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Abstract

Selecting appropriate environmental variables is a key step in ecology. Terrain attributes

(e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to

produce habitat maps that can be used in decision-making for conservation or management.

Selecting appropriate terrain attributes for ecological studies may be a challenging process

that can lead users to select a subjective, potentially sub-optimal combination of attributes

for their applications. The objective of this paper is to assess the impacts of subjectively

selecting terrain attributes for ecological applications by comparing the performance of dif-

ferent combinations of terrain attributes in the production of habitat maps and species distri-

bution models. Seven different selections of terrain attributes, alone or in combination with

other environmental variables, were used to map benthic habitats of German Bank (off

Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications

of biophysical characteristics of German Bank were produced, and 29 species distribution

models of sea scallops were generated using MaxEnt. The performances of the 58 maps

were quantified and compared to evaluate the effectiveness of the various combinations of

environmental variables. One of the combinations of terrain attributes–recommended in a

related study and that includes a measure of relative position, slope, two measures of orien-

tation, topographic mean and a measure of rugosity–yielded better results than the other

selections for both methodologies, confirming that they together best describe terrain prop-

erties. Important differences in performance (up to 47% in accuracy measurement) and spa-

tial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of

carefully selecting variables for ecological applications. This paper demonstrates that mak-

ing a subjective choice of variables may reduce map accuracy and produce maps that do

not adequately represent habitats and species distributions, thus having important implica-

tions when these maps are used for decision-making.
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Introduction

Due to the difficulty in sampling ecological data at sufficient spatial and temporal resolutions,

many ecological studies rely on the use of surrogates to understand species distribution and

ecological processes. Amongst commonly used surrogates, terrain attributes (e.g. slope, rugos-

ity, aspect) derived from digital elevation (DEM) or bathymetric (DBM) models have proven

their value in a broad range of terrestrial and marine ecological studies [1]. Such attributes can

now be derived easily using tools available in most Geographic Information Systems (GIS).

While tools are increasingly user-friendly, a lack of transparency in most software on the actual

algorithms used [2] can prevent users from making an informed decision on which tools to

use. Also, terrain attributes sharing the same name but generated using different algorithms

(e.g. slope) have been shown to produce different derivative surfaces [2,3]. Software developers

and authors of published work are often not explicit on the methods they use to derive terrain

attributes (e.g. algorithm or tool). This lack of information can possibly influence the analysis

and interpretation of the resulting terrain attribute surfaces, and consequently the ecological

application for which they are being used.

Choosing an appropriate selection of terrain attributes for specific ecological applications

can be challenging, and users will often simply use the terrain attributes made available by the

software they have access to or are familiar with, without further questioning if those attributes

are the most appropriate ones for their study. In a related study, Lecours et al. [4] showed that

many terrain attributes covary, which may cause potential problems for many statistical analy-

ses. In a seabed classification context, Diesing et al. [5] recommended integrating the reduc-

tion of covariation within practices. In an attempt to identify an optimal combination of

terrain attributes to use in ecology that would reduce covariation while extracting as much

information as possible on the terrain, Lecours et al. [4] recommended using a combination of

six easily computable terrain attributes for ecological studies that consider topography or

bathymetry: (1) relative deviation from mean value, which is a measure of relative position

that can identify local peaks and valleys, (2) standard deviation, which is a measure of rugosity,

(3) local mean, (4) slope, and (5–6) easterness and northerness, which together provide infor-

mation on the orientation of the slope (i.e. aspect).

This article aims to describe the effects of subjectively selecting input variables for ecological

applications, with a particular focus on terrain attributes. The specific objectives are (1) to

compare the performance of Lecours et al. [4] recommended selection of terrain attributes to

other selections in a real ecological context, (2) to demonstrate the relative importance of ter-

rain morphology in aiding our understanding of ecological questions compared to other envi-

ronmental variables, and (3) to report on the consequences of selecting different input

variables on both the accuracy of habitat maps and the spatial distribution of the outputs.

Materials and Methods

Benthic habitat mapping is the act of mapping significantly distinct areas of the seafloor based

on their physical, chemical and biological characteristics at particular spatial and temporal

scales [6]. The marine environment presents particular challenges in observing and sampling

seafloor characteristics. However, developments in acoustic remote sensing technologies, spe-

cifically multibeam echosounders (MBES), now allow the collection of high-resolution

remotely sensed data of the seafloor. Bathymetric measurements from MBES can be used to

generate DBMs, from which terrain attributes can be derived [7]. Additionally, MBES systems

can also record acoustic reflectance (backscatter) data that provide information on seafloor

properties (e.g. surficial geology, porosity). In combination, these attributes are commonly
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used for the production of benthic habitat maps. For the purpose of this study, two common

approaches to habitat mapping were used: unsupervised and supervised classifications.

