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Abstract Detailed geologic mapping in the Buckskin, Rawhide, and Artillery Mountains in western Arizona
identified numerous folds in Oligocene-Miocene strata above the Buckskin-Rawhide extensional detachment
fault. The folds are above or adjacent to the Harcuvar metamorphic core complex, which was uplifted and
exposed by top-northeast normal faulting and penetrative shearing at ~27-9 Ma. Strata deposited during
extension were folded, and the folds are truncated by the detachment fault, demonstrating that folding
occurred during the period of extensional faulting. Fold axes are approximately perpendicular to regional
extension direction. In two of the four areas of folding described here, alluvial-fan deposits derived partially
from lower plate mylonitic rocks are the stratigraphically highest folded strata. Folding could have occurred
above low-angle normal faults with curved or ramp-flat geometries, but fold abundance, large size, high
degree of closure, and steep northeastward dips of the northeast limbs of anticlines lead us to consider the
possibility that at least some folds reflect local shortening in the same direction as regional extension.
Application of critical-taper theory to an extensional wedge with very low basal friction indicates that wedge
shortening would be expected if the wedge developed a sufficient surface slope that was downhill away from
the wedge tip. Such a slope could have developed late during extension either because core-complex uplift
tilted the wedge away from the core complex or because alluvial fans shed off the core complex produced
such a slope. In either case, wedge shortening would promote core-complex denudation.

1. Introduction

Continental metamorphic core complexes consist of mylonitic crystalline rocks that are overlain and flanked
by gently to moderately dipping normal faults known as detachment faults. Mylonitic rocks were uplifted and
exhumed from middle-crustal depths during tectonic extension and displacement on the detachment faults
and related shear zones [e.g., Davis et al., 1986]. The effectiveness of tectonic exhumation in some complexes,
with essentially complete denudation, is not well understood but is likely related to a very low coefficient of
friction on extensional detachment faults. The Buckskin and Rawhide Mountains are part of the giant
Harcuvar metamorphic core complex in western Arizona, USA, and are flanked to the northeast by upper
plate rocks in the Artillery Mountains. Detailed mapping of upper plate strata in these ranges identified
numerous folds with axes perpendicular to extension direction. The folds affect the entire syn-extension stra-
tigraphic sections in these areas but are truncated by the underlying detachment fault, demonstrating that
folding occurred late during the period of detachment faulting.

In this paper we first document the folds and their geologic setting within the core complex, and then
evaluate possible causes of folding. Some folds likely resulted from displacement above bends in underlying
normal faults, analogous to such folds in thrust belts, or to reverse drag above listric normal faults [e.g., Scott
and Lister, 1992; Schlische, 1995; Janecke et al., 1998; Brandes and Tanner, 2014]. Our structural evaluation sug-
gests, however, that at least some of the folds record simple shortening. Application of critical-taper theory
[Dahlen, 1984; Xiao et al., 1991] to an extensional wedge with low internal and basal coefficients of friction
predicts wedge shortening if surface slope in upper plate rocks is just a few degrees (downhill) away from
the core complex. This leads to the conclusion that wedge shortening was potentially triggered by develop-
ment of such a slope, which could have resulted from rapid uplift and arching of the footwall or from devel-
opment of alluvial fans derived from the emerging core complex. In either case, potential energy due to the
surface slope would be available for wedge shortening, just as it would be available for wedge extension if
surface slope in the wedge is downhill toward the wedge tip.
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Figure 1. Simplified geologic map of the southern and central part of the Colorado River extensional corridor, which is bounded by the heavy black lines. The mylo-
nitic part of the Rawhide, Buckskin, Harcuvar, and Harquahala Mountains make up the Harcuvar metamorphic core complex. Restoration of extension indicated by
arrows would place mylonitic core-complex rocks beneath the central Arizona Transition Zone, an area bordering the Colorado Plateau that is only slightly extended
at the surface [Spencer and Reynolds, 1991].

2. Geologic Setting

The Buckskin, Rawhide, and Artillery Mountains are located in the central part of the Colorado River exten-
sional corridor in the Mojave-Sonora desert region of the southwestern U.S. (Figure 1) [Howard and John,
1987; Spencer and Reynolds, 1989a]. Severe extension in the corridor at ~27-9 Ma uncovered some of
Earth’s largest metamorphic core complexes. Total extension, estimated at ~90 km within the central part
of the corridor, affected an area with an initial width of as little as perhaps 10km [Spencer and Reynolds,
1991]. Mylonitic core-complex rocks were exhumed by tens of kilometers of top-northeast displacement
on an extensional detachment-fault system and distributed shearing within its mylonitic and brecciated foot-
wall rocks [e.g., Rehrig and Reynolds, 1980; Reynolds and Spencer, 1985; John, 1987; Davis and Lister, 1988;
Singleton and Mosher, 2012]. The exceptionally large exposures resulted from minimal extension within the
hanging wall crystalline rocks and insufficient sedimentation to bury the emerging footwall. Exposure of
mylonitic footwall rocks occurred late during extension as indicated by the large fraction of mylonitic clasts
in the stratigraphically highest, faulted conglomerate unit. Geomorphology has not been greatly modified
following tectonic extension because of arid desert conditions, low elevations, partial burial by basalt flows,
and only minor younger faulting and magmatism [Spencer and Reynolds, 1991].

