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Abstract 82 

Host surface receptors provide bacteria with a foothold from which to attach, colonize and in 83 

some cases, invade tissue and elicit human disease. In this review, we discuss several key host 84 

receptors and cognate adhesins that function in bacterial pathogenesis. In particular, we 85 

examine the elevated expression of host surface receptors such as CEACAM-1, CEACAM-6, 86 

ICAM-1 and PAFR in response to specific stimuli. We explore how upregulated receptors, in 87 

turn, expose the host to a range of bacterial infections in the respiratory tract. It is apparent 88 

that exploitation of receptor induction for bacterial adherence is not unique to one body 89 

system, but is also observed in the central nervous, gastrointestinal, and urogenital systems. 90 

Prokaryotic pathogens which utilize this mechanism for their infectivity include Streptococcus 91 

pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Escherichia coli. A number 92 

of approaches have been used, in both in vitro and in vivo experimental models, to inhibit 93 

bacterial attachment to temporally-expressed host receptors. Some of these novel strategies 94 

may advance future targeted interventions for the prevention and treatment of bacterial 95 

disease.  96 

 97 

 98 

Introduction  99 

Mucosal surfaces of the respiratory, intestinal, and genitourinary tracts are important routes 100 

of entry into the host for bacterial pathogens (1). Multiple studies have shown that efficient 101 

binding between bacterial adhesins and host epithelial/endothelial surfaces is a prerequisite 102 

for establishing successful colonization (2). Therefore, the optimal presentation of host 103 

receptors for adhesion is critical for bacterial infection and subsequent disease. To date, much 104 

of the emphasis in the field of bacterial pathogenesis has been placed on the kinetics of 105 

expression of bacterial adhesins. This has often occurred in the context of assumed 106 

constitutive availability of cognate host surface receptors. However, it is becoming apparent 107 

that for bacterial diseases of a number of body systems including the respiratory, central 108 

nervous, gastrointestinal, and genitourinary systems, host receptors are appreciably induced 109 

in the presence of specific environmental or other stimuli.    110 

In this review, we discuss the different types of host cell receptors, their interaction with their 111 

respective bacterial adhesins, and the regulation of their expression in different body sites. 112 

Finally, we provide an insight into potential clinically relevant strategies that are being 113 
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explored to inhibit the specific interactions between bacterial adhesins and temporally 114 

upregulated host cell receptors. 115 

 116 

 117 

Host surface receptors for bacterial colonization 118 

Bacteria utilize a wide variety of molecules on host surfaces as docking sites for tissue 119 

adhesion and host colonization. Of particular interest, are the extracellular matrix (ECM) 120 

proteins, cell adhesion molecules (e.g. integrins, cadherins), and platelet-activating factor 121 

receptor (PAFR), which upon stimulation by certain environmental and/or immunogenic 122 

insults, undergo transient upregulation. This enhances bacterial adherence and subsequent 123 

tissue invasion (3-5).  124 

ECM, the acellular proteinaceous part of animal connective tissue, constitutes the anchoring 125 

platform for epithelia, designated the basement membrane (BM), and also surrounds blood 126 

capillaries and neurons (6). It consists of collagen, elastin, fibrillin, laminin (Ln), fibronectin 127 

(Fn), vitronectin, thrombospondin, proteoglycans and hyaluronic acid. Besides its ubiquitous 128 

distribution, ECM biosynthesis is significantly enhanced following viral infections (e.g. 129 

influenza A virus) and traumatic injury (e.g. ligament rupture) as a natural response to tissue 130 

repair, and is therefore, an attractive target for adherence and invasion by several bacterial 131 

pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, and non-typeable 132 

Haemophilus influenzae (3, 7-11).  133 

In addition to ECM components, cell adhesion molecules, including integrins, cadherins, 134 

selectins, and members of the immunoglobulin superfamily of cell adhesion molecules 135 

(IgCAMs), are also involved in bacterial adhesion (4, 12). Integrins are heterodimeric 136 

(composed of two subunits, α and β) transmembrane glycoproteins that attach cells to 137 

extracellular matrix proteins of the basement membrane or to ligands on other cells (13, 14). 138 