Data

Datasets from Brown et al. [8], covering 3,650 km2 of German Bank, an area of the Canadian

continental shelf off Nova Scotia (Fig 1), were used to address the objectives of this study.

These data comprised a 50 m resolution DBM, 3,190 geo-referenced underwater images of the

seabed visually classified into five bottom types (glacial till, silt and mud, rippled silt, rippled

sand, reef), 4,816 geo-referenced sea scallop observations, and three backscatter data deriva-

tives (Q1, Q2, Q3; Fig 1). Details on how the data were collected and processed can be found

in Brown et al. [8]. For comparison with surfaces used in Lecours et al. [4], the fractal dimen-

sion, which is a quantitative representation of surface complexity, was measured over 10,000

m2 areas of German Bank. Values ranged from 2.09 to 2.93, thus including regions of low

(towards 2.00), moderate and high complexities (towards 3.00).

A total of 24 different terrain attributes were derived from the DBM and grouped into

seven selections of six terrain attributes each (Table 1). The terrain attributes were selected

from groups of variables that exhibited various behaviours during the statistical analyses per-

formed in Lecours et al. [4] (see caption of Table 1 and S1 Appendix for more details). Selec-

tion 1 corresponds to our recommended selection of six terrain attributes. These terrain

attributes were computed using the TASSE (Terrain Attribute Selection for Spatial Ecology)

toolbox for ArcGIS [9]. Selections 2 to 7 were built to maximize variability and resemblance to

Selection 1 (e.g.to avoid having two measures of slope or curvatures within one selection). Par-

ticular focus was also given to terrain attributes that were identified as potentially important

by Lecours et al. [4].

Unsupervised Classifications of Potential Habitat Types. Biophysical classifications of

the area were performed to create benthoscape maps [10], which are produced by following a

landscape style approach like when landscape features are delineated from terrestrial datasets.

This top-down, unsupervised approach to habitat mapping is often used to map features that

can only be resolved within the remotely sensed data, without attempting to delineate features

beyond what the remote sensing techniques are capable of resolving. A total of 29 benthoscape

maps were built using the Modified k-Means unsupervised classification tool in

Whitebox GAT v.3.2 “Iguazu”. Algorithms such as k-means are commonly used in both terres-

trial and marine ecological applications [5], but this particular algorithm is different from the

regular k-means ones as it does not require a subjective input from the user to define the num-

ber of classes. The algorithm first segments the MBES derived data layers into a liberal, overes-

timated number of units, and then iteratively merges classes based on a pre-defined distance

threshold between their cluster centres, eventually reaching an optimal, objective number of

units. These units are then compared and subsequently recombined based on best match

against independently classified in situ photographic data, classified into broad biophysical

benthoscape classes. Using this approach, biophysical features can be delineated at a broader

scale over the study area to generate a benthoscape map.

To assess the relative importance of the different environmental variables and the conse-

quences of using different input variables in habitat mapping, four scenarios were tested with

each of the seven selections, resulting in 28 habitat maps. Maps were first created using each

selection alone (six input layers), then adding the bathymetry (seven layers), the three back-

scatter derivatives (nine layers), and finally both the bathymetry and the backscatter derivatives

(ten layers). In order to quantify the relative influence of terrain morphology in potential habi-

tat characterization of German Bank, an additional habitat map was produced using only the
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backscatter derivatives and the bathymetry (four layers, not accounting for terrain

morphology).

Following the method outlined in Brown et al. [8], the resulting clusters for each classifica-

tion were spatially compared to the 3,190 photographs of the seabed. Clusters corresponding

to the same habitat types were grouped together and mapped as the corresponding habitat

types. Confusion matrices, summarizing agreement and disagreement between the ground-

truth data and the results from the classified bottom types [11], were built to compute the over-

all accuracy and kappa coefficient of agreement of each habitat map. The two measures are

commonly used in ecology [12] and in remote sensing [11,13]. The success of the discrimina-

tion of each individual bottom type by the 29 classifications was assessed using the producer’s

accuracy [11], and a spatial comparison of the outputs was made to assess the amplitude of

change caused by selecting different variables. This was quantified using the percentage of pix-

els that were classified as the same bottom type by different classifications.

