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ABSTRACT 1 
This paper proposes a practical fuel budget problem which aims to determine a group of 2 
bunker fuel budget values for a liner container ship over a round voyage under uncertainties 3 
caused by severe weather conditions. The proposed problem holds a kernel position in the 4 
ship fuel efficiency management programs advocated by container shipping lines due to the 5 
downward pressure of soaring bunker prices, according to our research collaboration with a 6 
global container shipping line in Singapore. We consider the synergetic influence of sailing 7 
speed and weather conditions on ship fuel consumption rate when estimating the bunker fuel 8 
budget of a ship over a round voyage. To address the adverse random perturbation of fuel 9 
consumption rate under severe weather conditions, we employ the state-of-the-art robust 10 
optimization techniques and develop a robust optimization model for the fuel budget problem. 11 
The developed model can be dualized into a mixed-integer linear programming model which 12 
may be solved by commercial optimization solvers. However, algorithmic findings in the 13 
field of robust optimization provide a polynomial time solution algorithm, and we retrofit it to 14 
accommodate the proposed ship fuel budget problem. The case study on an Asia-Europe 15 
service demonstrates the computational performance of the proposed solution algorithm, and 16 
the competence of the proposed robust optimization model to produce fuel budget values at 17 
different levels of conservatism possessed by the fuel efficiency specialists in container 18 
shipping lines.   19 
 20 
KEY WORDS: 21 
Fuel consumption, budget, sailing speed, weather condition, robust optimization 22 
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INTRODUCTION 1 
Bunker fuel prices have been soaring in the past years from about 200 USD/MT to around 2 
600 USD/MT. For instance, the spot market price of IFO 380 in Singapore increased from 3 
lower than 300 USD/MT in the first quarter of 2009 to higher than 700 USD/MT at the same 4 
period of 2012, and has remained above 600 USD/MT since then. High bunker prices make 5 
bunker cost become a large portion of the operating costs for a container shipping line. Ronen 6 
(1) points out that bunker cost will account for three quarters of the total operating costs of a 7 
large container ship if the bunker fuel price exceeds 500 USD/MT. This poses considerable 8 
downward pressure on the revenue of container shipping lines. To make things worse, the 9 
current economic crisis has resulted in the slump of shipping demand which further crushes 10 
the profit margins of container shipping lines. 11 

To relieve the financial burden caused by the increasing bunker cost, container 12 
shipping lines have been advocating ship fuel efficiency management programs of various 13 
kinds. In a ship fuel efficiency management program, budgeting the fuel consumption of each 14 
container ship in the fleet over a planning horizon (say over a round voyage) is of significant 15 
importance. In fact, the bunker fuel budget problem for each container ship forms the basis of 16 
the entire ship fuel efficiency management program. In the strategic or tactical level, to 17 
allocate bunker budget among various shipping routes, one needs to estimate the fuel 18 
consumption of each container ship over each round voyage. In the operational level, fuel 19 
efficiency specialists in a container shipping line have to clearly understand the fuel 20 
consumption profile of each container ship over a round voyage at different operational 21 
conditions to provide benchmarks for implementing an ask-and-inspection fuel control 22 
mechanism between captains on board and on-shore officers. 23 

 24 

 25 
FIGURE1 Fuel consumption rate of a 13000-TEU container ship (S1) at different speeds: 26 

R2 = 0.9080 27 
 28 

However, it is challenging to precisely estimate the bunker fuel consumption of a 29 
container ship in a planning horizon, even over a round voyage, since the fuel consumption of 30 
a ship in a time unit (say one day) is influenced by many factors, such as its sailing speed, 31 
displacement, trim, and weather/sea conditions experienced, in an extremely complicated way 32 
(2). Among these factors, sailing speed is the main determinant. Figure 1 illustrates a 33 
quantitative relationship between the fuel consumption rate ( Fr ) of a 13000-TEU container 34 
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ship (labeled as “Ship S1” hereinafter) and its sailing speed (V ), based on real data collected 1 
from a global container shipping line. It can be seen that the sailing speed can explain up to 2 
90% of the fuel consumption. However, it should be noted that weather conditions will also 3 
significantly affect the fuel consumption rate. Figure 2 depicts the fuel consumption rate of 4 
ship S1 in bow waves at different sailing speeds. We can observe that the fuel consumption of 5 
ship S1 in one day increases dramatically with wave heights when the ship experiences bow 6 
waves. In reality, the influence of sailing speed and that of weather conditions (wind, waves) 7 
are coupled together in a sophisticated way (3). 8 