Several bacteria bind to integrins directly whereas others engage them via ECM proteins, such 139 

as fibronectin and collagen. Bacterial-integrin binding can trigger host intracellular signalling 140 

leading to actin cytoskeleton remodelling and subsequent bacterial invasion (4). 141 

IgCAMs including, carcinoembryonic antigen-related cell adhesion molecule (CEACAM) and 142 

intercellular cell adhesion molecule 1 (ICAM-1), constitute the other major class of host cell 143 

receptors utilized by bacterial adhesion systems (4). The CEACAM family is a group of highly 144 

glycosylated intercellular adhesion molecules involved in signalling events that mediate key 145 
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cellular processes that include cell adhesion, proliferation, differentiation and tumour 146 

suppression (15). They comprise an N-terminal Ig variable (IgV)-like domain followed by up to 147 

six Ig(C) domains. Twelve different CEACAM proteins have been identified in humans to date 148 

with CEACAM-1, CEACAM-5 and CEACAM-6 found in epithelial cells, and CEACAM-3 present 149 

exclusively in granulocytes (16).  150 

ICAM-1 (CD54) is a cell surface glycoprotein that serves as a counter-receptor for leucocyte 151 

β2 integrins, lymphocyte function associated antigen (LFA-1) (CD11a/CD18) and macrophage 152 

adhesion ligand 1 (Mac-1) (CD11b/CD18) (17). It is constitutively expressed in low levels on 153 

endothelium, fibroblasts and various epithelia (e.g. bronchial, intestinal, and urinary tract), 154 

however, its expression is markedly upregulated at sites of inflammation (18-22). Interactions 155 

between ICAM-1 and β2 integrins are known to have a central role in mediating leukocyte 156 

recruitment in the inflammatory response. This may lead to partial protection from invading 157 

pathogens but may also result in neutrophil-induced chronic epithelial injury (23, 24). A 158 

sustained inflammatory process may further upregulate adhesion receptors.  159 

Finally, the other class of host cell receptor, platelet-activating factor receptor (PAFR) is a G-160 

protein-coupled 7-transmembrane domain receptor, physiologically recognized by a 161 

phospholipid, platelet activating factor (PAF) (25). PAFR plays a role in a wide range of 162 

biological processes such as vasodilation, cell proliferation, angiogenesis, and regulation of 163 

the inflammatory response (25). Also, over the last decade, there has been increasing 164 

evidence emerging that PAFR is a major epithelial receptor used by specific respiratory and 165 

intestinal bacteria for adhesion to and also invasion of host epithelium (5, 26). Moreover, 166 

PAFR expression is inducible and is directly linked to increased susceptibility to infection by 167 

both Gram-positive and Gram-negative bacteria (26, 27). 168 

 169 

 170 

Temporal host surface receptor upregulation in different body systems  171 

 172 

(i) Respiratory System 173 

Worldwide, respiratory diseases affect several hundred million people and cause 174 

approximately four million deaths annually (28). Two of the major contributors to respiratory-175 

related deaths globally are chronic obstructive pulmonary disease (COPD) and acute 176 

respiratory infections. Major respiratory bacteria, such as nontypeable Haemophilus 177 
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influenzae (NTHi), Streptococcus pneumoniae, and Moraxella catarrhalis, are common 178 

asymptomatic colonizers of the upper respiratory tract, but under certain circumstances may 179 

disseminate and cause infections, such as otitis media, sinusitis, and lower respiratory tract 180 

ailments including bronchitis, pneumonia, and acute exacerbations of COPD (29-32). These 181 

species interact with and adhere to a variety of host cell receptors including ECM components 182 

and CEACAM-1, ICAM-1, and PAFR (5, 33, 34) (Figure 1). 183 

Pneumococci are equipped with three different types of fibronectin-binding proteins: 184 

pneumococcal adherence and virulence factor A (PavA); plasmin-fibronectin binding protein 185 

A (PfbA); and pneumococcal endopeptidase O (PepO), which mediate adhesion to airway 186 

epithelia (10, 35, 36). Adherence of NTHi to fibronectin, laminin and type IV collagen is 187 

mediated by an autotransporter, Haemophilus adhesion and penetration protein (Hap) (37). 188 