Fig 1. German Bank study area with some of the input variables used in this study: the ground-truth data for the bottom

types, the sea scallops observations, the bathymetry, the three backscatter derivatives and the six terrain attributes from

Selection 1.

doi:10.1371/journal.pone.0167128.g001

Table 1. Selections of terrain attributes used to build the habitat maps and models. The ID numbers refer to Lecours et al. [4] and allow finding the soft-

ware and parameters with which the attributes were generated (see also S1 Appendix). Marker variables correspond to important variables; whether they

were found on strong components (Sel. 1) or weak components (Sel. 4) is linked to the amount of topographic structure they accounted for. Variables with low

cardinality (Sel. 2) did not have many different values, thus limiting their ability to explain slight variations in terrain morphology. Complex variables (Sel. 3) cor-

respond to redundant variables. The terrain attributes identified by an asterisk were previously identified as potentially important [4]. The underlined attributes

were recommended in [4].

Selection 1 Selection 2 Selection 3 Selection 4

Marker Variables on Strong Components Variables with Low Cardinality Complex Variables Marker Variables on Weak

Components

ID31 Easterness ID1 Bathymetric Position Index ID70 Mean of Residuals* ID132 Plan Curvature

ID67 Local Mean ID2 Center vs Neighbor

Variability*
ID116 Plan Curvature ID153 Profile Curvature

ID90 Northerness ID42 Easterness* ID136 Profile Curvature ID158 Representativeness*

ID157 Relative Deviation from Mean

Value

ID101 Northerness* ID178 Slope ID188 Slope Variability

ID166 Slope ID111 Percentile ID201 Surface Roughness ID219 Total Curvature

ID190 Standard Deviation ID143 Profile Curvature ID221 Value Range ID227 Vector Ruggedness

Index

Selection 5 Selection 6 Selection 7

Mix of Selections 1 and 2 Mix of Selections 1 and 3 Mix of Selections 1 and 4

ID1 Bathymetric Position Index ID70 Mean of Residuals* ID158 Representativeness*

ID2 Center vs. Neighbor variability* ID178 Slope ID188 Slope Variability

ID42 Easterness* ID221 Value Range ID227 Vector Ruggedness

Index

ID67 Local Mean ID31 Easterness ID67 Local Mean

ID90 Northerness ID90 Northerness ID31 Easterness

ID166 Slope ID190 Standard Deviation ID90 Northerness

Scenario A: Each Selection used Alone (6 layers)

Scenario B: Each Selection used with Depth (7 layers)

Scenario C: Each Selection used with the Three Backscatter Derivatives (9 layers)

Selection D: Each Selection used with Depth and the Three Backscatter Derivatives (10 layers)

doi:10.1371/journal.pone.0167128.t001

Comparing Environmental Variables for Ecological Studies

PLOS ONE | DOI:10.1371/journal.pone.0167128 December 21, 2016 5 / 18



Supervised Classifications of Sea Scallop Habitats. In addition to the unsupervised classi-

fications, a bottom-up supervised approach to habitat mapping was used in which the in situ data

were used to segment the environmental data to predict sea scallop (Placopecten magellanicus)
habitat on German Bank. Maximum entropy (MaxEnt) [14,15], a presence-background method,

was used to perform these supervised classifications of scallops habitat. We recognize that there

are benefits and drawbacks associated with all modelling techniques and that there is still a debate

surrounding which one works best [8]. For the purpose of this study, a technique that could be

kept consistent across the methodology was required in order to enable comparisons of out-

comes. While any technique could have been used, MaxEnt was selected because it was shown to

perform better than other species distribution models (SDM) in both terrestrial [16] and marine

realms [17]. Following the method of Brown et al. [8], the classifier was run in the MaxEnt soft-

ware v.3.3.3k with the default settings, except that the number of background points was

increased to 50,000 to account for background conditions in full measure in such a large area.

The 3,813 scallop observations selected by Brown et al. [8] were used to train the model, while the

remaining 1,003 observations were kept for validation. A total of 29 MaxEnt models were run:

for each of the seven selections, four models were run according to the scenarios previously men-

tioned resulting in 28 models, and one model was run without terrain attributes.

The MaxEnt software was also used to perform jackknife tests and to calculate the area

under the curve (AUC) derived from threshold independent receiver operating characteristic

(ROC) curves; the former quantify the percentage contribution of each input variable to the

models while the latter serves to assess the performance of SDMs [16]. We acknowledge that

there is currently a debate in the literature surrounding the use of AUC as a measure of model

evaluation [18]; some authors argue that AUC can be inappropriate when different modeling

techniques are used [19] or if two different species or areas are compared [20]. However, AUC

often performs better than other measures [21,22] and is appropriate when the species, study

area, and the training and test samples are the same across the compared models [23, 24], like

in the current study.

