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Abstract We used Bayesian cognitive modelling to identify
the underlying causes of apparent inhibitory deficits in the
stop-signal paradigm. The analysis was applied to stop-
signal data reported by Badcock et al. (Psychological
Medicine 32: 87-297, 2002) and Hughes et al. (Biological
Psychology 89: 220-231, 2012), where schizophrenia patients
and control participants made rapid choice responses, but on
some trials were signalled to stop their ongoing response.
Previous research has assumed an inhibitory deficit in schizo-
phrenia, because estimates of the mean time taken to react to
the stop signal are longer in patients than controls. We showed
that these longer estimates are partly due to failing to react to
the stop signal (Btrigger failures^) and partly due to a slower
initiation of inhibition, implicating a failure of attention rather
than a deficit in the inhibitory process itself. Correlations be-
tween the probability of trigger failures and event-related po-
tentials reported by Hughes et al. are interpreted as supporting
the attentional account of inhibitory deficits. Our results, and
those of Matzke et al. (2016), who report that controls also
display a substantial although lower trigger-failure rate,

indicate that attentional factors need to be taken into account
when interpreting results from the stop-signal paradigm.
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The capacity to inhibit action as required by changes in the
environment or internal states is essential for ensuring coher-
ent action and enables contextually relevant and goal-directed
behaviour. Response inhibition is typically assessed using the
stop-signal task (Fig. 1), where action execution in response to
a choice Bgo^ stimulus is supposed to be inhibited on a small
proportion of trials in response to a subsequent stop signal
(Verbruggen & Logan, 2008). Although the duration of go
response processes can be measured directly using go reaction
time (RT) on trials without stop signal, the duration of the stop
process is not directly observable, and so has to be inferred.

Stop-signal performance has been modelled as a race be-
tween independent go and stop processes that are triggered by
go and stop signals, respectively. On stop-success trials, the
stop process accumulates activation sufficiently quickly to
achieve threshold and inhibit responding before the go process
can reach its threshold; hence the stop process wins the race.
On stop-failure trials, the go process reaches threshold first
and wins the race. The outcome of the race is determined by
the speeds of the go and stop processes and by the delay
between the go and stop signal (stop-signal delay [SSD];
Logan & Cowan, 1984). A summary measure of inhibitory
ability in the form of the mean time for the stop process to
reach threshold (i.e., stop-signal RTor SSRT) can be estimated
nonparametrically by assuming that go RT distributions for
trials with and without stop signal are the same (e.g., Band
et al., 2003).
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Stop-signal tasks have been used extensively in studies of
schizophrenia patients and their relatives (Badcock et al.,
2002; Ross et al., 2008). General slowing in mean RT for
simple manual choice tasks is a pervasive symptom of schizo-
phrenia (Heathcote et al., 2015; Kieffaber et al., 2006; Schatz
1998), and prolonged SSRTs are commonly reported
(Bellgrove et al., 2006; Enticott et al., 2008; Hughes et al.,
2012; Thakkar et al., 2011, 2015). Prolonged SSRT in patients
has been regarded as indicative of impaired inhibitory pro-
cessing (Lipszyc et al., 2010).

However, successful stopping requires not only short
SSRTs but also the capacity to trigger inhibitory processes.
Trigger failures pose long-known challenges to the interpreta-
tion of stop-signal data, because apparent group differences in
inhibition performance may result from differences in SSRT,
but theymight just as well reflect differences in the probability
of triggering the stop process (Logan, 1994). At least one
study has proposed that the major deficit in schizophrenia
may lie in trigger failures. Badcock et al.’s (2002) proposal
was based on a nonparametric measure derived from inhibi-
tion functions–plots of the probability of stop failures for a
range of SSDs. However, Band et al. (2003) showed that even
appropriately transformed inhibition functions are unable to
discriminate between trigger failures and differences in go RT
and SSRT variabilty.

