

differential expression in the lung proteome seemed to be restricted to the saccular/alveolar 214 

stages of lung development, which are almost exclusively post-natal in the mouse (Figure 1), 215 

and is consistent with a previous lung transcriptome study[49].  216 

 217 

The role of vitamin D in epithelial cell structure and function during the later stages of lung 218 

development is supported by in vitro studies showing that alveolar Type I and Type II cells 219 

isolated from fetal rat lungs during late gestation express vitamin D receptors (VDRs) [59]. 220 

Application of vitamin D to primary cell cultures from fetal, neonatal and adult rat alveolar 221 

epithelial cells stimulates DNA synthesis [60] while the active form of vitamin D, 222 

1,25(OH)2D stimulates surfactant production in Type II cells [61] [62]. Vitamin D may also 223 

play a critical in controlling epithelial-mesenchymal interactions during normal lung 224 

development [59] and contribute to lung maturation by modulating septal thinning during 225 

alveolarisation [63] (Figure 2). 226 

 227 

 Vitamin D, in a number of settings, has been shown to alter expression of the transforming 228 

growth factor beta (TGF-β) pathway. This is important because TGF-β1 expression influences 229 

surfactant production [64], regulates epithelial-mesenchymal interactions [65] and is critical 230 

in overall lung development [66]. For example, vitamin D reduces expression of TGF-β1 231 

induced extracellular matrix proteins in lung epithelial cells and blunts epithelial to 232 

mesenchymal transition [67]. Likewise, 1,25(OH)2D inhibits TGF-β induced cell migration in 233 
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human bronchial epithelial cells [68] and attenuates cytokine induced remodelling in human 234 

fetal ASM cells by blunting TGF-β induced collagen III deposition [69]. This latter 235 

observation highlights the proliferative influence of vitamin D on cells [70] that have 236 

structurally important roles in determining post-natal lung function and susceptibility to lung 237 

disease later in life. Interestingly, vitamin D deficiency seems to reduce TGF-β expression in 238 

vivo [6], suggesting that the role of TGF in this association is complex. 239 

 240 

In addition to these effects on epithelial and mesenchymal cells, there is recent evidence to 241 

suggest that vitamin D may also have a role in angiogenesis. In particular, in in utero models 242 

of endotoxin exposure, prenatal vitamin D treatment can prevent vascular dysfunction [71] 243 

and improve endothelial cell growth and tube formation [72]. Interestingly, post-natal vitamin 244 

D supplementation also seems to be beneficial in these models [73]. While the role of vitamin 245 

D in lung developmental angiogenesis in the healthy lung remains to be determined, any 246 

alteration in endothelial function is likely to have a significant impact on lung development 247 

and, potentially, post-natal lung structure and function. 248 

 249 

Vitamin D supplementation trials and lung development 250 

In response to the epidemiological and experimental associations between maternal vitamin 251 

D and lung outcomes there have been a number of recent randomised controlled trials to 252 

assess the effect of maternal vitamin D supplementation on lung health in offspring. On 253 

balance, the outcomes of these trials suggest no beneficial effect of vitamin D 254 

supplementation on indirect measures of lung development [8-10] (Figure 2).  255 

 256 

A small London based study of 180 women at 27 weeks’ gestation found no effect of small 257 

(800 IU) daily doses of ergocalciferol or a single bolus does of 200,000 IU of cholecalciferol 258 
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on the risk of wheeze or lung function at 3 years of age in offspring [8]. Interestingly, both 259 

interventions only had a limited effect on cord blood levels of vitamin D suggesting that the 260 

interventions may not have been effective at improving vitamin D status in the participants. 261 

Two more recent studies, published as companion, also showed equivocal effects of vitamin 262 

D supplementation on post-natal lung outcomes [9, 10].  263 

 264 

The Copenhagen Prospective Studies on Asthma in Childhood study [10] and (US) Vitamin 265 

D Antenatal Asthma Reduction Trial (VDAART) [9] had similar designs with all women 266 

receiving 400 IU of vitamin D daily and the intervention group receiving additional daily 267 

doses of vitamin D. The main differences between the studies being the higher intervention 268 

dose in the VDAART trial (4000 IU vs 2400 IU) and earlier gestational start point (10-18 269 

weeks’ gestation vs 24 weeks). Both had similar primary outcomes although they did not 270 

measure lung function in the children which is not surprising given their age (3 years). For 271 

the primary outcomes related to wheeze/asthma there was no effect of the intervention in both 272 

trials [9, 10].  273 

 274 

Based on these observations one could conclude that there is no effect of maternal vitamin D 275 

supplementation on lung development. However, a few issues need to be addressed. Firstly, 276 

both studies used “community” samples, which included mothers with a range of baseline 277 

vitamin D levels. While there was a significant increase in serum 25(OH)D levels in response 278 

to the intervention in both studies the mean baseline levels in the Copenhagen study were 279 

relatively high (31 ng/mL = 77.4 nmol/L) [10]. While the levels in the VDAART study were 280 

lower (~ 23 ng/mL = 57.4), suggesting a higher level of deficiency (cutoff ~ 50 nmol/L), the 281 

placebo group (who received 400 IU of vitamin D daily) had an increase in vitamin D levels 282 