Model outputs were evaluated in terms of their statistical fit to the validation data (AUCTest)

[25]. A 95% confidence interval based on the standard deviate (1.96 standard deviations of the

AUCTest value) was used to identify the significant differences in performances [26]. The good-

ness-of-fit of the models to the training data (AUCTrain) was used to assess models’ generaliz-

ability (i.e. transportability, transferability). Generalizability is described by Vaughan &

Ormerod (p.720 [22]) as “a basic requirement for predictive models” that describes the ability

of a model to produce accurate predictions with data other than the training dataset. Gener-

alizability was measured using the difference (AUCDiff) between AUCTrain and AUCTest [27].

A model that over-fits the training data will have a high AUCTrain but a low AUCTest as it per-

forms poorly on the test dataset, thus resulting in a high AUCDiff. Such a model is too specific

to the training data and less generalizable. A diagnostic of the input variables contribution to

the different models was also performed based on the results from the jackknife procedure, in

order to identify the loss or gain in explanatory power as each variable is removed from the

models or used alone [28]. Finally, a spatial comparison of the models was performed to evalu-

ate the consequences of variable selection on the model outputs.

Results

Unsupervised Classifications

Performance of Classifications. The overall accuracies and kappa coefficients of the 29

habitat maps are presented in Fig 2. Selection 1 (i.e. the proposed attribute selection) outper-

formed the others with the highest overall accuracy and kappa coefficient in three of the four
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Fig 2. Map accuracies measured with (A) a kappa coefficient of agreement and (B) the overall accuracy.

doi:10.1371/journal.pone.0167128.g002
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scenarios. The highest kappa coefficient was obtained when combining Selection 1 with

bathymetry and the backscatter derivatives. The highest overall accuracy, 68.3%, was reached

when combining Selection 5 with bathymetry (Fig 2B). Selection 1 combined with bathymetry

had the second highest overall accuracy (67.1%). Selections with only three attributes from

Selection 1 (i.e. Selections 5, 6 and 7) usually outperformed their related selection with none of

the proposed attribute (i.e. Selections 2, 3 and 4). Selection 4 resulted in poor classifications, and

Selections 2, 3 and 6 performed generally poorly except when bathymetry was added. Com-

pared to the classification that only used bathymetry and the backscatter derivatives (i.e. no

topography), eight classifications had a higher overall accuracy: the four classifications that used

Selection 1 as input, Selections 5 and 6 combined with bathymetry, and Selections 5 and 6 com-

bined with both bathymetry and the backscatter derivatives. In terms of kappa coefficients, only

four classifications performed better than the one with no topography: Selection 1 with the

backscatter derivatives, Selection 1 with both bathymetry and the backscatter derivatives, Selec-

tion 5 with bathymetry, and Selection 6 with both bathymetry and the backscatter derivatives.

Differences up to 45.5% were observed between the overall accuracy values and the kappa

coefficients for a same selection and scenario. Differences were substantial with an average of

28.5% and a standard deviation of 11.9%. The average difference between the two measures of

accuracy for the four maps using Selection 1 was the lowest, followed by the average difference

for the four maps of Selections 5, 7, 6, 2, 3 and 4.

Discrimination of Benthoscape Classes. Selection 1 performed on average better than the

others when discriminating between the five bottom types (Fig 3). When looking at the individ-

ual habitat types, 25 of the 28 other classifications discriminated glacial till better than the classi-

fication with only bathymetry and the backscatter derivatives (producer’s accuracy of 77.1%),

indicating that terrain morphology is not a good surrogate of the presence of glacial till. The

“silt and mud” class seemed driven primarily by bathymetry and sediment properties (i.e. back-

scatter derivatives), with a producer’s accuracy of 87.4% for the classification that did not

account for terrain morphology. Only two of the 28 remaining classifications discriminated that

habitat type better, although several other classifications were very close to achieving that accu-

racy. Reefs were generally poorly discriminated. The classification with no topography reached

a producer’s accuracy of 19.8%, and only six of the remaining classifications performed better,

including three of the classifications using Selection 1. Rippled silt seemed to be better explained

by the bathymetry and the backscatter derivatives, with the corresponding classification reach-

ing an accuracy of 57.6%. Only four other classifications did better, including two classifications

that included Selection 1. Finally, rippled sand was very poorly discriminated by all the classifi-

cations, which may be due to its small sample size (only 49 photographs).