Recently, Matzke et al. (2016) developed a parametric
(model-based) Bayesian approach that addresses this problem.
They showed that ignoring trigger failures leads to dramatic
overestimation of SSRTs and that trigger failures occurred on

approximately 10% of trials for both Badcock et al.’s (2002)
and Hughes et al.’s (2012) healthy controls. As a result, a
recent methodological review of the stop-signal paradigm
(Matzke, Verbruggen, & Logan, in press) stressed the impor-
tance of accounting for failures to trigger the stop process.

Here we apply Matzke et al.’s (2016) Bayesian approach to
data reported for schizophrenia patients in Badcock et al.
(2002) and Hughes et al. (2012) to determine to what degree
increased trigger failures can explain deficits in patients’ stop-
signal performance. As trigger failures indicate an attentional
deficit (e.g., a failure in encoding the stop signal) rather than
an inhibitory deficit, our analysis could potentially change the
traditional interpretation of prolonged SSRTs in patients from
a dysfunction of cognitive control (Barch, 2005) to a dysfunc-
tion of attention (Braff, 1993). This interpretation also would
serve to validate and generalize Matzke et al.’s argument that
attentional factors need to be taken into account in broader
applications of the stop-signal paradigm.

Bayesian Cognitive Modelling

Matzke et al.’s (2016) Bayesian hierarchical approach simul-
taneously estimates the probability of trigger failures and the
full distribution (as opposed to only the mean) of go RTs and
SSRTs. Hierarchical modelling provides inference on both the
participant and the population level, and can provide more
accurate and less variable estimates than individual estimation
(Farrell & Ludwig, 2008). As shown in Fig. 1, the model is

Fig. 1 Stop-signal paradigm and the corresponding horse-race model. In
the stop-signal paradigm, participants perform a choice RT task (i.e., the
go task), such as responding to the shape of the go stimulus (e.g., press a
left key for BX^ and a right key for BO^). Occasionally, the go stimulus is
followed by a stop signal (e.g., a 1000-Hz auditory tone) after a variable
stop-signal-delay (SSD), instructing participants to withhold their
response. Performance in the stop-signal paradigm is modelled as a

horse-race between two independent processes: go process and stop
process (Logan & Cowan, 1984). The finishing times of the go and stop
processes are assumed to be random variables that follow an ex-Gaussian
distribution, with parameters μ, σ, and τ. On a given trial, if the go RT is
slower than SSD + SSRT, the go response is inhibited; if the go RT is
faster than SSD + SSRT, the go response cannot be inhibited and results in
a signal-respond RT (i.e., grey distribution)
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based on the complete horse-race model that treats both go
RTs and SSRTs as random variables (Logan & Cowan, 1984).
On a given trial, if the go RT is slower than SSD + SSRT, the
go response is inhibited; if the go RT is faster than SSD +
SSRT, the go response cannot be inhibited and results in a
signal-respond RT (i.e., grey distribution).

The model assumes that go RTs and SSRTs follow an ex-
Gaussian distribution (see also Matzke, Dolan et al., 2013),
which is the sum of a normal distribution with mean μ and
standard deviation σ, and an exponential distribution with
mean τ (i.e., the tail of the distribution; see Fig. 1). The mean
of the ex-Gaussian distribution is the sum of μ and τ; hence,
mean go RT is given by μgo+τgo and mean SSRT by μstop+
τstop. In addition to the ex-Gaussian go and stop parameters,
Matzke et al.’s (2016) extension of the model also estimates a
parameter, PTF, that quantifies the probability that participants’
fail to trigger the stop process altogether.