 9 

FIGURE 2 Fuel consumption rate of a 13000-TEU container ship (S1) in bow waves 10 
 11 

The influence of sailing speed on fuel consumption rate has recently been well 12 
recognized by the maritime studies because it plays an important role in liner shipping 13 
network analysis (4-6), including shipping network design (7), ship fleet deployment (8), ship 14 
schedule design (9), container assignment (10), and cargo booking and routing (11). 15 
Notteboom and Vernimmen (12), and Ronen (1) analyze the relationship between bunker 16 
price, sailing speed, service frequency and the number of ships on a shipping route. Álvarez 17 
(8) takes the ships of different speeds as different ship types when examining the joint routing 18 
and deployment of a fleet of container ships, and quantifies the bunker cost in the objective of 19 
his model. Fagerholt et al. (13) discretize the arrival time (equivalently the sailing speed) at 20 
each port call and formulate the ship speed optimization over a single voyage as a shortest 21 
path problem. Brouer et al. (7) implicitly consider the sailing speed optimization in liner 22 
shipping network design by experimentally evaluating several possible vessel-speed-route 23 
combinations and selecting the most promising one. Wang and Meng (14), and Qi and Song 24 
(9) minimize the bunker fuel consumption of ships by speed optimization under operational 25 
uncertainties, such as random port durations and sea contingency. Golias et al. (15) and Du et 26 
al. (16) study the berth allocation problem considering fuel consumption to evaluate the 27 
performance of the virtual arrival policy. 28 

Although the influence of weather conditions on ship fuel consumption rate was  29 
revealed several decades ago from the viewpoint of naval architecture (17; 18), it is seldom 30 
considered by existing liner shipping studies. The weather routing problem (WRP) of ships 31 
exhibits the impact of weather on ship transit time and sea-keeping (19-21). Unfortunately, it 32 
overlooks the influence of weather conditions on ship fuel consumption. Lin et al. (22) 33 
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capture the influence of weather conditions on fuel consumption during sailing in their 1 
three-dimensional modified isochrones method. However, the propeller resolution speed of 2 
the ship along the optimal route is assumed to be constant. 3 

We note that the synergetic influence of sailing speed and weather conditions on fuel 4 
consumption of ships is usually ignored. The uncertainties in ship fuel consumption rates 5 
caused by variable weather conditions are not captured by existing studies. Furthermore, 6 
more importantly, studies on budgeting ship fuel consumption in a planning horizon, which 7 
intrinsically requires to consider the synergetic influence of sailing speed and weather 8 
conditions and the uncertainties in fuel consumption resulting from variable weather 9 
conditions, are not found. This poses a gap between industrial needs and academic studies.  10 

 11 

Objectives and Contributions 12 

This study deals with the fuel consumption budget problem of a single container ship over a 13 
round voyage by incorporating the coupled influence of sailing speed and weather conditions 14 
and the uncertainties in fuel consumption, utilizing the state-of-the-art robust optimization 15 
techniques (23-25). The robust optimization model and the corresponding solution algorithm, 16 
which will be presented in the subsequent sections, can produce different fuel budget values 17 
reflecting different conservatism levels of fuel efficiency specialists in container shipping 18 
lines. 19 

  The contributions of this study are threefold: (a) this study proposes the fuel 20 
consumption budget problem of a single container ship over a round voyage, which is a new 21 
research topic in maritime studies; (b) it addresses the synergetic influence of sailing speed 22 
and weather conditions on ship fuel consumption which is seldom considered in literature; 23 
and (c) this study takes an initiative to extend the applications of robust optimization 24 
approaches to liner shipping network analysis. 25 

The remainder of this paper is organized as follows. We first introduce the fuel 26 
consumption budget problem for a single container ship over a round voyage, and build a 27 
nominal mathematical model. Then, we proceed to develop a robust optimization model to 28 
address the fuel consumption uncertainty over each sailing leg. Third, we give a polynomial 29 
time algorithm according to the theoretical findings of Bertsimas and Sim (24) on robust 30 
optimization. At last, we report experimental results and conclude this study.         31 
 32 
FUEL CONSUMPTION BUDGET PROBLEM FOR A SINGLE CONTAINER SHIP 33 
AND THE NOMINAL MATHEMATICAL MODEL 34 

