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INTRODUCTION

Ocean acidification is a well-recognised phenom-
enon (Caldeira & Wickett 2003). Atmospheric car -
bon dioxide (CO2) concentrations currently around
400 ppm are predicted to reach 750 to 1000 ppm by
the year 2100 (Raven et al. 2005, Raupach et al.
2007). As the world’s oceans absorb up to one-third
of the annual release of anthropogenic CO2, surface

water CO2 concentrations have steadily increased,
leading to a 30% increase in dissolved hydrogen
ion (H+) concentration since preindustrial times and
a de crease in pH of approximately 0.1 unit (Raven
et al. 2005). Under various CO2 emission scenarios,
surface water pH could decrease by at least 0.3
units by 2100 (Caldeira & Wickett 2005, Orr et al.
2005). These predictions of changes in ocean chem-
istry have led to international efforts to assess pos-
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sible impacts on marine biota (SCOR/IOC Sympo-
sium Planning Committee 2004, Riebesell et al.
2010).

Marine microbes play a vital role in the world’s
oceans as they form the base of the marine food web,
produce an estimated 50% of the world’s oxygen and
are involved in biogeochemical cycles that influence
global climate (Legendre & Le Fèvre 1995, Hutchins
et al. 2009). In the Southern Ocean, phytoplankton
photosynthesis comprises up to 15% of all marine
primary production on the earth (Huntley et al. 1991).
Spring and summertime blooms of Phaeocystis ant -
arctica and/or large diatoms drive this annual pro-
duction against a background of nano- (2−20 µm) and
pico-sized (0.2−2 µm) phytoplankton cells. Nano -
phytoplankton can contribute between 38 and 84%
of the total autotrophic biomass in waters off east
Antarctica (Davidson et al. 2010), while the picophyto -
plankton contribution is relatively low but may reach
up to 33% (Wright et al. 2009).

The fate of this fixed carbon biomass is largely
determined by the action of the microbial loop
(Azam et al. 1983, 1991). Grazing by protozooplank-
ton (20−200 µm) and heterotrophic nanoflagellates
(HNF, 2−20 mm) can be the dominant source of
phytoplankton and bacterioplankton mortality and
can regulate the abundance, size structure and spe-
cies composition of their prey (Froneman & Perissi -
notto 1996, Calbet & Landry 2004). When small,
nano-sized phytoplankton are most abundant, graz-
ing by HNF is enhanced and can account for up to
100% of the nanophytoplankton (Becquevort 1997,
Froneman 2004, Calbet et al. 2008) and between 27
and 100% of bacterial production (Christaki et al.
2008, Pearce et al. 2010, Garzio et al. 2013). Bacteria
are a major pathway for carbon flow in the Southern
Ocean (Rivkin et al. 1996, Delille 2004), and their
metabolism is critical for nutrient remineralisation
and transforming dissolved organic carbon into bac-
terial biomass that supports bacterivores. In some
oceans, bacteria can process up to 80% of the pri-
mary production and can contribute 40% of the
planktonic carbon (Cho & Azam 1990, Ducklow et al.
1993, Azam 1998). Therefore, understanding how
marine microbes may be affected by ocean acidifica-
tion is important in predicting energy flow in future
oceans.

Ocean acidification studies have revealed a range
of responses by marine microbes. In phytoplankton,
effects on calcification, photosynthesis, primary pro-
ductivity, growth rates and nutritional value have
all been recorded (Riebesell et al. 2000, Hare et al.
2007, Rossoll et al. 2012, Leu et al. 2013). However,

responses can be species-specific and linked to cell
physiology (Rost et al. 2008, Tortell et al. 2008, Berge
et al. 2010, Trimborn et al. 2013). At a community
level, it appears that increasing CO2 can change the
size structure and community composition of micro-
bial communities, although results can be contra -
dictory. Some studies have shown that exposure to
higher CO2 levels favours large diatoms (Tortell et al.
2008, Feng et al. 2010) while  others have shown that
pico- and/or nano phytoplankton can become domi-
nant (Hare et al. 2007, Engel et al. 2008, Paulino et al.
2008, Meakin & Wyman 2011, Brussaard et al. 2013).

The effects on marine Archaea and Bacteria (here
collectively called prokaryotes) are also unclear.
Most studies report little or no effect of increasing
CO2 on their abundance (Grossart et al. 2006, All-
gaier et al. 2008, Newbold et al. 2012, Roy et al. 2013)
despite apparent changes in the composition of bac-
terial groups (Newbold et al. 2012, Roy et al. 2013,
Sperling et al. 2013) and increases in bacterial pro-
duction and enzymatic rates (Grossart et al. 2006,
Feng et al. 2010, Piontek et al. 2010, Krause et al.
2012). While some effects are most likely caused
directly by species-specific differences in CO2

 tolerance, indirect effects by changes in protozoan
abundance, grazing rates and viral infection are also
possible (Danovaro et al. 2011).