Recently, NTHi lipoprotein P4 has demonstrated effective binding to nasopharyngeal, type II 189 

alveolar, and bronchial epithelial cells via fibronectin (7). Some respiratory viruses, such as 190 

Influenza A virus, Influenza B virus and Human Parainfluenza virus (HPIV) enhance the 191 

susceptibility to pneumococci and NTHi via upregulation of fibronectin and integrin 192 

expression. These viruses release neuraminidase which cleaves the sialic acid from latent 193 

transforming growth factor beta (TGF-β), thereby activating it. This stimulates the Smad 194 

signalling pathway resulting in the upregulation of both fibronectin and integrin expression 195 

(9).  196 

P1, an outer membrane protein in NTHi is reported to be implicated in CEACAM-1 and 197 

CEACAM-5 binding, thus, facilitating adhesion and invasion of the nasopharynx and lower 198 

respiratory epithelium (38). Similarly, CEACAM-1-engaging adhesins have also been identified 199 

in M. catarrhalis. Ubiquitous surface protein A1 (UspA1), an outer membrane protein in M. 200 

catarrhalis, targets and interacts with CEACAM-1 facilitating adhesion and invasion of 201 

respiratory epithelium (39). NTHi and M. catarrhalis induce the expression of their own 202 

receptor, CEACAM-1, on host cells, thereby increasing the host susceptibility to bacterial 203 

infection (40). 204 

S. pneumoniae and NTHi, along with some strains of Pseudomonas aeruginosa, a major 205 

bacterial pathogen in cystic fibrosis, share another common adhesin, known as 206 

phosphorylcholine (ChoP), in their cell wall (12, 41, 42). ChoP mimics PAF which is the natural 207 

arachidonic acid derived ligand for PAFR expressed on bronchial and alveolar epithelial cells. 208 

PAFR has been shown to be upregulated in human airway epithelial cells exposed to cigarette 209 
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smoke extract, as well as urban particulate matter (43-45). Furthermore, elevated PAFR 210 

expression resulted in higher levels of adhesion to bronchial epithelial cells by NTHi and S. 211 

pneumoniae, the major causes of acute exacerbations of COPD (46). 212 

Although the regulation of PAFR expression in response to cigarette smoke still requires 213 

elucidation, the pathway for ICAM-1 enhancement has recently been delineated (47). 214 

Cigarette smoke results in higher levels of tumour necrosis factor-alpha (TNFα) in the airway 215 

which increase expression of ICAM-1 via nuclear factor kappa B (NFB). Upregulated ICAM-1 216 

is exploited as a receptor for upper respiratory tract infection by the major group rhinoviruses 217 

(approximately 60% of serotypes) (48-51). Notably, ICAM-1 expression is further stimulated 218 

by rhinovirus infection, again via the NFκB pathway, which increases the susceptibility of 219 

airway epithelial cells to secondary bacterial infection (49). In addition to Rhinoviruses, NTHi 220 

has also been reported to utilize ICAM-1 for adherence to airway epithelium (52). Moreover, 221 

NTHi also upregulates the expression of the ICAM-1 receptor which successively increases the 222 

susceptibility to rhinoviral infection (53). ICAM-1 expression on respiratory epithelium is also 223 

elevated under different respiratory conditions, including COPD and bronchiectasis (22, 51, 224 

54, 55). 225 

Besides rhinovirus, other respiratory viruses are also implicated in predisposition to 226 

secondary bacterial infections (56). A variety of cytokines released, following viral infection, 227 

such as TNFα, interferon-gamma (IFNγ) and interleukin 1-beta (IL-1β) can target the 228 

respiratory epithelium and induce the expression of adhesive molecules, including CEACAM-229 

1 and PAFR (57). IFNγ, in particular, is the most potent inflammatory cytokine that increases 230 

the expression of CEACAM-1, ICAM-1, and PAFR via the NFκB pathway (58). Notably, IFNγ has 231 

also been reported to directly induce CEACAM-1 expression via activation of interferon 232 

regulatory factor 1 (IRF-1), which binds interferon-stimulated response element (ISRE) in the 233 