Problem Statement 35 

Consider a liner shipping service operated by a container shipping line. A round voyage of a 36 
liner shipping service typically consists of a sequence of port calls: 37 

1 2 3... 1 ... 1k k N N→ → → → + → → → + , in which the ( )1
th

N + , namely the last, port 38 

call represents the same container port as the first call. The voyage from the thk  to ( )1
th

k +  39 

port call is referred to as the sailing leg k  of the service, { }1,2,...,k N∈  . For each port call 40 

k , each ship deployed should comply with an arrival time window ,EARLY LATE
k ka a    and stay 41 

at this port with time duration kp (hours). Meanwhile, denote the sailing distance of leg k  42 

by kd  (n mile). Take the LP4 service operated by American President Lines (APL) in Table 43 

1 for example, there are totally 14 port calls: Ningbo (NTB) is the first port call, and the 44 
subsequent Yangshan (YAN), Yantian (YAT) and Singapore (SIN) are the 2nd, 3rd and 4th port 45 
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call. Among 13 sailing legs, Hamburg (HF8) to Rotterdam (RTM) is the 8th one which is 1 
225-nm long. If we defined the departure time from Ningbo as time zero, the ship should 2 
arrive at Rotterdam after sailing over leg 8 between time 888 and 912 (hours). After 3 
experiencing 45 hours of maneuvering, anchoring, piloting and container handling, the ship 4 
will leave Rotterdam and begins its long-time sailing over leg 9 to the Suez Cannel (SUZ) 5 
which is virtually considered as a port. 6 
 7 

TABLE 1 Shipping schedule of service LP4 published by APL 8 
Sailing leg Port Time window (destination port) 

Origin Destination Distance Duration Early arrival a Late arrival 

NTB YAN 80 40 0 24 

YAN YAT 700 16 72 96 

YAT SIN 1430 31 192 216 

SIN SUZ 5020 18 528 552 

SUZ KLV 3130 19 720 744 

KLV SOU 70 35 744 768 

SOU HF8 425 50 816 840 

HF8 RTM 225 45 888 912 

RTM SUZ 3350 22 1176 1200 

SUZ JED 625 31 1248 1272 

JED SIN 4420 58 1560 1584 

SIN YAT 1450 20 1728 1752 

YAT NTB 705 32 1800 1816 

Note: a when an arrival time window is discretized on an hourly basis, the earliest arrival time is “Early arrival” 9 
plus 1. 10 
 11 

If we construct a shipping schedule with the arrival time at port call 12 

{ }1,2,..., , 1k N N∈ +  being ka  and define the departure time from the first port call 13 

1 1 1 0DEPARTt a p= + = (so that the thN  sailing leg can be treated in the same way as other legs), 14 

then the transit time kt  of the ship over sailing leg k  should be ( )1k k ka a p+ − +  hours, and 15 

sailing speed kv  should be maintained at ( )( )1k k k kd a a p+ − +  knots. Given the following 16 

power function relationship between fuel consumption rate ( Fr , MT/h) and its sailing speed 17 

V : 18 

 
2

1
c

Fr c V= ⋅   (1) 19 

as illustrated in Figure 1, the total bunker fuel consumption of this ship over the whole round 20 
voyage can be calculated as 21 

 

( ) ( ) ( )( )

( ) ( )( )

2

2
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1 1 1
1 1 1
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F c v t c a a p
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c d a a p

+
= = +

−
+

=

 
= ⋅ = ⋅ − +  − + 

= ⋅ − +

 


  (2) 22 

It can be seen that the sailing schedule { } 1

1

N

k k
a

+

=
 determines the total fuel consumption of the 23 

ship over a round voyage. 24 
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[NOMINAL] ( )( )+1

1
1 1 1

min
k kN NN

NOMINAL ij j i ij
k k k k k

k i j

F f a a p x+
= = =

= ⋅ − + ⋅   (3) 1 

subject to 2 

 

1

1 1

1, 1,...,
k kN N

ij
k

i j

x k N
+

= =

= ∀ =   (4) 3 

 