To date, most studies have found little effect on
protozooplankton abundance or grazing rates.
Aberle et al. (2013) found little effect on microzoo-
plankton composition and diversity with increasing
partial pressure of CO2 (pCO2) in mesocosm experi-
ments in an Arctic fjord. In a Norwegian fjord, Suf-
frian et al. (2008) found no  difference in microzoo-
plankton community composition and grazing rates
in mesocosms with up to 3× present-day atmospheric
CO2 levels. Only Rose et al. (2009) recorded any
effect, finding an increased abundance of microzoo-
plankton at elevated temperatures and CO2 concen-
trations of 690 ppm in North Atlantic spring bloom
water. In the Antarctic, to our knowledge only one
study has shown an effect of elevated CO2 on zoo-
plankton, where krill had higher ingestion rates of
microbes and excretion rates of ammonia, phosphate
and dissolved organic carbon at approximately
672 ppm (Saba et al. 2012). We know of no studies on
the effects of elevated CO2 on HNF. Considering that
grazing diverts 60 to 70% of carbon away from
higher trophic levels and vertical flux (Froneman &
Perissinotto 1996, Calbet & Landry 2004), increasing
our understanding of the effects of ocean acidifica-
tion on protozoan grazers will be important in under-
standing carbon flow in future oceans.
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In this study, we report on the effects of enhanced
CO2 concentrations on the pico- and nanophyto-
plankton, HNF and heterotrophic marine prokary-
otes from Antarctic coastal seawater.

MATERIALS AND METHODS

We performed 3 experiments using coastal seawater
from offshore of Davis Station, Antarctica (68° 35’ S,
77° 58’ E). The experiments lasted up to 12 d and were
performed between December 2008 and February
2009 in 650 l polythene tanks (‘minicosms’, n = 6) held
in a temperature-controlled shipping container. Once
filled, the tanks had an approximate 50 l headspace
and were gas tight, except during periods of CO2 ma-
nipulation and on sampling days. All minicosms were
cleaned with Decon 90 (Decon Laboratories), followed
by 10% analytical reagents (AR) grade HCl and rinsed
with MilliQ water prior to each experiment. Following
cleaning, the minicosms were rinsed by filling and
draining with seawater before being filled with the
microbial community that was incubated. Seawater
was pumped to the minicosms from 2 m depth and
60 m offshore using a Teflon double-diaphragm pump
fitted to a Teflon-lined hose. Mesh of 200 µm over the
seawater intake excluded metazooplankton from the
tanks. All 6 minicosms were filled simultaneously to
ensure that they contained the same initial microbial
community, and the contents were gently mixed by a
shrouded auger rotating at 15 rpm. Seawater temper-
ature in each tank was measured to ±0.01°C using
platinum resistance thermometers (Guideline 9540)
and maintained at ambient ±0.1°C by the container’s
refrigeration, offset against warming in each minicosm
by 2 × 300 W aquarium heaters (Fluval) connected to
a predictive temperature-control program via Carel
temperature controllers.

Light was supplied to each minicosm by 2 HQI-TS
metal halide lamps (150 W, Osram) at an average
intensity of 200 µmol m−2 s−1 over a 19 h light :5 h
dark cycle. The irradiance and photoperiod were
chosen to reflect the prolonged period of twilight
between November and February at Davis Station
and changes in diel light cycles due to solar angle
and mixed depth layers over summer in Antarctic
waters (Smith et al. 2000, Thomson et al. 2008). Over-
all, the daily dose of photosynthetically active radia-
tion (PAR) approximated 21% of the average down-
welling surface irradiance at Davis Station around
the summer solstice while the flux rate equated to
~50% of the daily noon-time clear-sky irradiance at
5 m depth at this site (Thomson et al. 2008).

Seawater carbonate chemistry

Seawater CO2 manipulation and target concentra-
tions followed recommendations in the Guide to Best
Practices for Ocean Acidification (Gattuso et al. 2010,
Riebesell et al. 2010). Carbonate chemistry methods
are detailed in full by Davidson et al. (2016). At Davis
Station, we used total alkalinity (TA) and pH to esti-
mate carbonate chemistry during the dosing of our
minicosms. Total alkalinity and total CO2 (TCO2)
concentrations measured later from fixed samples in
Australia were used to calculate our final treatment
CO2 concentrations. Total alkalinity was measured
by open-cell potentiometric titration using a Metrohm
809 Titrando and single 800 Dosino auto-titrator
(SOP 3b) (Dickson et al. 2007). Our estimates of total
alkalinity at Davis Station were within 0.7% of TA
standards (A. G. Dickson pers. comm.), and this offset
was used to correct the measured alkalinity in mini-
cosm samples.

The Mettler Toledo Easy Seven meter, calibrated
on the National Bureau of Standards (NBS) pH scale
using NBS buffers, measured seawater pH (SOP 6a;
Dickson et al. 2007). CO2SYS.BAS (Lewis & Wallace
1998) was used to calculate pH of known TA and
salinity (Dickson TA standards) that had been bub-
bled with nitrogen and pure CO2 for ≥30 min. The pH
meter was then manually calibrated to these samples
at the calculated pH. The temperature of pH stan-
dards was measured using an NIST-calibrated Guide -
line 9540, 3 decimal place platinum resistance ther-
mometer, and all pH measurements were performed
in a closed vessel to avoid losses of aqueous CO2.