The Harcuvar metamorphic core complex includes mylonitic crystalline rocks in the Rawhide, Buckskin, Little
Buckskin, Harcuvar, and Harquahala Mountains (Figure 2). Mylonitic rocks are bounded upward and laterally
by the corrugated Buckskin-Rawhide-Bullard-Eagle Eye extensional detachment fault. A variety of structural
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Figure 2. Simplified geologic map of the Harcuvar core complex. The red line segments represent average orientation of mylonitic lineations in each area. Numbers
adjacent to each segment indicate average trend, which in some cases is transposed 180° to the northeast quadrant for comparison (opposite to plunge). Numbers in
black are derived from data collected by the authors. Number in green is from Marshak and Vander Meulen [1989]. Numbers in red are from Singleton [2011,2013, and
written communication, 2016] and Singleton et al. [2014a]. The two curved blue lines indicate detachment-fault displacement path based on the inference that
the Harcuvar Mountains are a groove in the detachment-fault footwall. The segmented straight green lines indicate detachment-fault displacement path based on
the inference that mylonitic lineations in the Buckskin and Rawhide Mountains record extension direction and that abundant right-lateral faults have distorted the
grooves so that they appear more easterly oriented than mylonitic lineations but were originally aligned [Singleton, 2015]. Both displacement paths are based on
the inference that the western Bouse Hills is the footwall cutoff for the base of Oligocene to lower Miocene strata with an equivalent hanging wall cutoff that is
displaced to the axis of the Date Creek basin half graben. Breaks in the lines represent postdetachment strike-slip displacement, inferred to be substantial by
Singleton [2015]. Note that the northern Plomosa Mountains detachment fault in the southwestern corner of the map area [Spencer et al., 2014] projects below the
Bouse Hills and the Harcuvar core complex. Basin-depth data are from Richard et al. [2007].

features indicate top-northeast displacement, with displacement of footwall rocks to the west-southwest out
from beneath weakly extended crystalline rocks in central Arizona [e.g., Reynolds and Spencer, 1985; Spencer
and Reynolds, 1989b; Singleton and Mosher, 2012]. Corrugations define six antiforms separated by synformal
troughs. Corrugation axes are approximately parallel to mylonitic lineations in footwall rocks in the Harcuvar
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Mountains, but lineation trend is oriented up to ~30° more northerly than the northeasterly trend of
corrugation axes in the Rawhide, Buckskin, and Little Buckskin Mountains (Figure 2) [Spencer et al., 1989a;
Bryant, 1995; Singleton, 2011, 2013; Singleton et al., 2014a]. Mylonitic fabrics are inferred to have formed
downdip from the active detachment fault, as proposed by the shear-zone model for core complex genesis
[Davis et al., 1986]. The boundary between mylonitic and nonmylonitic footwall rocks, identified by the
dashed line in Figure 2, is interpreted as an exhumed brittle-plastic transition where rocks to the southwest
were in the brittle regime during initial extensional exhumation and were too cool for mylonitization.

Thermochronologic studies throughout the Harcuvar complex indicate sequential cooling from southwest to
northeast or simply rapid mid-Miocene cooling. Emplacement of the 21-22 Ma Swansea plutonic suite in the
Buckskin and Rawhide Mountains [Bryant and Wooden, 2008; Singleton et al., 2014b] was followed by cooling
through the argon-closure temperature for biotite in the western Buckskin Mountains at 17 Ma, the
central and east-central Buckskin Mountains at 15Ma, and the easternmost Buckskin Mountains at 12 Ma
[Spencer et al., 1989b; Richard et al., 1990; Bryant et al., 1991; Scott et al., 1998]. (U-Th)-He dates are generally
1-3 Myr younger and show similar west-to-east cooling [Brady, 2002; Singleton et al., 2014b]. The eastern,
mylonitic tip of the Harquahala Mountains yielded six (U-Th)-He zircon dates at 15-16 Ma [Prior et al.,
2016], similar to three (U-Th)-He zircon dates of 15-17 Ma from mylonitic rocks in the southwestern
Buckskin Mountains [Singleton et al., 2014b]. Both these areas are near the southwestern limit of mylonitic
footwall fabrics and so were at temperatures of mylonitization (>~300°C) when extension began and
cooled below ~180°C [Wolfe and Stockli, 2010] at 15-17 Ma. Samples from the mylonitic eastern two thirds
of the Harcuvar Mountains yielded (U-Th)-He apatite dates that indicate rapid low-temperature cooling at
~15Ma [Carter et al., 2004]. Fission-track apatite and zircon thermochronometers, as well as (U-Th)-He
dates of crystalline hematite from hydrothermal mineral deposits associated with the detachment fault,
have larger uncertainties but are consistent with the other thermochronometers [Bryant et al, 1991;
Foster et al., 1993; Evenson et al., 2014].