1 1

1
1 1

, 2,3,... , 1,...,
k kN N

ji ij
k k k

j j

x x k N i N
− +

−
= =

= ∀ = ∀ =    (5) 4 

 { } 10,1 , 1,2,3,... , 1,..., , 1,...,ij
k k kx k N i N j N +∈ ∀ = ∀ = ∀ =   (6) 5 

where the objective function expressed by Eq. (3) calculates the total fuel consumption along 6 
a feasible path in Figure 3. Constraints (4) impose that exactly one link is chosen for each 7 
sailing leg; constraints (5) ensure the flow conservation, and constraints (6) define the binary 8 
decision variables.  9 
 10 
ROBUST OPTIMIZATION MODEL UNDER UNCERTAINTIES 11 
We now consider the uncertainties in ship fuel consumption rates caused by random weather 12 
conditions, especially the adverse influence of bad weather in the realistic bunker fuel budget 13 
problem. Due to the adverse influence of bad weather, the real fuel consumption rate of the 14 

ship under consideration over the link from the node for i
ka  to that for 1

j
ka + , denoted by ij

kf
 , 15 

is assumed to randomly change in ,ij ij ij
k k kf f δ +  , where ij

kf  is the nominal fuel 16 

consumption rate, and 0ij
kδ >  reflects the adverse influence of weather conditions. However, 17 

the exact probability distribution of ij
kf
  is genarally hard to obtain (or to pass the statistical 18 

test for common types of probability distributions). Based on the experience of ship fuel 19 
efficiency specialists in the container shipping line, the number of sailing legs on which the 20 
fuel consumption rate of this ship perturbates above its nominal value basically does not 21 
exceed Γ , among totally N  sailing legs over a round voyage. { }1,2,..., NΓ∈  and its 22 

specific value reflects the estimation on the occurance of severe weather conditions, and thus 23 
represents the conservatism level of the ship fuel efficiency specialists in the container 24 
shipping line. 25 

Let ( ){ }1, , 1,..., ; 1,..., ; 1,...,k kk i j k N i N j N += = = =A  denote the set of links in 26 

Figure 3. To hedge against the worst case when the fuel consumption rates over Γ  among 27 
N  sailing legs randomly increase, the objective fucntion shown in Eq. (3) should be 28 
retrofited as 29 

( )( )
( ) { }

( )( )
( )

1 1
,, , , ,

min maxROBUST ij j i ij ij j i ij
k k k k k k k k k k

S S Sk i j k i j S

F f a a p x a a p xδ+ +
⊆ ≤Γ∈ ∈

= − + ⋅ + − + ⋅ 
AA

 (7) 30 

To simplify the mathematical expression, we introduce: 31 

 ( )( ) ( )( ) ( )1 1, , , ,ij ij j i ij ij j i
k k k k k k k k k kg f a a p a a p k i jδ+ += − + Δ = − + ∈A   (8) 32 

The robust optimization model under uncertainties can be formulated as below: 33 

[ROBUST1] ( ) { } ( ),, , , ,

min maxROBUST ij ij ij ij
k k k k

S S Sk i j k i j S

F g x x
⊆ ≤Γ∈ ∈

= ⋅ + Δ ⋅ 
AA

  (9) 34 

             subject to constraints (4)-(6). 35 
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The second term of objective function (9) with the “max” operator is equivalent to a linear 1 
programming problem: 2 

 ( ), ,

max ij ij ij
k k k

k i j

x y
∈

Δ ⋅ ⋅
A

  (10) 3 

subject to 4 

                             ( )0 1, , ,ij
ky k i j≤ ≤ ∈A   (11) 5 

 ( ), ,

ij
k

k i j

y
∈

≤ Γ
A

  (12) 6 

Let ( ), , ,ij
k k i jμ ∈A  and λ  be the dual variables with respect to of constraints (11) 7 

and (12), respectively. Solving the linear programming model (10) - (12) is equivalent to 8 
solving its dual program: 9 

 ( ), ,

min ij
k

k i j

λ μ
∈

Γ⋅ + 
A

  (13) 10 

subject to 11 

                         ( ), , ,ij ij ij
k k kx k i jμ λ+ ≥ Δ ⋅ ∈A  (14) 12 

 ( ), 0, , ,ij
k k i jλ μ ≥ ∈A   (15) 13 

Model [ROBUST1] can thus be rewritten as follows: 14 
[ROBUST2]        

( ) ( ), , , ,

min ROBUST ij ij ij
k k k

k i j k i j

F g x λ μ
∈ ∈

= ⋅ + Γ⋅ + 
A A

  (16) 15 

                subject to constraints (4)-(6), (14) and (15). 16 
Compared to model [ROBUST1], model [ROBUST2] has more decision variables. 17 