In terms of mean producer’s accuracy for the five habitat types, only three classifications

did better than the one with no topography (48.4%): Selection 1 with the backscatter deriva-

tives (48.5%), Selection 1 with bathymetry and the backscatter derivatives (51.6%), and Selec-

tion 6 with bathymetry and the backscatter derivatives (51.3%). When averaging the mean

producer’s accuracies from the four scenarios for each selection, Selection 1 ranked first, fol-

lowed by Selections 5, 7, 6, 3, 2 and 4.

Spatial Variations of Outputs from Different Selections. The most accurate map

according to the kappa coefficients of agreement was made from Selection 1 combined with

bathymetry and the backscatter derivatives. The spatial similarity indices of that map with the

other habitat maps built with ten layers are presented in Table 2. Compared to Selection 1,

Selection 6 produced the most spatially similar map with 90.0% similarity. Selection 4 is the

least similar with only about 41.7% identically classified pixels. The other maps were between

73.3% and 79.4% similar to the map with Selection 1, except for the map with no topography

(i.e. only bathymetry and the backscatter derivatives) with 82%.

Comparing Environmental Variables for Ecological Studies
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Supervised Classifications

Predictive Capacity and Robustness. Fig 4 shows the performance of the 29 MaxEnt

models. All models performed significantly better than random (i.e. AUCTest ± 95% confi-

dence interval> 0.500). Models with higher AUCTest and lower standard deviations are more

robust and present the highest predictive capacity [29]. In general, adding bathymetry, the

Table 2. Spatial similarity of the habitat maps and SDMs generated from Selections 2 to 7, compared to the map and model built from Selection 1.

A similarity of 90% indicates that 90% of the pixels were classified as the same habitat type in the two compared maps, or that 90% of the pixels were within

±5% of probability distribution in the two compared models.

Spatial Similarity with Selection 1 (%)

Scenario with 10 Layers

Unsupervised Classifications Supervised Classifications (within ±5% probability)

Selection 2 73.3 72.9

Selection 3 77.0 64.6

Selection 4 41.7 65.3

Selection 5 79.4 81.4

Selection 6 90.0 71.5

Selection 7 78.4 70.9

No topography 82.1 66.9

doi:10.1371/journal.pone.0167128.t002

Fig 3. Comparison of the discrimination ability of the computed classifications with that of the classification computed using only

bathymetry and the backscatter derivatives, based on the number of bottom types (maximum possible of 5) that were better

discriminated.

doi:10.1371/journal.pone.0167128.g003
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backscatter derivatives, or all of them to the terrain attributes improved the models predictive

capacity. However, Selection 1 and other selections that include terrain attributes from Selec-

tion 1 did not always follow that trend. For instance, Selection 1 used alone (only six terrain

attributes; black diamond in Fig 4) performed better than other selections combined with

bathymetry or the backscatter derivatives (e.g. blue and green squares and triangles in Fig 4).

Selection 1 combined with the backscatter derivatives (black triangles in Fig 4) performed bet-

ter than other selections that were combined with both bathymetry and the backscatter deriva-

tives (i.e. most circles in Fig 4).

In the scenario where only terrain attributes are used (diamonds in Fig 4), Selection 1 per-

formed the best, followed by the three selections that include three terrain attributes from

Selection 1 (Selections 5, 6, and 7). The same pattern was observed when combining the selec-

tions with the three backscatter derivatives (triangles in Fig 4). A different pattern arose when

adding bathymetry to the selections, one in which Selection 1 performed second best behind

Selection 6. However, the 95% confidence intervals measured around the AUC values show

that the difference in performances between Selection 1 and 6 are not significant for the two

scenarios where Selection 6 performed better than Selection 1.

Generalizability. Fig 5 shows the generalizability of the 29 SDMs. Models with higher

AUCTrain fitted better the training data while models with lower AUCDiff predicted more

Fig 4. Performance and robustness of the 29 MaxEnt models. Models in the top-left corner of the graph performed better and are more robust.

Colour legend: Selection 1 (black), Selection 2 (blue), Selection 3 (red), Selection 4 (green), Selection 5 (purple), Selection 6 (orange), Selection 7

(white).

doi:10.1371/journal.pone.0167128.g004
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efficiently the validation data. Models with high AUCTrain and low AUCDiff are therefore the

most generalizable, as they do not over-fit the training data [29]. Fig 5 shows that the models

that included bathymetry (scenarios with seven and ten layers; squares and circles in Fig 5) are

more similar than the other models, especially for the models that combined ten input layers.