Our field estimates of CO2 were later confirmed
by measurements made on samples returned to Aus-
tralia. TCO2 was determined by coulometry at the
Commonwealth Scientific and Industrial Research
Organisation (CSIRO) in Hobart following methods
of Dickson et al. (2007). Our final CO2 treatment
 concentrations were calculated using TA and TCO2

concentrations at a precision of ±2 µmol l−1.
Water samples for pH measurement and TCO2 were

collected using methods that minimised exposure to
air. Samples were collected gently via a Teflon line
with the end placed at the bottom of an acid-cleaned
and MilliQ-rinsed 200 ml bottle. A small volume of the
sample seawater was first used to rinse the bottle, and
the bottle was then filled to overflowing and capped
with a convex lid to exclude air. The pH was
measured as soon as possible after the sample was
 obtained. Samples for TCO2 were collected every
 second day into 250 ml bottles with convex caps to ex-
clude air and were fixed with 100 µl of saturated solu-
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tion of mercuric chloride, kept cool and in the dark
 before being returned to Australia for later analysis.

Target CO2 concentrations were reached by adding
CO2-saturated seawater. The volume required to reach
the desired CO2 concentration was calculated using
CO2SYS.BAS software (Lewis & Wallace 1998).
Coastal seawater in an acid-cleaned polythene drum
was gravity fed and filtered through a 0.22 µm pore
size AcroPak 500 cartridge filter (Pall) into another
20 l acid-cleaned drum and bubbled with CO2 gas
(BOC, food grade) for 1 h until saturated (as deter-
mined with a pH meter). To reach the required CO2

targets, the CO2 saturated water was added over
approximately 2 h using medical infusion bags with
intravenous drips to regulate flow rate. Thus, the
introduction of CO2 was as slow and gentle as possi-
ble to each of the tanks to minimise stress to the
microbial community. Loss of CO2 from solution in
each tank due to photosynthetic draw-down of CO2

by phytoplankton and loss of CO2 to the headspace
was quantified by daily measurements of carbonate
chemistry and compensated for by adding further
CO2 saturated seawater to the tanks (as above).

Six treatments were established in each experi-
ment to encompass atmospheric CO2 concentrations
from ambient to those predicted by the end of the
21st century (IPCC 2014) and beyond. Mean CO2

values over the incubation periods were calculated
and used to define the treatments as multiples of
atmo spheric CO2 concentrations of 386 ppm meas-
ured at Mauna Loa Observatory in December 2008
(http:// co2now. org/). For example, a mean of
1281 ppm equated to 3.3× CO2. Treatment CO2 con -
centrations ranged from ambient coastal seawater
(<1×, at least 84 ppm) to approximately 4× CO2

(1711 ppm). The exception was in the first experi-
ment, which reached 6.3× or 2423 ppm (Table 1),

equating to the maximum pCO2 predicted by
Caldeira & Wickett (2003).

Expts were designed to determine the effect of CO2

on the microbial community rather than the ability
of the microbes to mediate CO2 concentrations. Thus,
carbonate chemistry measurements were repeated
daily, and additional CO2-saturated seawater was
added to each tank to maintain the target CO2 con-
centrations during the minicosm incubations.

Minicosm incubations and sampling

Expts 1, 2 and 3 began on 30 December 2008 and
on 20 January and 9 February 2009, respectively.
Seawater for Expt 1 was collected 3 wk after the
break out of land-fast sea ice, and for Expts 2 and 3,
seawater was collected from open water interspersed
with small, drifting ice floes. Day 0 samples were
obtained prior to acidification; otherwise, samples
were taken every second day until Day 10 in Expts 1
and 3 and Day 12 in Expt 2. Seawater samples were
collected from taps located mid-tank for a suite of
analyses including nutrients, chlorophyll a (chl a)
and flow cytometry. An accompanying study on the
microphytoplankton and protozooplankton can be
found in Davidson et al. (2016). Total sample volumes
removed during each experiment did not exceed
20% of the initial seawater volume.

Chl a analysis

A known volume of up to 1 l of seawater from each
minicosm was filtered through 13 mm GF/F filters
and was stored in liquid nitrogen until transported to
Australia. In Australia, the filters were stored at
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Expt Start date Ambient CO2 at CO2 treatment
(dd/mm/yy) collection (ppm) Tank 1 Tank 2 Tank 3 Tank 4 Tank 5 Tank 6

1 30/12/08 102 Treat: 0.2× 1.7× 3.3× 4.8× 5.0× 6.3×
ppm: 84 643 1281 1848 1942 2423
pH: 8.8 7.9 7.7 7.5 7.5 7.4

2 20/01/09 118 Treat: 0.3× 1.1× 2.0× 2.9× 3.0× 4.0×
ppm: 120 406 754 1130 1162 1530
pH: 8.6 8.1 7.9 7.7 7.7 7.6

3 09/02/09 232 Treat: 0.6× 1.2× 2.2× 3.2a× 3.2b× 4.4×
ppm: 250 474 864 1240 1232 1711
pH: 8.3 8.1 7.8 7.7 7.7 7.5

Table 1. Experiment start dates, ambient seawater CO2 concentrations at the time of collection and mean CO2 concentrations
(ppm) and pH values for the 6 treatments over the 3 experiments at Davis Station in the 2008−2009 summer. Mean CO2 con-
centrations (Treat) are expressed as multiples of the global atmospheric CO2 concentration of 385.54 ppm in December 2008 

(http://co2now.org/). In Experiment 3, 3.2a× and 3.2b× designate treatments of similar mean CO2 concentrations
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−135°C in an ultralow freezer (Sanyo) until they were
analysed within 7 mo. Pigments were extracted, ana-
lysed and quantified by HPLC in accordance with
Wright et al. (2010). Net growth rates of chl a were
calculated over days of exponential growth for each
experiment using the equation r = log(Nt/N0)/t
(Landry et al. 1995), where r = apparent growth, Nt

and N0 are the concentrations on the day exponential
growth ended and at time 0 (Day 0), respectively.