However, model [ROBUST2] becomes a mixed-integer linear programming (MILP) model 18 
which could be solved by a number of optimization solvers such as CPLEX and Gurobi. In 19 
fact, we can do better to solve the robust model. As a component of the robust optimization 20 
theory, Bertsimas and Sim (24) prove that the robust counterpart of a polynomially solvable 21 
combinatorial optimization problem is also polynomially solvable and propose the solution 22 
algorithm. We apply their theoretical findings and solution algorithm to model [ROBUST2], 23 
and describe them in next section.  24 
 25 
SOLUTION METHOD 26 

We rearrange the link index set A  as O  in the decreasing order of ( ), , ,ij
k k i jΔ ∈A , 27 

namely, 28 

 1 2 ...Δ ≥ Δ ≥ ≥ ΔO   (17) 29 

where =O A . Based on this new index set, ( ), , , ,ij ij
k kg x k i j ∈A  are replaced by og  and 30 

,ox o∈O  respectively. We define 1 0+Δ =O . The closely-related theoretical findings of 31 

Bertsimas and Sim (24) can be re-expressed by the following theorem, for our specific model 32 
[ROBUST2]. 33 
Theorem 1. Model [ROBUST2] can be optimally solved by solving totally 1+O  nominal 34 

shortest path problems: 35 

 1,..., 1
minROBUST l

l
F G

= +
=

O   (18)  36 

where for a specific l , the problem lG  is defined as 37 
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 ( )
1 1

min
l

l
l o o o l o

o o

G g x x
= =

 
= Γ ⋅Δ + ⋅ + Δ − Δ ⋅ 

 
 
O

  (19) 1 

in which the first term is a constant, and the second term is a nominal shortest path problem. 2 
Proof. Follow the same process of Bertsimas and Sim (24), which first eliminates the dual 3 
variables ( ), , ,ij

k k i jμ ∈A  based on the structural property of optimal solutions, and then λ  4 

by employing the fact that ( ), , ,ij
kx k i j ∈A  are binary decision variables. □  5 

Remarks for Theorem 1: (a) compared to the shortest path problem shown in Figure 6 
3, the problem lG  increases the cost (bunker fuel consumption) over link { }1,...,o l∈  to 7 

( )o o lg + Δ − Δ  while it leaves the cost over other links unchanged; (b) the shortest path 8 

problem in the second term of lG  is independent of the specific value of Γ , which supports 9 

the computational merit that it only requires solving a set of shortest path problems { } 1

1

l

l
G

+

=

O
 10 

once when the robust fuel consumption values at different levels of conservatism of industrial 11 
fuel efficiency specialists are needed no matter how many possible values of Γ  are chosen; 12 
(c) if 1l l+Δ = Δ , the two optimization problems of lG  and 1lG +  will be the same, which 13 

provides an additional computational advantage that the times for solving shortest path 14 
problems can be reduced to the total number of different nonzero lΔ  plus 1; and (d) a 15 

dummy terminal node can be added into the shortest path problem involved in lG  to 16 
facilitate using the Dijkstra’s algorithm, although the framework proposed by Bertsimas and 17 
Sim (24), and thus the derivation process to robust optimization models [ROBUST] and 18 
[ROBUST2], do not support using the dummy terminal node and the dummy links to it. 19 
Based on Theorem 1 and the algorithm of Bertsimas and Sim (24) for a general combinatorial 20 
optimization problem, the solution algorithm for our ship fuel budget robust optimization 21 
model can be designed as follows: 22 
___________________________________________________________________________ 23 
Solution Algorithm 24 
___________________________________________________________________________ 25 
Step 1. Sort the indexes/arcs ( ), ,k i j  in A  in the decreasing order of its fuel consumption 26 

deviation ( )( )1
ij ij j i
k k k k ka a pδ +Δ = − +  and obtain a new index array O : 27 

 1 2 ...Δ ≥ Δ ≥ ≥ ΔO   28 

Step 2. For 1,2,..., 1l = +O , solve the shortest path problem lG  represented by (19); 29 

Step 3. Find *

1,..., 1
arg min l

l
l G

= +
=

O
, and let the optimal bunker fuel budget value of the ship over 30 

a round voyage be 
*lG and the robust ship schedule as the shortest path suggested by 31 