The western Bouse Hills west of the southern Buckskin Mountains include a southwest dipping sequence of
sandstone, tuff, conglomerate, and limestone that rests on Proterozoic crystalline rocks [Spencer and
Reynolds, 1990; Spencer et al., 1995]. The basal depositional contact was interpreted as a footwall cutoff of
the Buckskin-Rawhide detachment fault, with the equivalent hanging wall cutoff displaced ~68 km east-
northeast to beneath Date Creek basin (Figure 2) [Spencer and Reynolds, 1991]. A (U-Th)-He thermochronolo-
gic profile from the western Bouse Hills northeastward into the southern Buckskin Mountains reveals
early Cenozoic cooling in southwesternmost exposures probably due to gradual erosional exhumation,
including a date of 64.5 +4.3 Ma from zircon [Singleton et al., 2014b]. The western, nonmylonitic parts of
the Harcuvar and Harquahala Mountains and the adjacent Granite Wash and Little Harquahala Mountains
yielded (U-Th)-He apatite dates as old as 35Ma and zircon dates as old as 55 Ma [Carter et al., 2004; Prior
et al,, 2016]. K-Ar and *°Ar/>°Ar dates from mica also record preextension cooling history, with pre-60 Ma
dates only from southwesternmost areas (Figure 2) [Rehrig and Reynolds, 1980; Shafiqullah et al., 1980;
Reynolds et al., 1986; Richard et al., 1990]. This cooling is probably due to erosional exhumation but might also
reflect cooling from below due to shallow plate subduction and subduction-complex underplating [Dumitru
et al., 1991; Haxel et al., 2015; Strickland et al., 2016]. In either case, these dates record preextension thermal
profiles that would be expected for the shallow-crustal breakaway zone of the detachment-fault system that
exhumed the core complex.

In summary, top-northeast displacement of ~55-70 km uncovered the Harcuvar metamorphic core complex
with an area of ~2000 km? of mylonitic footwall rock (excluding the Harquahala Mountains, which is largely
nonmylonitic, and excluding McMullen Valley where a large tiltblock is present north of Aguila and more may
be present in the deep basin beneath McMullen Valley; Figure 2). Tectonic restoration of a footwall cutoff at
the base of west-tilted Oligocene-Miocene strata in the western Bouse Hills, to beneath the axis of Date Creek
basin, is shown in Figure 2 (blue lines). The slightly arcuate restoration vectors parallel the crest of the
Harcuvar Mountains. The arcuate path of the proposed extension vector is not unique, as a similar arcuate
extension vector characterized exhumation of the Godzilla deep-sea core complex in the Philippine Sea
[Spencer and Ohara, 2014]. An alternative restoration that places the western Bouse Hills beneath the
Artillery Mountains (Figure 2, green line) is more consistent with mylonitic lineation trends in the Buckskin
and Rawhide Mountains [Singleton, 2015] but is discordant to the Harcuvar groove and its mylonitic linea-
tions. With a conservative estimate of 10 km preextension average depth to mylonitic footwall rocks, either
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displacement path represents removal of ~20,000 km? of rock from above the complex with almost none
remaining. The largest upper plate block of pre-Cenozoic rock remaining on the complex southeast of the
Planet Peak antiform and northwest of the crest of the Harcuvar Mountains consists of approximate 1 km?>
in the Swansea mine area. The physics of such effective exhumation, characteristic of large continental and
deep-sea core complexes, is poorly understood.

3. Structure of Upper Plate (Hanging Wall) Rocks

Upper plate rocks are better preserved in synformal corrugations than on antiforms within the Buckskin and
Rawhide Mountains (Figure 3). Preserved rock units are diverse, including Proterozoic crystalline rocks,
Paleozoic metasedimentary rocks, Mesozoic metavolcanic and metasedimentary rocks, and Oligocene to
Miocene sedimentary and volcanic rocks and rock-avalanche breccias [e.g., Reynolds and Spencer, 1989].
The Oligocene to Miocene strata were deposited during extension within a basin or basins formed by exten-
sional tectonism in a region that was previously a highland with no preextension Cenozoic sedimentary or
volcanic rocks [Spencer and Reynolds, 1989a]. Pre-Cenozoic upper plate rocks are largely absent between
the Planet Peak antiform and the crest of the Harcuvar Mountains, and most exposures consist of sedimen-
tary and volcanic rocks deposited during extension. Syn-extension strata form a thick tilted sequence in the
Artillery Mountains northeast of the Rawhide Mountains that was divided by Lasky and Webber [1949] into the
Artillery Formation, Chapin Wash sandstone, and Sandtrap conglomerate (Figure 3). Some faulted upper
plate strata in the Rawhide and Buckskin Mountains can be correlated with the units named by Lasky and
Webber [1949] on the basis of lithologic similarity, but strict correlation is problematic because of thickness
and facies changes [Spencer and Reynolds, 1989b]. As a result, the geologic maps presented here generally
identify strata by lithology rather than by the unit names of Lasky and Webber [1949].