Matzke and Wagenmakers (2009) discussed how the ex-
Gaussian parameters could be interpreted in terms of the wide-
ly adopted view that RT can be explained in terms of
Baccumulate-to-threshold^ processing, and in particular in
terms of the cognitive processes assumed by the diffusion
decision model (Ratcliff & McKoon, 2008). In this model,
after a stimulus had been encoded it provides evidence that
causes a change of activation in an accumulation process, with
a faster rate of accumulation for stimuli that provide stronger
evidence. When activation reaches a threshold, response pro-
duction is triggered. The threshold determines the amount of
activation required to make a response. Participants can set the
threshold strategically in order to control the trade-off between
speed and accuracy (e.g., a higher threshold causes slowing,
but reduces errors because responses are based on more evi-
dence). RT is the sum of encoding, accumulation, and re-
sponse production times.

Through a series of data simulations based on varying dif-
fusion model parameters, Matzke and Wagenmakers (2009)
demonstrated that slowing due to τ is associated only with
characteristics of the accumulation processes (i.e., a slower
rate of increase in activation or higher threshold). Slowing
due to μ is associated with higher thresholds but not with
rates, and can also reflect deficits outside the accumulation
process, such as slower initiation of these processes due to
stimulus-processing deficits, or slower response production.

Based on these considerations, separate estimates of μ and
τ provide greater insights than standard measures of mean
SSRT into the causes of patient deficits. Specifically, an

increase in SSRT due to μstop is likely caused by deficits in
the processing of the stop signal, which slows the triggering of
the stop process, and like trigger failures would be indicative
of attentional deficits. In contrast, an increase in SSRT due to
τstop is likely caused by a reduced rate in the stop process, and
hence would be indicative of inhibitory deficits1.

In order to address the divergent validity of these parame-
ters, we also examine the causes of slowing in patients’ go
RTs. The same pattern of effects on go and stop μ and τ
estimates would suggest similar and perhaps common under-
lying causes, whereas a contrasting pattern would suggest
different causes of any slowing in stop and go processes. As
the data sets we examine used very easy choice tasks with
high accuracy, go threshold differences, which are usually
associated with strategic attempts to control errors, are unlike-
ly. The tasks also relied on simple button press responses,
which are not associated with response production deficits in
schizophrenia (Heathcote et al., 2015). Hence, any patient
deficits in μgo are likely caused by stimulus encoding delays.

Methods

Data sets

Detailed experimental methods are provided in Badcock et al.
(2002) and Hughes et al. (2012); we highlight aspects relevant
to our analysis. Both studies used go tasks requiring fast,
accurate responses to equi-probable BO^ and BX^ stimuli.
Stop signals were 1000-Hz tones presented for 100 ms on
25% of the trials. Badcock et al. used a range of six 100-ms
spaced SSDs relative to mean go RT in the preceding block.
Hughes et al. set SSDs adaptively: after stop failures SSD
decreased by 50ms; after stop successes it increased by 50ms.

For Badcock et al. (2002) we analysed data from 17 schizo-
phrenia patients and 30 controls (removing four patients with
go error rates greater than 10% and two patients and one
control with unusual left-skewed go RT distributions).2 We
used only correct RTs and removed RTs faster than 250 ms.
We also removed go RTs slower or faster than mean RT ±3
standard deviations, resulting in an average data loss of 5% of
the trials in the schizophrenia and 4% in the control group. For
Hughes et al. (2012), we used all 10 and 13 participants in the
schizophrenia and control groups, respectively. We used only
correct RTs and removed RTs faster than 200 ms, resulting in
an average data loss of 7% of the trials in the schizophrenia
and 3% in the control group.

Bayesian analysis

A directed acyclic graphic representation (Lee, 2008) of the
hierarchical trigger-failure model is shown in Fig. 2. Observed
variables (i.e., data) are represented by shaded nodes;

1 A reviewer pointed out that attentional affects could also manifest in τstop
under different assumptions to those made by Matzke and Wagenmakers
(2009), such as a multi-step encoding process, where on some trials only
one or two of the steps are affected by attention deficits associated with
schizophrenia.
2 From the original Badcock et al. (2002) sample, data from 3 patients and 3
controls could not be retrieved.
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unobserved variables (i.e., parameters) are represented by un-
shaded nodes. The graph structure indicates dependencies be-
tween the variables, and the plates represent independent rep-
lications of the participants and the different types of trials.