*lG . 32 
___________________________________________________________________________ 33 
 34 

Let us analyze the computational time complexity of the above solution algorithm. 35 

The time complexity of sorting in Step 1 is ( )( )logO A A ; Step 2 solves shortest path 36 

problems with say the Dijkstra’s algorithm 1 1+ = +O A  times, and thus needs 37 
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computational time of complexity 
1

1

N

k
k

O N
+

=

 
 
 

A ; Step 3 finds the minimum among 1 

1 1+ = +O A  values and thus consumes computational time of complexity ( )O A . 2 

Consequently, the proposed solution algorithm is a polynomial time method.       3 
 4 
CASE STUDY 5 
We use the Asia-Europe service LP4 operated by APL in this case study, and the ship under 6 
consideration is assumed to be ship S1 shown in Figures 1 and 2. The port rotation, port 7 
durations and arrival time windows are tabulated in Table 1. Each arrival time window is 8 
discretized on an hourly basis, which is a fine time-resolution for a long shipping voyage such 9 
as an Asia-Europe service generally lasting for more than two months. For the influence of 10 
different discretization granularities on solution optimality, the interested readers are referred 11 
to the work of Fagerholt et al. (13). The regression curve in Figure 1 and the curve 12 
representing a wave height of 7 m in Figure 2 are utilized to define the lower and upper 13 

bound of ,ij ij ij
k k kf f δ +   in which the fuel consumption rates of S1 perturbate. 14 

Computational Performance 15 

Model [ROBUST2] is a mixed-integer linear programming problem which might be 16 
optimally solved by commercial optimization solvers such as CPLEX and Gurobi. To 17 
compare the computational performance of the Branch and Cut (B&C) algorithm and that of  18 
the solution algorithm presented above, we solve model [ROBUST2] with both IBM ILOG 19 
CPLEX 12.6 and the proposed solution algorithm, in which process YALMIP (26) is used to 20 
formulate [ROBUST2] in MATLAB. The time limit for the B&C algorithm in CPLEX is set 21 
to 300 seconds in view of the efficiency of the proposed solution algorithm. 22 
 23 

 24 
 25 

FIGURE 4 Optimality gaps when CPLEX terminates at the 300-s time limit 26 
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The whole network totally has 1+24×12+16=305 nodes and 5875 arcs over which 1 
there are totally 470 different deviation values of fuel consumption ( lΔ ). The B&C algorithm 2 

in CPLEX can solve the nominal model [NOMINAL], i.e. 0Γ = , in less than 1 second. This 3 
can be easily understood from the theoretical viewpoint because model [NOMINAL] is a 4 
shortest path problem and it possesses the structural property of totally unimodularity. 5 
However, when 1Γ ≥ , model [ROBUST2] seems much harder to solve and CPLEX cannot 6 
solve model [ROBUST2] to optimality within 300 seconds except for 1Γ = . The optimality 7 
gaps with different values of Γ  are depicted in Figure 4. This is partly because model 8 
[ROBUST2] loses the nice property of totally unimodularity and much more dual variables 9 
and relevant constraints enter the model. 10 

The proposed solution algorithm needs to solve 470+1=471 shortest path problems. It 11 
can solve model [ROBUST2] over this test case to optimality in 15 seconds according to our 12 
experiments, which fully demonstrates its high computational efficiency compared to 13 
commercial solvers and strongly underpins its industrial application in decision support 14 
systems. 15 

Robust Shipping Schedules and Price of Robustness 16 

The robust shipping schedules worked out by the proposed solution algorithm when 17 

{ }1,2,...,6Γ∈  are shown in Table 2. We do not list the results when 7Γ ≥  because the 18 

probability of a ship experiencing 7-meter bow waves over more than 7 among 13 legs is too 19 
low in practice. Meanwhile, we plot the robust objective values, i.e. ROBUSTF  (fuel 20 
consumption over a round voyage under uncertainties), and the nominal objective values of 21 
these robust shipping schedules, i.e. NOMINALF  of the robust schedules, in Figure 5. 22 
 23 

TABLE 2 Shipping schedules under different robustness protection levels (ડ) 24 Γ 
Shipping schedule 