Models that used only terrain attributes or combined them with backscatter derivatives

(diamonds or triangles in Fig 5) showed similar patterns, where the best models in terms of

AUCTrain also had a higher AUCDiff, an indication that the best models were also the ones that

over-fitted the data the most. In those two scenarios, Selection 1 clearly stands out as a good

trade-off between predictive ability and over-fitting of data, making it the most likely to be

generalizable and to perform well. When considering bathymetry (squares and circles in Fig

5), a similar pattern emerged whether or not the backscatter derivatives were added: Selections

1, 3 and 6 stand out as being more generalizable. Selections 7 and 4 have the highest AUCTrain,

but also the highest AUCDiff, therefore having a tendency to over-fit the training data.

Variables Contribution. The percentage of contribution of each variable used as input in

the 29 models can be found in Fig 6. When used, bathymetry and two of the backscatter deriv-

atives (Q1 and Q2) contributed the most to the models, with a respective average of 39.2%,

25.4% and 19.6% for the 15 models that used them. Bathymetry contributed less to the models

that include local mean as input, resulting from the high collinearity between these two

Fig 5. Generalizability of the 29 MaxEnt models. Models closer to the top-left corner are more generalizable as they performed well on the training

data and replicated well to the validation data. See Fig 4 for colour legend.

doi:10.1371/journal.pone.0167128.g005
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variables; when two variables are correlated, MaxEnt is known to assign a more important per-

centage contribution to one of the two and a lower one to the other [28]. Consequently, local

mean is a surrogate of bathymetry and appears as an important variable, with an average con-

tribution of 51.2% for the 12 models that include it. In general, measures of rugosity like stan-

dard deviation and vector ruggedness measure also contributed to the models.

The analysis of changes in model gain based on the jackknife procedure described the

impact on model gain of removing each variable from the models, in addition to provide what

would be the model gain if each variable would be used alone. This analysis provided addi-

tional information on the variables contribution and the performance of models. In MaxEnt, a

variable with a high gain when used alone in a model contributes useful information to the

model [28]. On the other hand, a variable that contributes unique information to a model

makes the gain decrease when it is excluded from the model [28]. In this study, all variables in

all models provided unique information in training the models, except for the four models

that included Selection 2. In terms of transferability of this uniqueness to the training data (i.e.

if the variables still provide unique information when applied to the validation data), Selection

1 performed better than the others in three of the four scenarios. It only failed to outperform

the other selections when ten layers were used, likely due to spatial correlations between local

mean and bathymetry, and slope and local standard deviation. Regarding usefulness, Selection

1 generally did not provide as many useful variables to the models being trained as the other

selections. However, these useful variables were generally also useful for the validation data,

thus transferable, which was not the case for the other selections. For instance, Selection 1 in

Fig 6. Percentage of variable contribution for the 29 MaxEnt models. Only contributions greater than 5% are labeled.

doi:10.1371/journal.pone.0167128.g006
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combination with bathymetry and the backscatter derivatives had six variables providing use-

ful information to the trained model, and these six variables were all useful for the validation

data, an indication of robustness and generalizability. Finally, only two models would not have

reached a higher AUCTest if any one of their inputs were removed: Selection 1 combined with

the backscatter derivatives and Selection 1 combined with bathymetry.

Spatial Variations of Predictions from Different Selections. The model computed from

the combination of Selection 1 with bathymetry and the backscatter derivatives showed the

best trade-off between robustness, uniqueness and generalizability. It was therefore used as a

reference to spatially compare the outputs of comparable models, i.e. those computed with ten

layers (Table 2). The most similar model to the reference one, based on a ±5% margin in prob-

ability distribution, was the model computed with Selection 5 (81.4% similar). The lowest simi-

larity was 64.6% (Selection 3). In average, the six other models were 71.1% similar to the one

made from Selection 1. The map produced without terrain morphology had a spatial similarity

index of 66.9% with the map from Selection 1 combined with bathymetry and the backscatter

derivatives.

Discussion

Selections of Terrain Attributes

Results suggest that Selection 1 of terrain attributes, which corresponds to the combination of

a measure of relative position, a measure of rugosity, two measures of aspect (easterness and

northerness), topographic mean and slope, is more appropriate than the other selections

tested. First, the proposed selection of terrain attributes performed better than the other selec-

tions tested, both in the application of top-down and bottom-up approaches to habitat map-

ping: they generally (1) produced more accurate habitat maps, (2) better discriminated

individual habitat types, (3) produced SDMs with higher AUC values, (4) produced more

robust and generalizable SDMs, (5) provided SDMs with the most variables carrying unique

information, and (6) had the highest number of variables carrying useful information that rep-

licated well to the validation data. Using real data, these results confirm that the six recom-

mended terrain attributes best describe the topographic structure of the terrain by capturing

different and unique characteristics of the terrain. Results also indicate robustness and gener-

alizability of the proposed framework. Many aspects of this study highlighted better perfor-

mances of Selection 1 compared to Selections 2, 3 and 4, thus confirming the limited ability of

these three selections to adequately and fully describe terrain geomorphology.