The hierarchical model assumes that the go (μgo, σgo, and
τgo) and stop (μstop, σstop, and τstop) parameters for individual
participants are drawn from truncated normal population dis-
tributions. Each participant’s trigger failure parameter PT F is
modelled after a probit transformation by a truncated normal
population distribution. The population distributions describe
the between-subject variability of the parameters and are
themselves characterized by a set of parameters—the popula-
tion means and standard deviations—estimated from data. For
instance, the participant-level μstop parameters are modelled
with a truncated normal population distribution with mean
μμstop and standard deviation σμstop. Analysis of population-
level parameters is appropriate for inference about a new sam-
ple of participants, analogous to a frequentist random-effects
analysis. Priors used for the population-level parameters are
weakly informative uniform and truncated standard-normal
distributions (for details, see the Supplemental Materials on
the Open Science Framework at https://osf.io/bxedk/).

In both data sets, the trigger-failure model was fit to the data
of the two groups separately. Parameters were estimated using
the BEESTS software (Matzke, Love et al., 2013). The
resulting posterior distributions quantify knowledge about the
parameters after the data have been observed; we used the
median of the posterior distribution as point estimate for the
parameters, and the 2.5th and 97.5th percentile of the distribu-
tion (i.e., 95% credible interval) to quantify estimation uncer-
tainty. We used the Deviance Information Criterion (DIC;
Spiegelhalter et al., 2002) to compare the descriptive accuracy
of the model with and without the trigger-failure parameter.

Results

For Badcock et al. (2002), a DIC difference of 117 for controls
and 103 for schizophrenia patients indicated strong evidence
for the model with trigger failures. The advantage for the
trigger-failure model was even stronger for Hughes et al.
(2012), with DIC differences of 236 and 237, respectively,
for controls and patients. As shown in the Supplemental
Materials, posterior predictive model checks (Gelman,
Meng, & Stern, 1996) indicated that the trigger-failure model

provided a good description of the go RT distributions and
inhibition functions of most participants.

Group differences

Table 1 presents the median and 95% credible interval of the
posterior distributions of the population means of the go, stop
and PT F parameters. Inference about group differences was
based on overlap between the posterior distributions using
Bayesian p values, the proportion of posterior samples that
are lower in the schizophrenia group than in controls; p values
close to 0 indicate that the posterior distribution of schizophre-
nia patients is shifted to higher values, and provide evidence
for the presence of a group difference.3

For the go parameters, Bayesian p values did not indicate the
presence of group differences in the μgo parameter. In contrast,
σgo and τgo were shifted to higher values for patients relative to
controls in both studies, with Bayesian p values ranging be-
tween 0.18 and 0.09 in the two data sets. These results provide
suggestive evidence that the slowing of mean go RT (μgo+τgo)
in schizophrenia is largely attributable to slowing in the tail of
the RT distribution (τgo), on average by 45 ms in Badcock et al.
(2002) and 36 ms in Hughes et al. (2012).

For the stop and PT F parameters, Bayesian p values did not
indicate the presence of group differences in σstop and τstop. In
contrast, μstop and PT F were shifted to higher values for pa-
tients relative to controls in both studies. For Badcock et al.
(2002), there was suggestive evidence for the presence of a
group difference in μstop and PT F , with Bayesian p values of
0.18 and 0.14, respectively. For Hughes et al. (2012), there
was strong evidence for a group difference in μstop and PT F ,
with Bayesian p values of 0.03 and 0.02, respectively. The
results indicated that group differences in stop performance
are attributable to patients’ increased trigger failure probability
and a slowing of mean SSRT as a result of a shift in the entire
SSRT distribution due to an increase in μstop.