CEACAM-1 promoter (59).  234 

 235 

(ii) Central Nervous System   236 

Temporal receptor upregulation is not unique to the respiratory system, and similar 237 

observations have been recorded in other body systems, including the endothelium in the 238 

central nervous system. The major central nervous system disease, meningitis, is manifested 239 

by a specific and limited number of bacterial pathogens, including S. pneumoniae, and N. 240 

meningitidis. The global incidence of pneumococcal meningitis was 0.1 million in children 241 
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younger than 5 years in 2000, whereas, the worldwide annual prevalence of meningococcal 242 

meningitis is 1.2 million with 135,000 deaths yearly (60, 61). Pneumococci utilize a similar set 243 

of host surface receptors, including PAFR, for both adherence to the respiratory epithelium 244 

and for penetrating the endothelial lining of the blood-brain barrier (BBB) (34). In addition, 245 

poly immunoglobulin receptor (pIgR), which transports immunoglobulins across mucosal 246 

epithelium, and platelet endothelial cell adhesion molecule-1 (PECAM-1), that is involved in 247 

leukocyte migration and angiogenesis in the endothelium, have also been found to be utilised 248 

by pneumococci for endothelium adhesion and invasion (62, 63). It has been proposed that 249 

pneumococcal infection in itself may upregulate pIgR and PECAM-1 expression via a PAFR 250 

mediated signalling mechanism (64). Pneumococcal cellular components, such as choline 251 

binding proteins and pneumolysin, or PAF synthesized by host innate immune response, are 252 

believed to mediate binding to PAFR. This interaction in turn stimulates multiple signal 253 

transduction pathways including phospholipase C, D, A2, mitogen-activated protein kinases 254 

(MAPKs) and the phosphatidylinositol-calcium second messenger system thereby, increasing 255 

the expression of pneumococcal adhesion receptors pIgR or PECAM-1 (64-66). In addition, 256 

pneumococcal pilus-1 adhesin RrgA and pilus-2 adhesin PitB have been implicated in 257 

pneumococci mediated adhesion and invasion of brain endothelial cells and respiratory 258 

epithelial cells (67-69).  259 

Meningococci express a different set of adhesins to attach to and invade the cerebrovascular 260 

endothelial lining. Colony opacity-associated (Opa) protein and opacity class 5 protein, Opc, 261 

are outer membrane proteins, which mediate meningococcal adhesion specifically to 262 

CEACAM-1, heparan sulfate proteoglycan (HSPG) and integrins via the extracellular matrix 263 

proteins fibronectin and vitronectin (70, 71). Meningococci have been shown to trigger the 264 

expression of the CEACAM-1 receptor on primary endothelial cells via NFB activation, which 265 

increases Opa/CEACAM-1-specific bacterial binding and internalization (72). In contrast, Opc 266 

primarily binds to ECM proteins, such as fibronectin and vitronectin, and is particularly 267 

implicated in host cell invasion of endothelial cells (73). Expression of fibronectin and its major 268 

receptor, α5β1 integrin, is enhanced during cerebral hypoxia, and therefore, may predispose 269 

the host to meningococcal meningitis (74) (Figure 2). 270 

Recently, a novel receptor, CD147, a member of the immunoglobulin superfamily, also called 271 

extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin, has been described as 272 

a major receptor that is recognized by the meningococcal type IV pilus (Tfp). N. meningitidis 273 
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utilizes CD147 for adhesion during infection (75). Interestingly, CD147 expression has been 274 

shown to be upregulated by hypoxia through a combined effect of transcription factors 275 

hypoxia inducible factor 1 (HIF-1) and specificity protein 1 (Sp1) on the activation of the CD147 276 

gene promoter (76).  277 

 278 

(iii) Digestive System  279 

Diarrhoea, the major gastrointestinal disorder, is the second leading cause of mortality 280 

worldwide among children under the age of five (77). In the gastrointestinal tract, various 281 

bacteria including different pathotypes of E. coli i.e. enteropathogenic E. coli (EPEC), 282 

enterotoxigenic E. coli (ETEC), adherent-invasive E. coli (AIEC), diffusely adhering E. coli (DAEC), 283 

and Salmonella spp. mediate their pathogenesis via adhesion to and/or invasion of intestinal 284 

epithelial cells (2). The chaperone-usher pathway (CUP) type I pilus adhesin, FimH, mediates 285 

adhesion to D-mannosyl residues of CEACAMs, including CEACAM-1, CEACAM-5, and 286 