The findings from this study, utilizing MBES-derived surfaces from German Bank, support

many of the findings presented by Lecours et al. [4] based on terrain attributes generated from

artificial surfaces. Their proposed operational framework was based on two literature-

grounded assumptions: fractal-based surfaces created with spectral synthesis are appropriate

representations of natural surfaces [30,31], and the scale-invariance property of fractals allows

results to be generalized to other spatial scales (i.e. different resolution and/or extent) [32,33].

Artificial surfaces proved their value in ecology [34] and geomorphometry [3]. DTMs of real

terrains are actually geographic “representations” of real terrains, thus in theory no different

than DTMs representing artificial terrains with characteristics found in real terrains. However,

a number of authors argue that fractal-based surfaces should be limited to the development of

null hypotheses [35,36]. The debate is still unsettled; while some claim that “it is heuristically

clear that seafloor or landscape topography is best described by fractal geometry” (p.981 [37]),

others prefer to argue that despite demonstrating fractal-like properties [38], real terrains are

not perfectly fractal [39]. Without necessarily contributing to this debate, the current study

confirmed that results gained from the artificial fractal surfaces in Lecours et al. [4] hold when
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using a DTM representation of a real terrain (i.e. German Bank) at another spatial scale (i.e. an

extent of 3650 km2 represented at 50 m resolution). Consequently, it confirmed the appropri-

ateness of the proposed framework for selecting terrain attributes and its application to any

terrestrial and marine ecological application, regardless of the scale of the environmental data.

Terrain Morphology as an Environmental Factor

Results of both types of classifications indicate that bathymetry and substrate characteristics

(for which the backscatter derivatives were a proxy) had a positive, and sometimes more

important impact on the performance of the classifications than terrain morphology (quanti-

fied through terrain attributes); adding bathymetry and the backscatter derivatives to terrain

attribute variables often increased map accuracy for both benthoscape and sea scallop suitabil-

ity distributions on German Bank. For the unsupervised classifications, only two of the five

bottom types (glacial till and reefs) seemed to be driven to a certain level by local geomorphol-

ogy. In addition, reefs and rippled silt were poorly discriminated by a majority of classifica-

tions, likely because their distribution is influenced by other environmental factors or that the

variables tested were measured and analyzed at a scale that did not match the scale of the rele-

vant geomorphological features [6]. In agreement with results from Brown et al. [8], the Max-

Ent analysis showed that bathymetry, sediment properties and rugosity are important

variables in predicting sea scallops distribution, but that aspect, slope and relative position are

not. Only four SDMs out of 28 performed better than the model with no topography (only

bathymetry and the three backscatter derivatives).

Other variables (e.g. physical, oceanographic, ecological) may drive particular species or

assemblage distributions more than terrain geomorphology. However, they were not used in

this study as they were not available at the same spatial scale as the MBES data. When includ-

ing more variables, users need to keep in mind that covariation may influence models like

MaxEnt. If an oceanographic variable is correlated with a terrain characteristic, the user needs

to keep only one of them. This is also true of the proposed selection of terrain attributes; as

demonstrated in Lecours et al. [4] and confirmed in the current study, each of the six proposed

terrain attributes captures a unique characteristic of the terrain, but some of these characteris-

tics may be spatially correlated in a certain area.

The framework for selecting terrain attributes for ecological studies proposed by Lecours

et al. [4], and supported by the findings of this study, aims at helping the end-users select a

robust combination of terrain attributes that best captures the different characteristics of ter-

rain geomorphology. The recommended selection of six terrain attributes serves as a guide as

to which set of attributes should be tested in order to achieve the best outcome. It provides

end-users with an optimal set of attributes, from which a subset combined with other environ-

mental variables can result in a high accuracy map or model output. The best results will not

necessarily come from the use of all six terrain attributes, but may only come from some of

them. For instance, if particular terrain characteristics have no ecological meaning in an appli-

cation, using the terrain attributes that capture these characteristics will not yield the best out-

come. It is therefore highly site and case specific as to which variables should be included [6].

Nonetheless, the recommended approach provides the optimal starting point from which ter-

rain attributes can be selected.