Exploratory analyses of ERP correlations

Research over the past 25 years has afforded a good under-
standing of the neural events underpinning the processing of
the stop signal and the execution of the stop process. Work
using event-related potentials (ERPs) has associated smaller
N1 and P3 amplitudes to stop signals with stop failures and
found that P3 peak latency to stop failures is delayed (De Jong
et al., 1995; Bekker et al., 2005; Hughes et al., 2012). The
reduced N1 and P3 amplitudes to stop signals during stop
failures suggest that problems in early perceptual processing
and lapses of attention could play a role in poorer stop-signal
performance. To provide converging evidence for the trigger-
failure account of stop-signal performance, we now report
correlations between model parameters and Hughes et al.’s
(2012) ERP data.

3 The frequentist decision rule to reject the null hypothesis if p < 0.05 does not
apply to Bayesian p values, which quantify the degree to which the posterior
distribution of the difference is consistent with the hypothesis that the param-
eter is greater for schizophrenia patients than for controls. For instance, a
Bayesian p value of 0.10 indicates that the hypothesis holds in 90% of the
posterior distribution of the difference.

Atten Percept Psychophys (2017) 79:1078–1086 1081

https://osf.io/bxedk/


Our analysis examined the association between stop-
related parameters and both N1 and P3 amplitudes and
latencies at sites with maximal amplitudes (Cz and Fz,
respectively). In particular, we focused on the stop-
related parameters associated with group differences, PT F

and μstop (results for mean SSRT were almost identical to
those for μstop). Inference about correlations used Bayesian
Bplausible values^ (Ly, Boehm et al., in press; Marsman
et al., 2016), avoiding overconfident effect size estimates
associated with frequentist tests of hierarchical Bayesian
estimates (Boehm et al., 2015). Our analysis also treated
participants as random effect, thus imposing a very strict
standard of evidence, taking into account uncertainty in

generalizing from Hughes et al.’s (2012) small sample of
participants to the population as well as posterior uncer-
tainty about the participant-level parameters.

For each ERP-parameter combination, we computed sam-
ple correlations between the set of participant ERP measures
and each participant-level posterior sample and then used Ly
et al.’s (2016) analytical solution to compute the posterior
distribution of the population correlation. The resulting
population-level posteriors were averaged to arrive at a single
posterior distribution for the population correlation. We used
uniform prior distributions between −1 and 1 for the compu-
tation of the population-level posteriors. Sensitivity analyses
indicated that the influence of the prior was negligible.

Fig. 2 Directed acyclic graph of the trigger-failure approach. Observed
variables (i.e., data) are represented by shaded nodes; unobserved
variables (i.e., parameters) are represented by unshaded nodes. The graph
structure indicates dependencies between the variables, and the plates
represent independent replications of the participants (j) and the different

types of trials (g for go trials; r for stop-failure trials, and s for
stop-success trials). The participant-level go and stop parameters are
modelled with truncated normal population distributions, with means
and standard deviations estimated from data. The participant-level PTF
parameters are modelled on the real line after a probit transformation
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Inference was based on Bayesian p values for the propor-
tion of samples in the posterior distribution of the population
correlation above (for negative correlations) or below (for
positive correlations) 0; p values close to 0 indicate that the
posterior is reliably shifted away from 0. As shown in Table 2,
properly taking into account all sources of uncertainty resulted
in broad posterior distributions, with only the strong negative

correlation between PT F and N1 latency in the schizophrenia
group reliably differing from 0. This result indicates that
higher levels of trigger failures were associated with an earlier
N1 peak. Although individual variation in trigger failures was
largest in patients (5-37%) it also was quite large in controls
(2-18%), suggesting that differential range restriction was not
the cause of the effect being restricted to the former group.