3.1. Maggie Wash Area

The area along lower Maggie Wash (formerly Sandtrap Wash) is at the tapered end of the extensional wedge
northeast of the Rawhide Mountains (Figure 3, cross section A-A’; Figure 4). Conglomerate widely exposed
in the area (Sandtrap conglomerate of Lasky and Webber [1949]) contains abundant clasts of mylonitic
crystalline rocks and chloritic breccia derived from the mylonitic footwall [Spencer et al., 2013]. It is the strati-
graphically highest unit in a thick sequence of sedimentary and volcanic rocks with broadly fanning dips in
cross section and the steepest dips at the lowest stratigraphic levels [Yarnold, 1994; Lucchitta and Suneson,
1993a; Spencer et al., 1989¢, 2013]. The stratigrapically lowest Artillery Formation includes basal arkose that
rests on Proterozoic crystalline rocks, contains a 26.3 Ma tuff [Lucchitta and Suneson, 1993b], and dips
~40°-45° to the southwest (Figure 3, cross section A-A’) [Spencer et al., 2013]. The arkosic sandstone grades
up-section into siltstone and lacustrine limestone. The limestone is interbedded with, and overlain by,
rock-avalanche breccias derived from metamorphic rocks like those displaced above the detachment fault
along the northern margin of the core complex [Yarnold, 1994]. Volcanic and sedimentary rocks that overlie
the limestone are in turn overlain by a widespread reddish sandstone unit (Chapin Wash Formation of Lasky
and Webber [1949]). The reddish sandstone is overlain by, and grades upward into, the Sandtrap conglomer-
ate, which is interbedded with a basalt dated at 9.6 4 0.4 Ma [Shafiqullah et al., 1980].

Folds are apparent in this stratal sequence in the lower Maggie Wash area, especially in the form of an anti-
cline that extends for 3-4 km along the flank of the Rawhide Mountains in the footwall of the Sandtrap Wash
fault (Figure 4). The west limb of the anticline is clearly cut off by the underlying detachment fault. As shown
in the cross sections in Figure 4, the east limb is interpreted to be cut off by the detachment fault as well, but
this is based on the assumption that the detachment fault does not greatly steepen downdip, but rather
gently increases in dip over a 3-4 km distance away from the exposed trace of the detachment fault. The red-
dish sandstone unit is thicker to the northeast, as is apparent in cross section, and the anticline is interpreted
as folding a section in which the conglomerate had prograded to the northeast over the sandstone and so is
thinner to the northeast. The Sandtrap Wash fault appears to displace the top of the anticline 2-3 km to the
northeast so that the two anticlines apparent in cross section were originally one.

Strata on the northeast limb of the anticline in the footwall of the Sandtrap Wash fault dip 15°-35° to the
northeast and may be truncated by the detachment fault such that the detachment fault cuts up-section
to the northeast. Northeast dips could be the result of tilting above a southwest dipping normal fault, except
that no such fault is apparent from mapping northeast of the anticline (Figure 4) [Spencer et al., 2013].
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Alternatively, northeast bedding dips could be the result of a ramp-flat geometry in a northeast dipping nor-
mal fault that parallels bedding beneath the northeast dipping limb, but this would require the detachment
fault to be as steeply northeast dipping as overlying beds. This would indicate significant steepening of the
detachment fault (more so than shown on the cross sections), but is a possibility.

3.2. Mississippi Wash Area

Strata in the lower Mississippi Wash area in the southern Rawhide Mountains (Figure 3) consist largely of arko-
sic sandstone and conglomeratic sandstone that are similar to the reddish sandstone mapped farther east in
the Artillery Mountains (Figure 5) [Scott and Lister, 1992; Scott, 1995, 2004]. The strata contain a bed of poorly
lithified silicic tuff that serves as a marker bed and are folded with northeast-dipping beds on the northeast
side of two anticlines (Figure 5). Farther east of one of the anticlines are two southwest dipping normal faults
that could be responsible for the northeast tilting (cross sections A and C on Figure 5), but the northeast-
dipping limb of the other, southern anticline is not flanked by any mapped normal fault (cross section B on
Figure 5). It is possible that northeast tilting occurred above one or more concealed, southwest dipping
normal faults, although such faults are not apparent to the north of cross section B (Figure 5) where they
would likely strike toward the northeast end of the cross section.