CEACAM-6, and has been associated with EPEC and DAEC infections (78). In addition to type 287 

I pili, DAEC also expresses the CUP adhesins Afa/Dr which have been shown to recognize and 288 

bind the CEACAM-1, CEACAM-5 and CEACAM-6 receptors in the intestinal epithelial cells (79). 289 

Similar to the respiratory tract, CEACAMs in intestinal epithelial cells are normally expressed 290 

at low levels, which prevents their use by opportunistic pathogenic bacteria for attachment 291 

(80). However, in inflammatory conditions such as Crohn’s disease, released cytokines TNFα 292 

and IFNγ induce CEACAM-6 expression which promotes the adhesion to ileal epithelial cells 293 

by AIEC (81). Furthermore, overexpression of the endoplasmic reticulum (ER)-localised stress 294 

response chaperone protein Gp96 has been detected in Crohn’s disease , and crucially is 295 

utilized as a receptor for the adhesin OmpA expressed by AIEC, thereby facilitating the 296 

bacterium’s invasion (82).  297 

Type IV pili such as PilS in Salmonella enterica, and haemorrhagic coli pilus (HCP) in 298 

enterohaemorrhagic E. coli (EHEC) mediate adherence to and invasion of intestinal epithelial 299 

cells leading to typhoid fever and haemorrhagic colitis, respectively (83, 84). S. enterica has 300 

been identified to utilize the adhesin PilS, interacting with the epithelial receptor, cystic 301 

fibrosis transmembrane conductance regulator (CFTR), allowing entry to the intestinal 302 

epithelial cells (85). Interestingly, CFTR gene expression has been shown to be induced in 303 

ulcerative colitis (UC), which might predispose an individual with this condition to subsequent 304 

Salmonella infection (86). On the other hand, EHEC has been demonstrated to bind to various 305 
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ECM proteins, including laminin, type IV collagen, and fibronectin via CUP and type IV pili (87, 306 

88). Expression of the ECM component, fibronectin, has been found to be upregulated in 307 

intestinal epithelial cells during colitis, in both the acute phase as well as the recovery phase 308 

of the disease (89). In addition, PAFR is upregulated during intestinal inflammation via the 309 

hypoxia-inducible factor-1 alpha (26). The Gram-positive intestinal bacterial species, 310 

Enterococcus faecalis, exploits this upregulation of PAFR to translocate across the intestinal 311 

epithelial barrier (26) (Figure 3). 312 

 313 

(iv) Urogenital System 314 

The annual global burden of urinary tract infection (UTI) is estimated to be 150 million cases, 315 

resulting in an economic burden of more than 6 billion dollars per year (90).  Uropathogenic 316 

E. coli (UPEC) is the most common bacterial pathogen associated with UTI, both 317 

uncomplicated and complicated. Uncomplicated UTIs typically affect individuals who are 318 

otherwise healthy and have no structural or neurological abnormalities and are differentiated 319 

into lower UTIs (cystitis) and upper UTIs (pyelonephritis). Complicated UTIs are associated 320 

with factors that compromise the urinary tract or host defense, including renal failure, urinary 321 

retention, pregnancy and the presence of urethral catheters (91, 92). UPEC has the ability to 322 

bind directly to kidney cells and bladder epithelium. The CUP pyelonephritis-associated (P) 323 

pilus adhesin, PapG, mediates binding to the α-galactopyranosyl-(1-4)-β-D-galactopyranoside 324 

moiety of glycolipids on the kidney cells (93).  325 

Besides P pili, some UPEC strains express type I pili, which via the FimH adhesin confer binding 326 

to α-D-mannosylated proteins, such as uroplakins on bladder epithelia, allowing colonization 327 

of the urinary tract (94). There is a paucity of data in relation to factors affecting uroplakin 328 

expression, although it has been shown to be associated with malignant transformation in 329 

the uroepithelium (95) (Figure 4). 330 

In addition to pili, Afa/Dr-positive UPEC utilizes Dr adhesins to interact with type IV collagen 331 

in the kidney (96). The Dr adhesin has also been shown to bind to CEACAM-1, CEACAM-5 and 332 