Nutrients

Fe-EDTA was added to each minicosm at the be -
ginning of each experiment to a final concentration
of 5 nM to ensure ready availability and to overcome
possible Fe limitation confounding the effects of
increasing CO2 concentrations. Macronutrients were
not added to the treatments. Concentrations of
nitrate and nitrite (NOx), phosphorus (P) and silica
(Si) were determined by Analytical Services Tasma-
nia, Department of Primary Industries, Parks, Water
and Environment,  Tasmanian Government. NOx and
P were analysed using APHA Standard methods
4500-NO3

−I and 4500-P G (2005), respectively, while
Si was analysed using the APHA Standard method
(2005) 4500-SiO2 F (Eaton et al. 2006). Detection lim-
its were 0.14 µM for NOx and P and 5.4 µM for Si.

Flow cytometry

Seawater samples for flow cytometry (FCM) were
filtered through 50 µm mesh and kept refrigerated in
the dark until analysed within 4 h. Samples for protist
and prokaryotic abundance were analysed using
FACScan and FACSCalibur (Becton Dickinson) flow
cytometers, respectively, both fitted with 488 nm
argon lasers. The sheath fluid used for protist analy-
ses was 0.22 µm filtered seawater, while MilliQ water
was used for prokaryotes. Samples were weighed to
±0.0001 g before and after each run to determine the
volume analysed, and cell abundance was calculated
using this volume and event counts from bivariate
scatter plots. PeakFlow Green 2.5 µm beads (Invitro-
gen) were added to all samples as an internal size
and fluorescent standard.

Pico- and nanophytoplankton

Fresh samples were housed in a beaker of ice while
analysed for 5 to 10 min at a flow rate of approxi-

mately 60 µl min−1. FCM phytoplankton populations
were discriminated into regions in bivariate scat -
ter plots of red chlorophyll autofluorescence (FL3)
 versus orange fluorescence (FL2). Populations were
grouped into regions and analysed for relative cell
size in bivariate scatter plots of side scatter (SSC) ver-
sus FL3 fluorescence, where a linear trend between
cell size and chlorophyll autofluorescence has been
previously demonstrated (Veldhuis et al. 1997).

HNF

LysoTracker Green (Invitrogen) is a weakly basic,
amine probe that fluorescently stains the acidic food
vacuole of marine heterotrophs (Johnson & Spence
2010). A working solution of LysoTracker Green was
prepared daily by diluting the commercial stock 1:10
with 0.22 µm-filtered seawater. Ten ml of seawater
from each treatment was stained with 7.5 µl of the
working solution to give a final stain concentration
of 75 nM and incubated in the dark and on ice for
10 min. Following incubation, a 1 ml sub-sample was
transferred to a sterile 5 ml Falcon tube and run
for up to 10 min at approximately 60 µl min−1. Lyso-
Tracker Green-stained HNF were discriminated from
phytoplankton and detrital particles in the se quence
of scatter plots shown in Fig. 1 as described by Rose
et al. (2004). Phytoplankton were identified based on
their high chlorophyll autofluorescence versus for-
ward scatter (Fig. 1a), and detrital particles were
identified by their relatively high SSC (Fig. 1b). The
2.5 µm beads (Fig. 1c) were used for size estimation
of the HNF after removal of the phytoplankton and
detrital particles (Fig. 1d). Abundances from this
technique have been found to be significantly and
positively correlated against HNF counts by the stan-
dard DAPI epifluorescent microscopy technique in
Antarctic waters by Thomson et al. (2010) and else-
where by Rose et al. (2004) and Sintes & Del Giorgio
(2010).

Flow cytometrically defined phytoplankton and
HNF populations

Up to 4 regions of phytoplankton were identified in
the bivariate scatter plots (Fig. 2a). Regions R1, R2
and R3 were evident in each experiment, while R4
was identified only in Expts 2 and 3. Cells of R1, R2
and R3 were characterised by low, moderate and
high red (FL3) chlorophyll autofluorescence and low
orange (FL2) autofluorescence. Cells of R4 were dis-

55



Mar Ecol Prog Ser 554: 51–69, 2016

tinguished by moderate to high red chlorophyll auto-
fluorescence and high orange autofluorescence, indi-
cating that these cells were cryptophytes containing
phycoerythrin. The lower sub-population in R4 most
likely comprises smaller cryptophytes or those with
lower chlorophyll autofluorescence. As the abun-
dance of this sub-population rarely exceeded 100 cells
ml−1 and was not always present, we did not separate
these cells from others in this region.