3.3. Reid Valley Area

Most exposed upper plate rocks southeast of Reid Valley in the eastern Buckskin Mountains (Figure 3)
consist of reddish sandstone and tan conglomerate containing 30-40% to perhaps as high as 65%
mylonitic and chloritic breccia clasts [Spencer and Reynolds, 1989b; Prior and Singleton, 2016]. The detach-
ment fault projects at a gentle angle beneath the strata, and a small window into the detachment fault is
present on the south flank of the basin (Figure 6) [Spencer and Reynolds, 1989b; Singleton et al., 2014al.
The sandstone and conglomerate are folded into an anticline bounded on the southwest by a northeast
dipping normal fault and on the northeast by a syncline (cross section A-A’) and by the Lincoln Ranch
fault (cross section B-B’), a northwest striking fault with reverse and right-lateral strike-slip displacement
[Spencer and Reynolds, 1989b; Singleton, 2015]. Farther north in the Rawhide Mountains, the Lincoln
Ranch fault cuts postdetachment strata, indicating that it is significantly younger than displacement on
the detachment fault [Scott, 2004].

Cross sections through the anticline indicate that it is truncated by the underlying detachment fault unless
the fault itself is strongly folded in a way that is not apparent from the nearby fault trace. As with the areas
described previously, the detachment fault appears to cut up-section to the northeast beneath the northeast
dipping limb of the anticline. This would be consistent with a southwest dipping normal fault to the northeast
and tilting above such a fault, but no fault with this displacement was identified. It is possible that such a fault
was present farther northeast and was elevated and eroded away in the hanging wall of the Lincoln Ranch
reverse fault. Alternatively, the strata are simply folded and the folds are truncated by postfolding displace-
ment on a gently to moderately northeast dipping normal fault that displaced the folded rocks downward
into contact with the detachment-fault footwall.

3.4. Copper Penny Mine Area

The Copper Penny mine area is located near the southwestern end of the Swanea synform (Figure 3). A thick
sequence of sedimentary and volcanic rocks and rock-avalanche breccia in this area is folded into a southeast
plunging anticline, with limbs that dip up to 80° (Figure 7) [Wilkins and Heidrick, 1982; Spencer and Reynolds,
1989b]. If the southeast plunging axis of the main anticline were restored to horizontal, a fault zone on the
west flank of the anticline would have the dip and displacement of a normal fault. The anticline is bounded
to the northeast by what appears to be a steep, northeast dipping normal fault with another anticline to the
northeast. It is possible that this northeastern anticline is the displaced top of the anticline to the southwest.
The northeastern anticline is bounded to the northeast by a southwest dipping normal fault with Proterozoic
granitic rocks in its footwall (northeast end of cross section A-A’ in Figure 7).

4, Interpretation

Folding of syntectonic strata, and truncation of folds by the underlying Buckskin-Rawhide detachment fault,
is characteristic of the extensional basin or basins that formed in the study areas. All of the major folds
described have axes approximately perpendicular to regional extension direction, with interlimb angles of
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Figure 7. Geologic map and cross sections of the Copper Penny mine area in the central Buckskin Mountains (simplified from Spencer and Reynolds [1989b]). See

Figure 3 for location.
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~80°-140°. Minor folds, including both synclines and anticlines, are generally more open but similarly
oriented. Tilting and warping of strata above listric normal faults are common in extensional basins, with beds
dipping toward the breakaway [e.g., Xiao and Suppe, 1992; Schlische, 1995; Janecke et al., 1998]. A less
common feature, characteristic of anticlines in all four study areas, is that the northeast anticline limbs dip
northeastward into the underlying, top-northeast detachment fault. This would be expected for fault-
propagation folds that produce monoclinal flexures with dips toward the hanging wall side of the underlying
normal fault [e.g., Grasemann et al., 2005]. Anticlines like those in the study areas could conceivably result
from fault-propagation folding followed by tilting to the southwest above younger, northeast dipping normal
faults. This explanation is difficult to reconcile, however, with the absence of normal faults near the axial
planes of the anticlines, the abundance of minor folds, and the absence of any demonstrable extensional,
fault-propagation folds in the region.

Another possibility is that folding was a consequence of displacement above northeast dipping normal faults
with ramp-flat geometry. A problem with this interpretation is that it would require normal faults to cut up-
section to the northeast, which would be geometrically and mechanically difficult, especially where strata
were previously tilted to the southwest. In some cases anticlines could be interpreted as the result of
displacement on dual listric normal faults that dip inward toward the anticline axial plane. A problem with
this interpretation is that southwest dipping normal faults are demonstrably absent northeast of the anticline
axis in the Maggie Wash area and appear to be absent in the Reid Valley area. There are enough problems
with the various fold mechanisms outlined above that we consider an alternative hypothesis that the folds
are a consequence of simple shortening within an extensional wedge, with shortening occurring before a
final period of extension that dismembered the folds.