CEACAM-6 receptor and decay accelerating factor (DAF) in bladder epithelial cells (79, 97). 333 

Interestingly, DAF expression is upregulated during pregnancy which predisposes pregnant 334 

women to UTI by Afa/Dr-positive UPEC (98). Furthermore, cell culture studies have confirmed 335 

that the extent of Afa/Dr-positive E. coli attachment to host epithelial cell is proportional to 336 

the level of DAF expression (99).  337 
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Inhibiting specific bacterial adhesin-host receptor interactions  338 

Bacterial infections, one of the major causes of morbidity and mortality worldwide, are 339 

becoming increasingly problematic to treat due to the growing acquisition of antibiotic 340 

resistance by major pathogens, as well as challenges to the generation of new clinically-341 

approval antimicrobials (100). The potential for developing a novel alternative approach to 342 

prevent and/or treat life-threatening bacterial infections through interfering with 343 

bacterial/host tissue interfaces is timely. This could be achieved using a number of different 344 

strategies.  345 

The first strategy is the inhibition/disruption of bacterial adhesin assembly by using small 346 

molecule inhibitors. Curlicides FN075 and BibC6 have been found to block the biogenesis of 347 

amyloid fibres curli, thereby inhibiting in vitro the UPEC biofilm formation (101). Moreover, 348 

UTI infection was significantly reduced in vivo by the pretreatment of UPEC with FN075 349 

thereby suggesting the anti-virulence property of curlicides (101). Pilicide ec240, small 350 

molecule inhibitor of CUP pili has recently been reported to inhibit the assembly of type 1 and 351 

P pili in an in vitro culture of cystitis isolate of UPEC (102). 352 

A second strategy involves inhibiting the upregulation of host cell receptors. Two important 353 

pathways for receptor upregulation, the NFκB and TGF-β-Smad signalling pathways, could be 354 

potential therapeutic targets. The NFκB inhibitor, diferuloylmethane (curcumin) has been 355 

shown to significantly reduce the infectivity of the bacteria N. gonorrhoeae, Helicobacter 356 

pylori and N. meningitidis in vitro by blocking the expression of their cognate adhesion 357 

receptors (58, 103, 104). Similarly, in an in vitro study with human alveolar epithelial cells, the 358 

TGFβ inhibitor SB431542 has been reported to reduce infection associated with S. 359 

pneumoniae, S. aureus and NTHi following exposure to viral infections (9). In vivo studies are 360 

now needed to evaluate the therapeutic utility of NFκB and TGF-β inhibitors. 361 

Finally, the third and perhaps most utilized strategy is the disruption of the bacterial-host cell 362 

adhesive interaction with specific competitive inhibitors or receptor antagonists. Mannose 363 

derivative 4-methylumbelliferyl alpha-mannoside has been found to inhibit type 1 fimbriae-364 

mediated binding of E. coli to guinea pig ileal epithelial cells (105). Also, methyl alpha-365 

mannoside was reported to inhibit E.coli and Salmonella binding to glycoprotein CEACAM in 366 

vitro (78). Also, selective FimH binding mannosides have been indicated in preventing urinary 367 

tract infection in a preclinical murine model (106). In vitro studies have found that anti-368 

CEACAM antibodies block the adhesion of M. catarrhalis, N. meningitidis, and NTHi to airway 369 
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epithelial cells (39, 71, 107). Also, NTHi adherence to A549 alveolar epithelial cells in vitro, 370 

was shown to be inhibited in a dose-dependent manner with increasing concentrations of 371 

anti-ICAM-1 monoclonal antibodies (52). An in vivo study conducted in chinchillas reported 372 

that anti-CEACAM-1 antibody YTH71.3 effectively blocked NTHi attachment to the 373 

nasopharynx (108).  374 

In terms of specific receptor antagonists, a number of PAFR antagonists, such as Ginkgolide-375 