Table 1 Medians and 95% credible intervals (CI) of the posterior distributions of population-level means of the go, stop and PT F parameters for
Badcock et al. (2002) and Hughes et al. (2012)

Schizophrenia Control Bayesian p value

Posterior median 95% CI Posterior median 95% CI

Badcock et al. (2002) μgo 444 [399, 492] 436 [374,494] 0.40

σgo 66 [35, 80] 44 [4, 71] 0.13

τgo 115 [14, 164] 70 [27, 87] 0.18

Mean go RT 556 [449, 629] 503 [435, 565] 0.19

μstop 162 [128, 194] 144 [125,165] 0.18

σstop 26 [2, 50] 25 [3, 41] 0.48

τstop 20 [2, 52] 13 [2, 36] 0.35

PTF .17 [.07, .32] .10 [.06, .16] 0.14

Mean SSRT 185 [149, 214] 160 [137, 178] 0.10

Hughes et al. (2012) μgo 434 [362, 500] 418 [377, 458] 0.34

σgo 66 [25, 84] 54 [38, 65] 0.18

τgo 85 [21, 112] 49 [26, 60] 0.09

Mean go RT 516 [426, 592] 466 [422, 509] 0.14

μstop 180 [137, 213] 141 [130,151] 0.03

σstop 14 [2, 32] 9 [1, 18] 0.32

τstop 13 [2, 26] 12 [2, 19] 0.45

PTF .18 [.09, .31] .07 [.04, .12] 0.02

Mean SSRT 193 [150, 226] 153 [140, 162] 0.03

Population-level mean of the PT F parameters is transformed back to the probability scale; the inverse-probit transformed population-level PT F
parameter approximates themedian of the PT F parameters on the probability scale. The population-levelmean of the PT F parameters on the probability
scale can be computed by applying an inverse probit transformation that simultaneously considers the population-level mean and the population-level
standard deviation. For the Badcock et al. (2002) data set, this transformation resulted in a posterior median of 0.24 for schizophrenia patients and 0.15
for controls, with a Bayesian p value of 0.06. For the Hughes et al. (2012) data set, this transformation resulted in a posterior median of 0.21 for
schizophrenia patients and 0.09 for controls, with a Bayesian p value of 0.01.

Table 2 Medians and 95% credible intervals (CI) of posterior distributions of population correlations between stop-related parameters and ERP
indices for Hughes et al. (2012)

Schizophrenia Control

Posterior median 95% CI Bayesian p value Posterior median 95% CI Bayesian p value

μstop N1 Cz amplitude 0.24 [−0.38, 0.72] 0.22 0.32 [−0.26, 0.73] 0.14

N1 Cz latency 0.03 [−0.55, 0.59] 0.47 0.09 [−0.47, 0.59] 0.38

P3 Fz amplitude −0.29 [−0.74, 0.34] 0.18 0.11 [−0.44, 0.61] 0.35

P3 Fz latency 0.06 [−0.52, 0.61] 0.42 −0.42 [−0.79, 0.17] 0.08

PTF N1 Cz amplitude 0.31 [−0.32, 0.76] 0.16 0.02 [−0.53, 0.56] 0.48

N1 Cz latency −0.60 [−0.88, 0.01] 0.03 0.02 [−0.52, 0.56] 0.47

P3 Fz amplitude −0.41 [−0.80, 0.23] 0.10 −0.28 [−0.72, 0.30] 0.17

P3 Fz latency −0.25 [−0.72, 0.37] 0.21 0.13 [−0.44, 0.63] 0.33
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Discussion

In the data from both Badcock et al. (2002) and Hughes et al.
(2012), trigger failures were more than twice as frequent in the
schizophrenia than the control group, increasing from approx-
imately 8.5% to almost 17.5%. If we had ignored trigger fail-
ures we would have substantially overestimated SSRTs. In the
original papers, nonparametric SSRTestimates were slower in
the schizophrenia than the control group by 31 ms for
Badcock et al. and by 70 ms for Hughes et al. In contrast,
our analysis that takes into account trigger failures produced
reduced estimates of 25 ms and 40 ms, respectively. Thus, our
results indicate that a substantial part of the reason that schizo-
phrenia impairs the ability to inhibit motor responses is a
failure of stop-cue processing, which leads to a failure to trig-
ger motor inhibition mechanisms or to engage a brake to stop
action (Aron et al., 2014).