4.1. Critical-Taper Theory

Application of critical-taper theory (also known as critical Coulomb wedge theory) to problems of tectonics is
based on the concept that thrust belts, accretionary wedges, and extensional wedges are sufficiently lacking
in mechanical cohesion that they can be modeled as cohesiveless materials at scales of ~10°-10°m.
Cohesiveless materials, such as dry sand, have frictional resistance to slip and can support slopes up to an angle
of repose. In this case, there is no true tension and no tensional side of a Mohr circle diagram, which greatly sim-
plifies quantitative representation of material properties and allows an exactanalytical representation of wedge
behavior [Dahlen, 1984]. Critical-taper theory represents wedges of cohesionless material in extensional and
shortening settings in which frictional resistance to slip on a basal slip surface is less than the frictional resistance
to slip within the wedge. In this situation stable sliding of the wedge is possible if fault dip and surface slope are
within the stable-sliding field for wedge parameters (Figures 8 and 9) [Dahlen, 1984].

First-motion and moment-tensor interpretations of earthquakes in actively extending areas indicate that
almost all normal faults have fault dips of >30° at depths of earthquake initiation and for the geometry of
total seismic-energy release [Jackson and White, 1989]. A small number of normal-fault earthquakes have
been identified with dips in the range of 15°-30° [Abers, 1991; Hreinsdéttir and Bennett, 2009] or even less,
especially for segments of irregular faults [e.g., Mirabella et al., 2011]. The stability field outlined in black in
Figure 9 allows for fault dips as low as 20° to accommodate these rare earthquakes. Shown in red in
Figure 9 is the stable-sliding field that encloses fault-ramp and surface-slope measurements of some large
Quaternary core complexes that appear to have been completely denuded by stable sliding, including the
Pompangeo and Tokorondo complexes in central Sulawesi, Indonesia, the Gurla Mandhata core complex
in the Himalaya, and Dayman dome in Papua New Guinea [Murphy et al., 2002; Daczko et al., 2009, 2011;
Spencer, 2010, 2011]. This empirically determined stable-sliding field allows for a theoretical minimum dip
of 3° for extensional detachment faults (at zero taper) [Spencer, 2011]. Similar extensional-wedge parameters
for stable sliding during continental breakup were identified based on marine seismic data [Nirrengarten
et al., 2016].

The large discrepancy between minimum fault dip associated with earthquakes and the much lower dip of
fault ramps on the flanks of many core complexes is poorly understood. It is possibly due to fault curvature
in cross section such that only the shallowest part of the fault is gently dipping and this part of the fault is
neither the site of earthquake initiation nor responsible for a large fraction of total seismic energy release
[Spencer, 2011]. Although consistent with the rolling-hinge model for core-complex exhumation [Wernicke
and Axen, 1988; Buck, 1988], such fault curvature does not explain why slip occurs on the gently dipping part
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Figure 8. Extensional-wedge behavior illustrated by a hypothetical tractor backing down hill with a wedge of dry
(noncohesive) sand on an icy (low friction) slope (inspired by Xiao et al. [1991]). Stable-sliding field for wedge, and points
representing frames a, b, and ¢, are shown in upper right. (a) Stable sliding at point a. (b) As hill becomes steeper, both
hillslope (basal-slip angle) and wedge-surface slope change until the margin of the stable-sliding field is reached and
wedge shortening begins. Point b in upper right indicates wedge parameters when basal-slip angle reaches 40°. (c) As
hillslope becomes gentler, both basal-slip angle and surface slope change until the margin of the stable-sliding field is
reached and wedge extension begins. Point ¢ in upper right indicates wedge parameters when basal slip angle reaches 15°.
Slip surfaces within wedge are shown to illustrate deformation, but critical-taper theory is based on the inference that
wedge deformation occurs simultaneously at all points in the mechanically homogeneous wedge [Dahlen, 1984].

of the fault beneath the tapered wedge tip when the wedge tip could be transferred to the footwall by
extensional dismemberment.

4.2. Application of Critical-Taper Theory to Folding in the Buckskin-Rawhide-Artillery Mountains

We use a critical-taper stability field with a 3° theoretical minimum fault dip (at zero taper), as appropriate for
Quaternary metamorphic core complexes with highly effective tectonic exhumation [Spencer, 2011], to
evaluate the possibility of a state of stress leading to shortening in the extensional wedge above the
Buckskin-Rawhide detachment fault (Figure 10). We make the assumption that as the dip of the basal arkose
in the Artillery Mountains increased during extension, the dip of detachment fault beneath the extensional
wedge decreased at the same rate. This assumption would be inappropriate if significant amounts of upper
plate rock were displaced as slivers from beneath the wedge and transferred to the lower plate, which could
cause tilting without ultimately changing detachment-fault dip, but the highly effective exhumation of foot-
wall rocks in the Buckskin and Rawhide Mountains justifies the assumption in this case, at least for deeper
parts of the wedge (the basal arkose and underlying bedrock). We assume, furthermore, that the detachment
fault was broadly listric in its original cross-sectional form and that southwestward tilting of the wedge was
accommodated within the wedge by normal faults north and east of Artillery Peak [Bryant, 1995; Spencer
et al., 2013]. More than about 5-8 km northeast of Artillery Peak, normal faults are sparse and small, the upper
plate is largely unmodified by extension [Bryant, 1992; Spencer and Reynolds, 1991] (Figure 6), and the dip of
the underlying detachment fault and its down-dip continuation as a ductile shear zone did not obviously
change during extension.