The relative size of cells in each region was also
estimated (Fig. 2b). Increasing chlorophyll autofluo-
rescence with SSC indicated that relative size in -
creased from the smallest in R1 through to the largest
cells in R3 and R4 (cryptophytes), which appeared
similar in size. Combined with the low chlorophyll

autofluorescence and the relatively low SSC of
cells of R1 compared to R2, it is likely that cells of
R1 were picophytoplankton. Cells of R2 appeared to
be smaller nanophytoplankton, as this region fell
between the relative size range of the picophyto-
plankton (R1) and the cryptophytes (R4) by FL3
 versus SSC. Cells of R3 were of equivalent size to
the cryptophytes and were assumed to be the larger
nanophytoplankton. Similar populations have re -
solved in other FCM studies in Antarctic and temper-
ate waters (Larsen et al. 2001, Paulino et al. 2008).
Populations of HNF stained with LysoTracker Green
were most clearly defined in Expt 1, possibly due
to high abundances of the choanoflagellate Bicosta
spinifera (Fig. 1d) (Davidson et al. 2016).

56

Phototrophs

100 101 102 103 104

Forward scatter

101

102

103

FL
3 

ch
lo

ro
p

hy
ll 

a 
au

to
flu

or
es

ce
nc

e

Detritus

100 101 102 103 104

Side scatter

100

101

102

103

104

FL
1 

Ly
so

Tr
ac

ke
r 

G
re

en

2.5 µm beads

100 101 102 103 104

FL1 LysoTracker Green

101

102

103

FL
3 

re
d

 a
ut

of
lu

or
es

ce
nc

e Heterotrophs

100 101 102 103 104

Forward scatter

100

101

102

103

104

FL
1 

Ly
so

Tr
ac

ke
r 

G
re

en

a) b)

c) d)

Fig. 1. Cytometric analysis of a LysoTracker Green-stained water sample for heterotrophic nanoflagellate abundance from
Expt 1. (a) Phytoplankton were distinguished from other particles by their high red chlorophyll autofluorescence. (b) Detrital
particles were identified based on their relatively high side scatter versus LysoTracker Green fluorescence. (c) Beads were
identified by their high green versus low red fluorescence. (d) Populations in plots (a) and (b) were removed from the
 LysoTracker Green fluorescence and forward scatter plot and the remaining particles larger than 2.5 µm were counted as 
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Prokaryotes

The abundance of prokaryotes was determined
from samples fixed to a final concentration of 0.5%
glutaraldehyde for 1 h and stained for 20 min with
1:10 000 final dilution of SYBR-Green I (Invitrogen)
(Marie et al. 2001). Samples were run for 3 min at a
flow rate of approximately 35 µl min−1. Total abun-
dance was determined from bivariate scatter plots of
SSC versus SYBR-Green I fluorescence (FL1).

Statistical analyses

Changes in community composition were analysed
using the statistical package PRIMER v6.1.14 and
PERMANOVA+ 1.0.4 (Clarke & Gorley 2006). Micro-
bial abundances were log10(x + 1) transformed and
treated using the Gower metric similarity coefficient
to give equal weighting among the microbes whose
abundance varied over several orders of magnitude
(e.g. prokaryotes and HNF).

Multi-dimensional scaling (MDS) plots were used
to visualise changes in community composition within
and among treatments over time (Clarke 1993). The
location of each sample in the MDS reflected its com-
munity composition, and the distance between points
indicated how similar (close) or different (far) the
samples or communities were to each other. The line
joining successive samples in each treatment shows

the trajectory of change in community composition
over time. Note that the fit of the ordination in a 2-
dimensional space was measured by a stress factor,
which in each experiment was ≤0.1. Stress values of
≤0.1 indicate a good ordination with little prospect
of a misleading interpretation (Clarke 1993).

Two-way crossed permutational ANOVA (PERM-
ANOVA, α = 0.05, 999 permutations) was used to test
for significant differences in community composition
among treatments. Finally, cluster analysis and the
similarity profile routine (SIMPROF, α = 0.05 and 999
permutations; Clarke et al. 2008) was used to detect
groups of samples that differed significantly. The dif-
ferent groups of samples obtained by SIMPROF were
superimposed on the MDS plots as dashed ovals.

RESULTS

Seawater temperatures and salinities

Ambient seawater temperature and salinity were
highest in Expt 1 at 1.63°C and 33.4 and decreased
with the successive experiments, reaching −0.26°C
and 33.1 in Expt 3 (Table 2). Mean water tempera-
tures among treatments over the experimental period
for each experiment were 1.54, 0.25 and −0.25°C,
respectively, and differed little from the ambient
temperatures at the time of collection. Salinity varied
by ≤0.3 during the experiments.
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Ambient CO2 and CO2 treatments

Ambient coastal seawater CO2 concentration at
time of collection was 102, 118 and 232 ppm, respec-
tively, for Expts 1, 2 and 3 (Table 1), equating to pH
8.6, 8.5 and 8.2. Such low ambient CO2 concentra-
tions due to biological draw-down have previously
been reported near Davis Station during summer
(Roden et al. 2013). Mean CO2 and pH for each treat-
ment in each experiment are given in Table 1. The
pH values for the highest CO2 treatments (≥4× CO2)
reached 7.4, 7.6 and 7.5 in Expts 1, 2 and 3, respec-
tively. Full data on the carbonate chemistry in each of
the treatments, including TA and TCO2, are available
in Table S1 in the Supplement at www.int-res.com/
articles/ suppl/ m554p051_supp.pdf. Volumes of CO2-
saturated seawater added to each treatment to main-
tain the CO2 target values throughout each experi-
ment are shown in Table S2.