B (BN52021), CV-3988, PCA-4248, CAS-99103-16-9, and WEB-2086, have been reported to 376 

block the attachment of bacterial pathogens to respiratory epithelium (12, 42, 109, 110). Of 377 

these, WEB-2086 has recently been demonstrated to significantly inhibit both NTHi and S. 378 

pneumoniae adherence to bronchial epithelial cells in vitro (46). WEB-2086 also caused a 379 

significant reduction in exotoxin ExoU-expressing P. aeruginosa bacterial load in both in vitro 380 

and in vivo infections of A549 human alveolar epithelial cells and mouse lungs, respectively 381 

(111). Besides WEB-2086, CAS-99103-16-9 has been shown to inhibit Pseudomonas 382 

aeruginosa infection in both in vitro and in vivo experimental model (42). In a mouse model 383 

of occupational exposure to welding fumes, PAF analogue CV-3988  significantly inhibited S. 384 

pneumoniae infection (112). In a mouse model of sickle cell disease, impact of PAFR 385 

antagonist BN-52021 was evaluated by challenge of PAFR knock out mice (113). Sickle cell 386 

disease was found associated with elevated levels of PAFR expression and BN-52021 was 387 

found to reduce the extent of pneumococcal disease (113). 388 

There is good evidence that PAFR antagonists are well tolerated in humans based on earlier 389 

asthma clinical trials. SR27417 inhibited PAF-induced symptoms in patients with only minor 390 

side effects (114). Similarly, CV-3988 was not associated with any major adverse events at 391 

doses of 750-2000 μg/kg (115). In terms of returning to pre-treatment levels, no clinically 392 

evident adverse effects were reported for PAFR antagonist BN52021 nearly one year after a 393 

clinical trial in asthmatic children (116). 394 

In vitro studies are robust, replicable, and economical for detemining the mechanisms 395 

involved in adhesin-receptor interactions and also for measuring the inhibitory activity of new 396 

candidate drugs. However, the absence of cell-cell interactions, and the use of artificial 397 

culture conditons are among the main limitations (117). Outcomes from in vitro studies are 398 

not always applicable at the whole organism level. Hence, a priority is more in vivo work to 399 

establish the efficacy of the host receptor inhibitors in preventing bacterial infections and 400 

disease.   401 
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Summary and Conclusions 402 

All bacterial pathogens, including respiratory, intestinal and urinary tract pathogens, have 403 

evolved strategies to survive and colonize within their respective niches. They are equipped 404 

with adhesins that facilitate the binding, and in some cases, invasion of protective epithelial 405 

barriers. Host tissue can resist infection through reducing the presentation of surface 406 

receptors for bacterial adhesion. However, in the respiratory tract, certain stimuli such as viral 407 

infection, cigarette smoke exposure, and inflammation related to chronic illnesses including 408 

COPD, have been found to temporally heighten the expression of receptors. Among these are 409 

CAECAM-1, ICAM-1, and PAFR, that promote adherence by pathogens such as H. influenzae 410 

and S. pneumoniae. Upregulation of CAECAM-1 on endothelial cells enables breaching of the 411 

blood-brain barrier by N. meningitidis which is acutely linked to meningitis. In the intestine, 412 

Crohn’s disease is associated with elevated expression of CAECAM-6 which promotes 413 

colonization by adherent-invasive E. coli. A number of inhibitors have been identified to date 414 

which block the adhesion of bacterial pathogens to upregulated host surface receptors 415 

indicating that such interactions could be amenable to therapeutic intervention. This may 416 

offer new avenues for the development of treatments for respiratory and other types of 417 

infections. However, validation of this approach, through further animal studies and 418 

subsequent investment in appropriate clinical trials, is needed. 419 
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Figure 1. Temporal upregulation of host surface receptors in the respiratory system.  751 