Erosion and sedimentation during tilting generally would reduce surface slope, while sedimentation would
extend the wedge tip with progressively lower taper. As a result of erosion and sedimentation, the extensional
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margin of the wedge stability field is
reached with a surface slope near hori-
zontal and a detachment-fault dip of
5°-10° (Figure 10, location 7). We infer
that transfer of slivers of primarily sedi-
mentary rocks from the tapered end of
the wedge to the lower plate occurred

Stable-sliding zone o
under these conditions.

Because the critical-taper stability field
represents the tapered end of core-
complex wedges with a 3° minimum fault
Region o K . A
hrust faulting dip, a point representing wedge para-
i meters could migrate to the shortening
A0 TN 207 300 40° s0° 60" 70° 80" ooc  Sideofthe wedge-stability field if an allu-
basal dip vial fan builds onto the wedge from the
core complex. This is not true for mini-
Figure 9. Two stable-sliding zones with different parameters. The dotted ~ mum fault dips of greater than ~8°-12°,
lines bound a basal slip range of 30°~70°, as determined by evaluation of
normal-fault dip from earthquake seismology [Jackson and White, 1989].
The black solid lines outline stable-sliding region for a maximum
surface slope ¢ of 30° and minimum basal slip angle ¢, of 20°. This would will move the wedge to the shortening
allow for normal-fault earthquakes on faults dipping as little as 20° [e.g, ~ side of the stable-sliding field above a
Abers, 1991]. The red lines outline stable-sliding region for a maximum detachment fault with a fault dip of
su.rface slope ¢ of 13° and minimum basal slip angle ¢, of 3° as deter- ~4°-15°. This raises the possibility that
mined from fault ramps adjacent to Quaternary detachment faults asso-
ciated with terrestrial and submarine core complexes [Spencer, 2010,
2011] and is similar to that for submarine extensional wedges associated ~Rawhide-Artillery Mountains was  trig-
with continental rifting and breakup [Nirrengarten et al., 2016]. gered by core-complex emergence and
development of alluvial fans with sur-
face slopes away from the core complex.
The distribution of folded strata also allows for the possibility that alluvial-fan apexes were located in synfor-
mal detachment-fault grooves and that shortening occurred preferentially in these areas (core-complex
wedgies) because fault dip was less and surface slope was greater near fan apexes. It is also possible that tilt-
ing of the entire wedge away from the rising and arching core complex triggered shortening by increasing
both surface slope and fault dip in the direction away from the core complex (as in Figure 9b). This could have
occurred during erosion of the wedge without alluvial-fan development, provided that erosion was not suffi-
cient to reduce surface slope to the point of preventing the wedge from reaching the shortening margin of
the stable-sliding field.

As shown in Figure 10 (location 9), allu-
vial fans with surface slopes of ~4°-7°

wedge shortening in the Buckskin-

We interpret cross sections of folded rocks in the Mississippi Wash, Reid Valley, and Copper Penny mine areas
as representing folds that were cut by normal faults, with the hanging wall rocks of these normal faults then
displaced into contact with mylonitic crystalline rocks that make up the lower plate. This was followed by
deactivation of the directly underlying normal fault as the breakaway fault stepped northeastward, leaving
stranded fragments of hanging wall rock resting on what is mapped as the Buckskin-Rawhide detachment
fault. Initiation and movement on the Sandtrap Wash fault also appear to represent transfer of folded strata
to the lower plate during the last increment of detachment-fault movement.