With the exception of treatment 1.7× CO2 in Expt 1,
concentrations in treatments with <2× CO2 were rel-
atively stable throughout the incubations (Fig. 3a−c).
In contrast, fluctuations in CO2 generally increased
in magnitude with increasing CO2 concentrations.
This was particularly evident in Expt 1 between Days
4 and 6, when rates of CO2 draw-down were high as
chl a increased rapidly (see below).

Fluctuations in CO2 concentrations were evident in
most treatments in each experiment. Increases repre-
sented CO2 addition to maintain target values, while
decreases represented biological draw-down by
phyto plankton and loss of CO2 to an increasing vol-
ume of headspace in the tanks as the total seawater
volume in each tank declined due to the removal of
samples over time.

Chl a

Chl a increased to 5.6 and 6.4 µg l−1 in Expts 1 and
3, but in Expt 2 it remained relatively constant

between 1 and 2 µg l−1 (Fig. 3d−f). In Expt 1, rapid
increases in chl a were evident in all treatments,
although concentrations in the 0.2× and 1.7× treat-
ments were consistently highest to Day 8 (Fig. 3d).
Apparent growth rates of chl a in the 0.2×, 1.7× and
3.3× CO2 treatments were 0.38, 0.32 and 0.33 d−1,
respectively, but were lower (~0.24 d−1) in treatments
≥4.8× CO2. In Expt 3, chl a reached maximum
 concentrations by Days 4 or 6 and then declined by
Day 10 (Fig. 3f). With the exception of the higher
chl a concentrations in the lower CO2 treatments in
Expt 1, there was little discernible response of chl a
to increasing CO2. In Expt 3, apparent chl a growth
rates to Day 6 were 0.12, 0.11 and 0.21 d−1 in the 0.6×,
1.2× and the 2.2× treatments, respectively, and con-
sistently higher over the 10 d of incubation than those
in treatments ≥3.8× CO2 (~0.7 d−1).

Nutrients

Despite filling the tanks simultaneously, nutrient
concentrations sampled on Day 0 were variable, par-
ticularly in Expt 1 (Fig. 4). While the initial varia -
tion in nutrient concentrations could indicate that we
sampled different water bodies while filling the
tanks, coincident measurements of chl a and micro-
bial abundance showed very little variability. Fur-
thermore, microbial communities on Day 0 in each
experiment showed no statistical difference in com-
position (see below). Instead, it is likely that the dif-
ferences in nutrient concentrations were due to sam-
pling low levels of suspended sediment in the tanks
that had not settled and/or contamination during the
sampling process. For example, the elevated nutrient
concentrations in Expt 1 on Day 6 may be due to con-
tamination, either of the nutrient samples themselves
or of the CO2 saturated seawater that was added to
the minicosms to maintain the target CO2 concentra-
tions. While we concede that some of our nutrient
data are not robust, the data do provide valuable
information regarding the draw-down of nutrients
and the time at which they became exhausted.

Expt 1

Nutrient concentrations were generally highest
in Expt 1, with concentrations of NOx and P of at
least 4.43 and 0.58 µM, respectively, on Day 0
(Fig. 4a,b). Both decreased with time to concen -
trations at or below detection levels (0.14 µM) by
Day 10. There were no clear patterns among treat-
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Expt Ambient Ambient Mean (SD) Mean (SD) 
temp. (°C) salinity experimental experimental 

temp. (°C) salinity

1 1.63 33.4 1.54 (0.24) 33.7 (0.01)
2 0.24 32.9 0.25 (0.11) 33.0 (0.26)
3 −0.26  33.1 −0.25 (0.07)  33.4 (0.03)

Table 2. Ambient seawater temperatures and salinities at
the time of water collection for incubations and mean ex -
perimental seawater temperatures and salinities for the 

3 experiments

http://www.int-res.com/articles/suppl/m554p051_supp.pdf
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ments, although from Day 6 onwards, concentra-
tions of NOx and P were lowest in the 0.2× and
1.7× treatments.

Expt 2

Concentrations of NOx and P were persistently low
in this experiment (Fig. 4d,e). NOx concentrations on
Day 0 were detectable only in the 1.1×, 2.9× and 4.0×
treatments at ≤0.43 µM and thereafter remained at
or below the level of detection for all treatments.
Concentrations of P were similarly low on Day 0
(≤0.29 µM) and with the exception of the 1.1× treat-
ment were undetectable from Day 2.

Expt 3

Concentrations of NOx and P on Day 0 were con-
siderably higher than those at the start of Expt 2
(Fig. 4g,h), indicating that either a different water
mass had been advected to the collection point (see
temperature and salinity differences in Table 2) or
that the coastal water had experienced some nutrient
regeneration between experiments. However, NOx
concentrations were quickly depleted and were gen-
erally below detection levels by Day 6. Concentra-
tions of P declined more slowly throughout the incu-
bation but were generally depleted by Day 8.

Si concentrations were variable throughout each ex -
periment, ranging between 32 and 107 µM (Fig. 4c,f,i).
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Fig. 3. (a−c) CO2 and (d−f) chlorophyll a concentrations in each treatment in each experiment. Treatments are defined as mean
CO2 concentrations over each experiment and, in brackets, mean concentration expressed as multiples of the December 2008 

atmospheric CO2 concentration of 385.54 ppm (measured at Mauna Loa Observatory, http://co2now.org/)
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Only Expts 1 and 2 showed weak patterns of Si draw-
down over time and were at no stage limiting to
diatom growth.