Although allowing for trigger failures reduced the estimat-
ed slowing of the stop process, there was still evidence of
residual slowing of SSRT in schizophrenia. However, our re-
sults suggest dissociation between the causes of slowing in the
go and the stop process. In both data sets, for the go process,
there was an increase in the proportion of slow responses in
the tail of the distribution, due to an increase in τgo. For the
stop process, in contrast, there was uniform slowing across the
entire distribution, due to an increase in μstop. It therefore is
unlikely that the inhibitory disadvantage has the same under-
lying cause as the general slowing of choice responses in
schizophrenia.

Based on the results ofMatzke andWagenmakers (2009), it
seems likely that the increased τgo is due to a decrease in the
rate at which evidence about the choice response is accumu-
lated (see also Heathcote et al. 2015). It is conceivable that the
increase in τgo also could reflect increased go threshold
resulting from strategic slowing (Logan et al., 2014).
However, as the two groups did not differ in μgo, it seems
likely that the increase in τgo purely reflects a decreased evi-
dence accumulation rate in schizophrenia. In contrast, the in-
crease inμstop is likely due to a deficit in the initial encoding of
the stop signal and hence slowing of the initiation of the stop
process, rather than a deficit in the rate at which the stop
process runs. Once again, there is an alternative interpretation,
that the increase in μstop reflects an increase in stop threshold.
However, as the two groups did not differ in τstop, the increase
in μstop would be indicative of a higher stop threshold only in
the unlikely scenario of a compensatory increased stop rate in
schizophrenia. Taken together, therefore, our results are most
consistent with attentional factors largely or completely medi-
ating poorer ability to inhibit action in schizophrenia. The
slowing in encoding processes supports the importance of
elongated stimulus encoding in schizophrenia (Neufeld,
2007), which has been found to be more common in non-
paranoid patients (Broga & Neufeld, 1981) and has been

suggested to be due to additional constituent encoding opera-
tions (Taylor et al., 2016).

All of the patients in the studies that we analysed were
medicated with one exception in Hughes et al. (2012). The
majority were on atypical (or second generation) antipsy-
chotics, which have not been associated with major cognitive
impairments—rather the evidence suggests slight ameliora-
tion of deficits relative to first-generation antipsychotics
(Hill et al., 2010). It therefore seems unlikely that any of the
observed effects are due to side effects of medication.

Consistent with our behavioural results, ERP data from
Hughes et al. (2012) suggest that patients are impaired in
processing both visual go and auditory stop signals. For both
modalities, the peak amplitudes of patients’ N1 and P3 com-
ponents were smaller than for controls, and for auditory stop
signals both N1 and P3 also peaked later in patients.
Functional magnetic resonance imaging (fMRI) data revealed
reduced blood-oxygen level dependent (BOLD) activation in
left superior temporal gyrus in patients, consistent with re-
duced and delayed auditory ERP peaks, indicative of less
attention to, and delayed sensory processing of, auditory stop
stimuli.