(26.8 ng/mL = 66.9 nmol/L) which may have been sufficient to protect the offspring from the 283 
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detrimental effects of maternal vitamin D deficiency [9]. The authors of the VDAART trial 284 

also suggest that their study may have been underpowered and the authors of the Copenhagen 285 

study acknowledge the variability in the effect size estimates; both of which may be due to 286 

the issues outlined above. Thus, whether maternal vitamin D supplementation in mothers who 287 

are vitamin D deficient can improve lung development and reduce the risk of chronic lung 288 

disease in their offspring remains an open question. 289 

 290 

Given the issues outlined above, particularly the absence of lung function measures in the 291 

children, follow up studies are likely to be enlightening. Given that a recent Cochrane review 292 

suggests that there is moderate evidence for increased growth in offspring following maternal 293 

supplementation with vitamin D [74], and the link between being small for gestational age 294 

and lung growth, measuring somatic growth in the children in these studies may also provide 295 

further insight. The importance of this is highlighted by the fact that vitamin D deficient mice 296 

also have similar early life deficits in somatic growth [51].  297 

 298 

Conclusion  299 

In summary, whether vitamin D supplementation in pregnant women is necessary to improve 300 

lung development and reduce the risk of chronic lung disease is unclear. Throughout this 301 

review we have largely ignored the potential effects of UV via non-vitamin D pathways. This 302 

is due to the fact that there are almost no data on these pathways in terms of their role in 303 

modulating lung development. There are some epidemiological studies that have implied an 304 

effect of UV exposure on early growth and development, however, the presumptive mediator 305 

in all of these cases has been vitamin D which is supported by the plethora of studies 306 

demonstrating a biologically plausible link between vitamin D and lung maturation. These 307 

studies have shown that in utero vitamin D deficiency can alter post-natal lung growth 308 
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resulting in increased lung stiffness and an increase in ASM mass. Mechanistic studies 309 

suggest that the lung is most sensitive during the saccular/aveolar stage of development 310 

through altered surfactant production, increased collagen synthesis, epithelial mesenchymal 311 

transition and ASM proliferation; all of which may be modulated by the TGF-β pathway. 312 

Future studies should focus on the effects of vitamin D supplementation during the later 313 

stages of lung development, particularly in mothers who are vitamin D deficient at this point 314 

in gestation. Taken together there appears to be consistent evidence to support a role for 315 

vitamin D in modulating lung development and there are sufficient issues with recent clinical 316 

trials to suggest that further investigation in this field is required. 317 

 318 

  319 
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Figure legends 320 

 321 

Figure 1. Schematic representation of the major stages of human and mouse lung 322 

development. While the lung development process in humans and mice is qualitatively 323 

similar, there are important differences; in particular, alveolarisation is exclusively post-natal 324 

in the mouse. These discrepancies need to be taken into account when considering in vivo 325 

experimental data and their relevance to human lung development. 326 

 327 

Figure 2. Diagram summarising the relationship between vitamin D and lung development. 328 

In vivo descriptive studies have shown that early life vitamin D deficiency impairs lung 329 

growth resulting in increased lung stiffness (and reduced lung volume) and in utero vitamin 330 

D deficiency increases airway smooth muscle (ASM) mass in adulthood. Mechanistic studies, 331 

from both in vitro and in vivo models, suggest that these observations are due to vitamin D’s 332 

impact on epithelial-mesenchymal interactions, cell migration, cell proliferation, surfactant 333 

production and collagen deposition. However, vitamin D supplementation trials have shown 334 

no effect on post-natal outcomes that are indicative of lung development (wheeze and lung 335 

function at 3 years of age). 336 

  337 
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Schematic representation of the major stages of human and mouse lung development. While the lung 
development process in humans and mice is qualitatively similar, there are important differences; in 

particular, alveolarisation is exclusively post-natal in the mouse. These discrepancies need to be taken into 

account when considering in vivo experimental data and their relevance to human lung development.  
Figure 1  
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Diagram summarising the relationship between vitamin D and lung development. In vivo descriptive studies 
have shown that early life vitamin D deficiency impairs lung growth resulting in increased lung stiffness (and 

reduced lung volume) and in utero vitamin D deficiency increases airway smooth muscle (ASM) mass in 
adulthood. Mechanistic studies, from both in vitro and in vivo models, suggest that these observations are 

due to vitamin D’s impact on epithelial-mesenchymal interactions, cell migration, cell proliferation, 
surfactant production and collagen deposition. However, vitamin D supplementation trials have shown no 

effect on post-natal outcomes that are indicative of lung development (wheeze and lung function at 3 years 
of age).  

Figure 2  
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Recent equivocal results in high profile randomised controlled trials suggest that the impact of 

vitamin D deficiency on lung development is complex. In this narrative review we summarise our 

current understanding of the link between UV exposure, vitamin D and lung development. 
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