Compared to another study at Davis Station at a
nearby coastal site over summer, our initial NOx and
P concentrations were low (cf. Gibson et al. 1997).
Gibson et al. (1997) found NOx concentrations for
December, January and February at approximately
20, 5 and 5 µM, and P concentrations of 1.5, 0.6 and
1.0 µM, respectively. Si concentrations were similar
in both studies.

Effects of increasing CO2 on marine microbes

Picophytoplankton

Picophytoplankton abundance was consistently
greatest in high CO2 treatments in each experiment
while abundances in treatments ≤1.7× CO2 in each
experiment were consistently low (Fig. 5a−c). At 
≈2× CO2 in each experiment, abundances only
slightly exceeded those of the lower treatments and
generally followed the same pattern of growth. In
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Fig. 4. Nutrient concentrations within each CO2 treatment throughout each experiment: (a,d,g) nitrate and nitrite (NOx), (b,e,h)
phosphorus and (c,f,i) silica. Treatments are as defined in Fig. 3
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contrast, the picophytoplankton were most abundant
in the treatments ≥3× CO2, where increases were
evident to at least Day 4. Picophytoplankton in the
highest treatment in Expt 1 were the exception,
where abundances increased to Day 10.

Nanophytoplankton

Nanophytoplankton in R2 and R3 responded sim-
ilarly to increasing CO2, and their abundances
were pooled. Overall, the effects on nanophyto-
plankton varied and were frequently unrelated to

the CO2 concentration (Fig. 5d−f). In Expt 1, abun-
dances were commonly greatest in the 5.0× and
6.3× CO2 treatments. Abundances in treatments
exposed to ≤4.8× CO2 remained low. In Expt 2, the
abundance in all treatments peaked on Day 10,
although this peak was highest in the 2× and 4×
CO2 treatments. Conversely, in Expt 3, nano -
phytoplankton abundance was highest in the lower
treatments (≤1.2× CO2) on Days 4 and 6, but pro-
gressively declined in CO2 treatments >2.2× CO2.
Cryptophyte abundance was consistently low in
Expts 2 and 3 (generally <1000 cells ml−1, see
Table S3 in the Supplement), showed no definitive
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Fig. 5. Microbial abundance in the CO2 treatments in each experiment, based on flow cytometry counts: (a−c) picophytoplank-
ton, (d−f) nanophytoplankton, (g−i) heterotrophic nanoflagellates (HNF) and (j−l) prokaryotes in Expts 1, 2 and 3. Treatments 

are as defined in Fig. 3



Mar Ecol Prog Ser 554: 51–69, 2016

response to increasing CO2 and are not considered
further.

HNF

HNF abundance was highest in the lower CO2

treatments (<2× CO2) and decreased with increasing
CO2 on most days in all experiments (Fig. 5g−i). In
Expts 1 and 2, HNF abundance in treatments ≤1.7
CO2 peaked quickly by Day 4, reaching approxi-
mately 1700 cells ml−1, thereafter declining to the end
of the experiments. In Expt 3, abundance in treat-
ments ≤1.2× CO2 remained relatively low until Day 4,
then increased quickly to reach at least 2000 cells
ml−1 by Day 8. In contrast, HNF abundances in >2×
CO2 treatments were <1000 cells ml−1 and only
increased slightly between Days 4 and 6, after which
their numbers plateaued.

Prokaryotes

Like the picophytoplankton, prokaryotic abun-
dances were consistently highest in treatments ≥2×
CO2 in all 3 experiments (Fig. 5j−l). Their abun-
dances increased during the first 2 to 4 d of incuba-
tion, and then gradually declined. Prokaryotic abun-
dance was lowest in Expt 1, highest in Expt 2 and
moderate in Expt 3. In the first experiment, abun-
dances in treatments ≥3.3× CO2 at least doubled to
around 1.0 × 106 cells−1 ml−1 by Day 2 before decreas-
ing over time. In Expt 2, abundances in the >2× CO2

treatments increased rapidly in concentration to
between 2.5 and 3.0 × 106 cells−1 ml−1 by Day 4.
In Expt 3, increases in abundance over the first 2 to
4 d were low, with the highest abundance (~1.7 ×
106 cells−1 ml−1) in the highest CO2 treatments.

Community-level responses

The effects we observed appeared independent of
initial starting community type and nutrient avail-
ability. Expt 1 appeared to be a bloom-type commu-
nity, as evidenced by rapidly increasing chl a concen-
trations and the rapid draw-down of nutrients. The
community in Expt 2 appeared to be post bloom, with
limiting nutrients throughout and low chl a concen-
trations. In the third experiment, the high initial
prokaryotic concentration and moderate chl a and
nutrient concentrations indicated that this was a
community regenerating from recycled nutrients.

The relative abundance of microbes suggests pos-
sible community-level interactions. In particular, the
lower numbers of HNF under higher CO2 concentra-
tions coincided with an increase in picophytoplank-
ton and prokaryotic abundance. This was reflected in
the trajectories of the treatments over time and their
separation from each other (Fig. 6).

Overall, PERMANOVA showed significant differ-
ences among treatments in each experiment, and
SIMPROF showed that the low CO2 treatments (<2×
CO2) differed significantly from those at higher CO2

(Fig. 6a−c and Figs. S1−S3 in the Supplement). There
was no significant difference in community composi-
tion between treatments on Day 0 in any of the
experiments (Figs. S1−S3).