We also found that more frequent trigger failures were cor-
related with earlier peaking auditory-evoked N1 components
in patients but not controls. At first glance this finding might
seem paradoxical, but it can be understood in the context of an
attentional impairment in schizophrenia (McGhie &
Chapman, 1961; Michie et al., 1990). It is well established
that auditory-evoked N1 has multiple generators (at least
six) modulating observed N1 amplitude and peak latency
(Näätänen & Picton, 1987). Factors that influence these gen-
erators—and hence modulate auditory-evoked N1—encom-
pass stimulus attributes, individual differences, and task fac-
tors, including attentional demands. Attention to auditory
stimuli results in increased amplitude of N1 at 100 ms
(Hillyard et al., 1973) and later negativities that overlap N1
and beyond up to 250 ms (Näätänen & Michie, 1979; Hansen
& Hillyard, 1980). These later negativities are particularly
reduced in schizophrenia patients (Michie et al., 1990; Ward
et al., 1991). If a dysfunctional attention mechanism contrib-
utes to trigger failures in schizophrenia, we would expect this
faulty mechanism to be associated with reduced auditory stop-
signal N1 (as observed overall for patients by Hughes et al.,
2012) and reductions in later attention-related negativities.
Hence, our observation in schizophrenia patients of a negative
relationship between trigger-failure propensity and earlier N1
peak latency may stem from the degree of dysfunction in the
attention mechanisms reflected in reduced later negativities
and therefore an apparently earlier peak latency of N1.

The fMRI data reported in Hughes et al. (2012) further
support schizophrenia patients having a deficit in executing
the inhibitory process, indicated by anomalous BOLD activa-
tion in their right inferior frontal gyrus (rIFG) during

1084 Atten Percept Psychophys (2017) 79:1078–1086



successful stop trials. Larger BOLD responses in rIFG for
successful stop trials have been related to faster SSRT, and
impaired function of rIFG has been linked to slower SSRT
(Aron et al., 2014), leading to the argument that this structure
is a key component of the stopping network. Hughes et al.
found that underactivation of rIFG during stop responses
accounted for patients’ slower SSRTs. However, there are
competing theories regarding what aspect of stop-signal per-
formance is reflected in rIFG activation, either the inhibitory
process itself (Aron et al., 2006) or attentional processes in-
volved in processing salient, task-relevant cues, such as stop
signals (Hampshire et al., 2010). In the light of the current
findings, and Hughes et al.’s neuroimaging data, we propose
longer SSRTs and enhanced trigger failures in schizophrenia
derive from dysfunction of the attentional role rIFG has in
encoding stop signals.

Overall, our results indicate patients’ poorer stop-signal
performance is not due to a deficit in the inhibitory process
itself, but rather is due to sensory or attentional deficits asso-
ciated with stop-signal processing. Hearing loss is a risk factor
for psychosis (Linszen et al., 2016), but it is unlikely that
patients failed to hear Badcock et al.’s (2002) and
Hughes et al.’s (2012) auditory stop signals as they were
highly salient (e.g., ~85 dB SPL in Hughes et al.), so it
seems more likely that the locus of the deficit is more
central. Alternatively, patients could have had difficulty
switching their attention between the visual go signal
and the auditory stop signal. However, SSRT deficits are
found in schizophrenia patients even when both go and
stop signals are visual (Enticott et al., 2008; Thakkar
et al., 2011, 2015). It also is possible that the problem
resides in processes initiating inhibitory processing in re-
sponse to the detection of a stop signal.

More generally, our results indicate that attentional factors
should be considered when interpreting performance in the
stop-signal paradigm. We found that trigger failures occurred
on a substantial proportion of trials in control participants, and
that trigger-failure rate was doubled in a clinical population
known to have a dysfunction of attention (Braff, 1993).
Therefore, we advise that the possibility of trigger failures
and slowing in the initiation of inhibitory processes be
assessed in any application of the stop-signal paradigm, even
with participants who do not have any known attentional def-
icits. Future research might also examine whether elevated
levels of these factors are present in other disorders of atten-
tion, such as attention-deficit hyperactivity disorder, which is
commonly found to be co-morbid with schizophrenia (Levy
et al., 2015). Further validation of the attentional account of
stop-signal performance would be gained if trigger failures
were found to varywith factors known to affect attention, such
as fatigue, and if the somewhat surprising changes we ob-
served in attention-associated ERPwaveforms were replicated
in a larger sample.
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