Host surface receptors in the respiratory tract are upregulated in response to viral infection, 752 

exposure to cigarette and biomass fuel smoke, as well as inflammatory cytokines. Bacterial 753 

pathogens including non-typeable Haemophilus influenzae, Streptococcus pneumoniae, 754 

Pseudomonas aeruginosa and Moraxella catarrhalis exploit the upregulated receptors for 755 

attachment via their cognate adhesins. Strategies which have been found to inhibit such 756 

interactions are illustrated. PavA, pneumococcal adhesion and virulence A; PfbA, plasmin-757 

fibronectin binding protein A; PepO, pneumococcal endopeptidase O; TGFβR, transforming 758 

growth factor-beta receptor; COPD, chronic obstructive pulmonary disease; PAFR, platelet 759 

activating factor receptor; Hap, haemophilus adhesion and penetration; OMP, outer 760 

membrane protein; Anti-CEACAM Ab, anti-carcinoembryonic antigen cell adhesion molecule; 761 

UspA1, ubiquitous surface protein A1; IL-1, interleukin 1; TNFα, tumour necrosis factor-alpha; 762 

IFNγ, interferon-gamma. Yellow, blue and orange coloured text boxes represent bacteria, 763 

inhibitors and factors affecting expression of host cell receptors, respectively. Green and red 764 

coloured texts represent bacterial adhesins and their cognate host cell receptors, respectively. 765 
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Figure 2. Temporal upregulation of host surface receptors associated with bacterial disease of 769 

the central nervous system.  770 

Host receptors on endothelial surfaces are upregulated in response to viral infection, hypoxia, 771 

and inflammatory cytokines. Bacterial pathogens including Streptococcus pneumoniae and 772 

Neisseria meningitidis adhere to the upregulated receptors via their cognate adhesins which 773 

can facilitate invasion of the blood-brain barrier. Approaches which have been found to inhibit 774 

such interactions are illustrated. Opa, opacity-associated; Opc, opacity class 5; Tfp, type IV pili. 775 

Yellow, blue and orange coloured text boxes represent bacteria, inhibitors, and factors 776 

affecting expression of host cell receptors, respectively. Green and red coloured texts 777 

represent bacterial adhesins and their cognate host cell receptors, respectively. 778 
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Figure 3. Temporal upregulation of host surface receptors in the digestive system.  782 

Host surface receptors in the digestive tract are upregulated in response to Crohn’s disease, 783 

colitis, and signals that include hypoxia. Bacterial pathogens including EPEC, ETEC, AIEC, DAEC, 784 

Salmonella enterica and Enterococcus faecalis bind to the upregulated receptors via their 785 

cognate adhesins. Strategies which have been found to inhibit such interactions are illustrated. 786 

CFTR, conductance fibrosis transmembrane receptor; EPEC, enteropathogenic E. coli; DAEC, 787 

diffusely adhering E. coli; EHEC, enterohemorrhagic E. coli; AIEC, adherently invasive E. coli; 788 

DAF, decay accelerating factor; HCP, hemorrhagic coli pilus. ChoP, phosphorylcholine. Yellow, 789 

blue and orange coloured text boxes represent bacteria, inhibitors, and factors affecting 790 

expression of host cell receptors, respectively. Green and red coloured texts represent 791 

bacterial adhesins and their cognate host cell receptors, respectively. 792 
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Figure 4. Temporal upregulation of host surface receptors in the urogenital system.  796 

Host surface receptors in the urogenital tract are upregulated in response to transitional cell 797 

carcinoma and pregnancy. UPEC binds to the upregulated receptors via its P pili, type I pili, 798 

and Afa/Dr adhesins. Strategies which have been found to inhibit the adhesive interactions 799 

are illustrated. P pili, pyelonephritis pili; UPEC, uropathogenic E. coli; NO, nitric oxide. Yellow, 800 

blue and orange coloured text boxes represent bacteria, inhibitors, and factors affecting 801 

expression of host cell receptors, respectively. Green and red coloured texts represent 802 

bacterial adhesins and their cognate host cell receptors, respectively. 803 
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