Consequences of Variable Selection

Results highlight the importance of appropriately selecting input variables in both unsuper-

vised and supervised classifications, and consequently the inappropriateness of making such

selection arbitrarily. For instance, the benthoscape map generated from the combination of
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Selection 1 with bathymetry and the backscatter derivatives yielded an overall accuracy

and a kappa coefficient of agreement that are respectively only 0.2% and 0.6% different

than the map built from Selection 6, bathymetry and the backscatter derivatives. It would

be quite intuitive to interpret the difference in map outputs as insignificant based only on

these measures of accuracy. However, 10.0% of the study area was classified differently by

these two classifications, an area corresponding to about 362 km2. In addition, the differ-

ences occurred in all regions of the study area and across all the habitat types. In the worst

case scenario (i.e. the difference between Selection 4 and Selection 1, Table 2), the total

area that was mapped differently covers over 2,115 km2. The results of this study indicate

that a subjective selection of terrain attributes could potentially provide a map that is in

average 26.7% different in terms of the location and boundaries of benthoscape classes,

which has serious implications for ecological applications that use these maps and models

for decision-making.

Comparisons with Other Studies: Terrestrial and Marine

Many different terrain attribute selections have been used in terrestrial and marine ecology

([1,7]; references therein). In a meta-analysis of ecological studies using geomorphometry,

Bouchet et al. [1] found that about a third of the studies only used one terrain attribute and

that very few authors used more than four. While focusing on forest ecosystems, Sharaya &

Sharyi [40] wrote that in general, one to three basic terrain attributes are used to study land-

scape phenomena and that the “insufficient representativeness” (ibid, p. 2) of terrain attributes

makes for an inefficient use of topography as a variable in ecology. In a management context

and using the same dataset as in the current study, Brown et al. [8] selected six terrain attri-

butes based on previous use in marine ecology studies and “iterative testing of a large number

of different layers by the authors” (ibid, p. 3). This relatively subjective way of selecting terrain

attributes is the most common one in ecology. However, it provides many significant and

valid insights for many applications; most of the common terrain attributes found in the eco-

logical literature (e.g. local mean, slope, aspect) [1] are part of our proposed selection, or are

related to one of the proposed attributes. For instance, different types of curvature are com-

monly used, which Lecours et al. [4] found to be correlated to the recommended relative devia-

tion from mean value, although more ambiguously defined and thus not included in the

recommended selection. Despite using a subjective selection of terrain attributes, Brown et al.
[8] yielded valid results. Their MaxEnt model had a high predictive capacity, although it had

some level of over-fitting and was less robust than some of the best models of the current

study. If implemented in the current study using the same method, an unsupervised classifica-

tion made from their selection of variables would rank amongst the best benthoscape maps

and be 90.8% similar to the map built with Selection 1 and the four other environmental vari-

ables. This demonstrates that despite potentially resulting in huge differences (c.f. “Conse-

quences of Variable Selection” above), subjective selection of terrain attributes can sometimes

produce relevant and valid results. As a matter of fact, the model by Brown et al. [8] has been

used in subsequent studies and to inform fisheries stock assessment process and management

[41,42,43,44].

Finally, the observed differences between the overall accuracy measures and the kappa coef-

ficients of agreement confirm that the overall accuracy might be a poor guide of the value of a

classification, something that has been already argued in the literature [45,46]. Based on our

results, we would recommend the kappa coefficient as a more appropriate measure than the

overall accuracy for ecological mapping, but as recently highlighted by Diesing et al. [5], there

is a need to move towards spatial representations of accuracy.
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Conclusion

Selecting the most appropriate environmental variables to use in a specific study can be very

challenging. This study demonstrated the importance of carefully selecting variables for eco-

logical work; maps and models that perform similarly can still produce very different spatial

outcomes, which can have important implications when these maps and models are used in

decision-making for conservation and management. Using two different approaches to habitat

mapping, this paper also confirmed that the selection of terrain attributes recommended in

Lecours et al. [4] performs better than other selections, thus serving as a guide to make better

use of geomorphometry in ecology. Results also showed that while this selection of terrain

attributes ensures that most of the local topographic structure is captured when performing

terrestrial or marine ecological studies, and while terrain morphology can help improve maps

and models, it is not always the most important environmental factor for all ecological applica-

tions. The relationship between terrain morphology and ecological phenomena is species, area

and scale-dependent [6]. The use of the proposed selection of terrain attributes, in combina-

tion with other environmental variables (e.g. precipitations, climate, currents), will help ecolo-

gists produce more robust analyses and generate maps and models with a higher degree of

confidence. In order to get the best representation of the environment as possible and to best

inform policy, conservation and management efforts, we recommend (1) that stakeholders

prepare more than a single map using different combinations of environmental variables,

and (2) that they select the best outcome based on map accuracy or model performance

quantification.
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