Theoretically, unstable sliding on the extensional margin of the critical-taper stability field can proceed until
the wedge has zero taper and infinite length. In reality, however, wedge strength is not homogeneous and
individual normal faults provide weak zones that accommodate wedge extension. Transfer of shortened
rocks to the lower plate by extensional dismemberment requires displacement of the wedge configuration
from the shortening side of the wedge-stability field where folding occurred (Figure 10, location 9), through
the stable-sliding region, to the extensional side of the stability field where extensional dismemberment
occurred (Figure 10, location 10). This change from shortening to extensional stress conditions could have
resulted from a reduction in surface slope due to erosion, a reduction in detachment-fault dip due to tectonic
processes, or both. The fact that this change occurred for multiple fault slivers in two different
detachment-fault synforms suggests that stress conditions in the extensional wedge were close to the left
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Figure 10. Proposed evolution of the trailing edge of the extensional wedge above the Buckskin-Rawhide extensional
detachment fault. Note that many of the 10 critical-taper-parameter regions represent wedge behavior following
addition of new material to the wedge tip. Numbers represent wedge-tip critical-taper settings, as follows: (1) Tilting
and erosion of crystalline rocks during initial tilting above a normal fault that would evolve to form the Buckskin-
Rawhide detachment fault. This is hypothetical because there is no actual record of this tilting. (2) Deposition of the
basal arkose derived from the northeast, including basal conglomerate, which now dips ~40°-45° near Artillery Peak
(Figure 3). (3) Deposition of sandstone and siltstone with surface slope of less than 1°. (4) Deposition of limestone with
an approximately horizontal slope. (5) Deposition of conglomerate, sandstone, basalt flows, and rock-avalanche breccia
with likely western or northwestern sources. It is possible that deposition of lavas and breccias created surface slopes
adequate to trigger shortening, but the strata in this part of the stratigraphic section are so disrupted that evidence of
shortening, if it exists, is obscure. (6) Deposition of reddish sandstone (Chapin Wash Formation of Lasky and Webber
[1949]), with continued tilting until (7) extensional dismemberment of the wedge tip transfers slivers of the wedge to
the footwall (this would apply to fault slivers that are not folded). (8) Alluvial-fan construction onto the reddish sand-
stone unit displaces wedge-tip setting through the stable-sliding region to (9) where folding occurs during unstable
sliding at the shortening margin of the stable-sliding field. (10) Wedge-tip setting returns to unstable sliding in
extension so that folded rocks in the wedge tip are transferred to the footwall by extensional dismemberment.

tip of the stable-sliding field for deformation within the wedge. In this situation, small changes in surface
slope and/or detachment-fault dip could have resulted in ~90° rotation of the principal stresses associated
with deformation. Indeed, the complex and multiple periods of deformation recognized in some exten-
sional wedges [e.g., Scott and Lister, 1992] are consistent with multiple large changes in stress conditions.

Finally, we note that wedge shortening above a normal fault promotes core-complex exhumation. During
shortening, the rate of displacement at the wedge tip is greater than the displacement rate farther down
the underlying detachment fault. This will have the effect of accentuating effective exhumation which would,
in turn, promote isostatic uplift of the footwall, thereby promoting more wedge shortening. This effect is
likely to be minor, however, given the thinness of the wedge tip where folding occurred.

5. Conclusion

The Harcuvar metamorphic core complex underwent highly effective tectonic exhumation during Oligocene-
Miocene tectonic extension, resulting in nearly complete removal of pre-Cenozoic basement from above
much of the core complex. Exhumation was associated with erosion of lower plate mylonitic rocks and dis-
persal of mylonitic clasts to the extensional basin flanking the emerging core complex. Several conclusions
derived from detailed geologic mapping of upper plate strata in the Buckskin-Rawhide-Artillery Mountains
are as follows:

1. Oligocene-Miocene strata forming part of the upper plate of the core complex are strongly folded in
four locations, with fold axes approximately perpendicular to regional extension direction. The folds
affect entire syn-tectonic stratigraphic sections, but the folds are truncated by the underlying exten-
sional detachment fault, demonstrating that folding occurred late during the period of tectonic
extension.
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2. Various causes of folding identified in other areas of extension, including displacement over one or more
normal faults with curved or ramp-flat geometry, may have produced folds in the study area. Because of
difficulties in accounting for some of the larger folds by these mechanisms, and the abundance of folds,
we consider the possibility that the folds represent simple shortening in an extensional wedge.

3. To evaluate stresses that might have caused shortening, we apply critical-taper theory to an extensional
wedge above a normal fault with so little friction that sliding can occur at a theoretical minimum dip of 3°.
This approach is justified by gentle detachment-fault dips at the foot of several Quaternary core com-
plexes characterized by highly effective core-complex exhumation [Spencer, 2011] and by the gentle dips
below some submarine extensional wedges as identified by seismic reflection profiles [Nirrengarten et al.,
2016]. This evaluation leads to the conclusion that shortening in the wedge will occur if surface slope is
inclined sufficiently away from the core complex.

4. Because of the accessibility of the shortening side of the critical-taper stability field for an extensional
wedge with low basal friction, we conclude that a rising core complex can cause folding and shortening
by tilting the wedge away from the rising core complex, development of an alluvial-fan emanating from
the core complex, or both. A sedimentary trigger for folding is consistent with alluvial-fan deposits form-
ing the youngest strata in folded sections in two of the four areas of folding described in this study.

5. In a tectonic setting of wedge shortening, detachment-fault displacement would occur at a greater rate
near the wedge tip than farther down the detachment fault. Although stable sliding alone is sufficient
for core-complex exhumation, wedge shortening will enhance effective exhumation and might even have
a minor effect in promoting isostatic uplift and further wedge shortening.
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