YAN YAT SIN SUZ KLV SOU HF8 RTM SUZ JED SIN YAT NTB

0 5 88 193 533 744 768 833 899 1183 1249 1584 1746 1816

1 5 88 193 552 744 768 833 899 1183 1249 1584 1746 1816

2 5 88 193 552 744 768 833 899 1183 1249 1584 1746 1816

3 5 88 193 533 744 768 833 899 1183 1249 1584 1746 1816

4 5 88 193 533 744 767 827 890 1191 1249 1584 1746 1816

5 4 80 193 533 744 767 827 890 1191 1249 1584 1746 1816

6 4 80 193 533 744 767 827 890 1191 1249 1584 1752 1816

Note: unit: hour; departure time from NTB (first port call) is considered as time zero. 25 
 26 

It can be seen that with the increase of the value of Γ , model [ROBUST2] pays more 27 
and more attention to the robust part (the second and third terms) of the objective function 28 
expressed by Eq. (16) to hedge against increased anticipated uncertainties, which causes the 29 
total objective values to increase dramatically. In other words, when the levels of 30 
conservatism of industrial specialists are lifted, the robustness of the shipping schedule is 31 
improved to hedge against the perturbation of ship fuel consumption rates due to severe 32 
weather conditions, but we need to pay more to the ship fuel budget and sacrifice the nominal 33 
optimality. Ship fuel efficiency specialists in a shipping line can choose a suitable value of Γ  34 
based on their risk preference level. 35 
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 1 
FIGURE 5 Fuel budget values of ship S1 over a round voyage at different robustness 2 

protection levels 3 

 4 

 5 

 6 
FIGURE 6 Distributions of fuel consumption of ship S1 over a round voyage with 7 

different perturbation probabilities of bunker consumption 8 
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Simulation Results 1 

To validate whether the proposed robust optimization model can produce good fuel budget 2 
values in real shipping situation, we randomly generate 100 feasible shipping schedules of 3 
service LP4, and evaluate the fuel consumption implied by these schedules under uncertain 4 
weather conditions. To simulate the influence of severe weather, we assume that the actual 5 
fuel consumption rate of ship S1 over each network link independently perturbs, with 6 
probability { }0.1,0.2,0.3,0.4,0.5α ∈ , from its nominal value ij

kf  to ij ij
k kf δ+ . For each 7 

value of α , we generate 100 random scenarios and calculate the fuel consumption of ship S1 8 
for each feasible schedule over each random scenario (totally we have 100×100=10000 9 
schedule-scenario combinations for each value of perturbation probability α ) . The 10 
distributions of fuel consumption of S1, together with the fuel budget values produced by our 11 
robust optimization models, are ploted as the curves/lines shown in Figure 6. 12 

It can be seen that when the perturbation probability 0.2α ≤ , the robust objective 13 
value with 2Γ =  will be a good budget value for bunker fuel consumption. Similarly, with 14 

4, 6, 6Γ = , the proposed robust model could produce good budget values if the perturvation 15 
probability α  caused by severe weather conditions is 0.3, 0.4 and 0.5, respectively. Figure 6 16 
also indicates the possibility that actual fuel consumption is higher than these budget values. 17 
This is implicated with the fact that these feasible schedules (tested in experiments and 18 
adopted in practice) are not necessarily optimal from the viewpoint of fuel consumption 19 
management. We thus can see the importance of both “robustness analysis” and “optimal 20 
schedule design”, which is the spirit of robust optimization theory.       21 

 22 
CONCLUSIONS 23 
This paper has dealt with the fuel budget problem for a container ship over a single round 24 
voyage, inspired by the liner shipping industrial trend in implementing ship fuel efficiency 25 
management programs. This study takes an initiative to examine this management issue with 26 
practical significance in liner shipping studies. To address the adverse influence of the 27 
perturbation of ship fuel consumption rates under severe weather conditions on bunker fuel 28 
budget estimation, we employ the state-of-the-art robust optimization techniques developed 29 
by Bertsimas and Sim (24) and build a robust optimization model for the fuel budget problem. 30 
Although the robust optimization model can be transformed to a MILP model with the 31 
possibility to be solved by commercial solvers, we utilize the algorithmic findings on a 32 
general combinatorial problem by Bertsimas and Sim (24) and design a polynomial time 33 
algorithm based on solutions of multiple shortest-path problems. A case study of the LP4 34 
service operated by APL demonstrates the computational competence of the proposed 35 
algorithm and shows that the proposed model can work out good fuel budget values at 36 
different levels of conservatism under realistic but uncertain situations. 37 
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