Expt 1

PERMANOVA revealed a highly significant differ-
ence between the treatments with increasing CO2

concentration and time (Treatment: pseudo-F5,4 =
6.881, p = 0.002; Day: pseudo-F4,5 = 23.419, p =
0.001), and SIMPROF demonstrated that this differ-
ence occurred between treatments exposed to ≤1.7×
CO2 and all higher CO2 treatments (Fig. S1). Trajec-
tories of the 0.2× and 1.7× CO2 treatments advanced
principally along Axis 1, and SIMPROF demon-
strated that they were similar to each other through-
out the experiment, with their community composi-
tion changing significantly between Days 0 and 2
and Days 2 and 4 but not changing markedly there-
after (Fig. 6a). In contrast, the trajectories of all
higher treatments (≥3.3× CO2) initially progressed
along Axis 2, and these communities consistently dif-
fered in composition from those of the lower treat-
ments after Day 0 (Fig. 6a). These communities were
generally similar to each other and, though occasion-
ally differing among times and treatments, culmi-
nated in a similar community after 6 and 8 d of incu-
bation. The exception was the 6.3× CO2 treatment.

Expt 2

PERMONVA results confirmed significant differ-
ences between the treatments (Treatment: pseudo-
F5,5 = 10.418, p = 0.001; Day: pseudo-F5,5 = 27.440, p =
0.001). The trajectories of the communities over time
and the grouping of samples in SIMPROF again
showed significant differences in the composition of
communities exposed to low (≤2.0× CO2) and high
(≥2.9× CO2; Fig. 6b, Fig. S2). Trajectories of the 3 low
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treatments progressed predominately along Axis 1,
and SIMPROF results showed that these communi-
ties were generally similar in composition through out
the experiment, with the exception of the 2.0× CO2

treatment on Days 2 and 10. Communities exposed to
high CO2 evolved principally along Axis 2, and their
community composition was seldom different. How-
ever, these communities were clearly separated on
all days and significantly differed from treatments
exposed to ≤2.0× CO2.

Expt 3

PERMANOVA results again indicated a highly sig-
nificant difference in the response of microbes to in-
creasing CO2 and time (Treatment: pseudo-F5,4 =
4.293, p = 0.002; Day: pseudo-F4,5 = 76.156, p = 0.001).
Unlike previous experiments, however, trajectories
were generally similar but progressively changed
along Axis 2 with increasing CO2 con centrations and
time (Fig. 6c). In this experiment, community compo-
sition was similar in all treatments until Day 4, when
SIMPROF results identified significant differences in
community composition between treatments ≤1.2×
and those ≥3.2× CO2 (Fig. S3). The 2.2× CO2 commu-
nity appeared as an inter mediary, similar in composi-
tion to lower treatments on Day 6 but to the higher
concentrations on other days (Days 4 and 8).

DISCUSSION

Our study describes the first minicosm-scale (650 l)
ocean acidification experiments on marine microbial
communities in Antarctic coastal waters. Other Ant -
arctic studies have investigated the effects of ele-
vated CO2, although they used either small volumes
(≤4 l) or continuous/semi-continuous batch incuba-
tions and reported only on the effects on phytoplank-
ton or sea-ice algae (Tortell et al. 2008, 2010, Feng et
al. 2010, Torstensson et al. 2012, McMinn et al. 2014).
In the Arctic, larger-volume mesocosm studies have
been performed with replicated treatments and macro-
nutrient addition to stimulate microbial growth (Riebe -
sell et al. 2008). We deliberately avoided macronutri-
ent addition to allow us to determine the changing
sensitivity of the microbial community over summer,
including the effects of the draw-down and reminer-
alisation of nutrients. In addition, we did not replicate
our CO2 treatments; instead, we opted for a larger
range of CO2 concentrations to increase the inferen-
tial power of our experiments and our ability to iden-
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Fig. 6. Multidimensional scaling (MDS) plots mapping tra-
jectories of change in communities of each CO2 treatment in
(a) Expt 1, (b) Expt 2 and (c) Expt 3. Trajectories extend from
Day 0 to the day of maximum abundance of pico- and nano -
phytoplankton (Days 8, 10 and 8 for Expts 1, 2 and 3, respec-
tively). Treatments are as defined in Fig. 3. The  microbial
communities of samples contained within a dashed oval do
not differ significantly from each other but do differ from all
other samples (SIMPROF, see Figs. S1−S3 in the Supplement 
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tify ‘tipping points’ in the microbial communities
(Riebesell et al. 2010). In each experiment, we found
that picophytoplankton and prokaryotic abundances
in creased at higher CO2 concentrations and that this
coincided with the inhibition of HNF abundance at
CO2 ≥ 750 ppm. This result may reflect a reduction in
the top-down control of the picophytoplankton and
prokaryotes by HNF grazing.

We cannot discount that containment effects may
have at least partially influenced our results, as they
have in other mesocosm studies (Monier et al. 2014,
Maugendre et al. 2015), despite our use of high vol-
ume tanks to minimise these effects. Typically, con-
tainment effects may include deviations of the in -
cubated community from the natural community,
reduced physical turbulence and wall effects (San-
ford et al. 2001, Kim et al. 2008). Unfortunately, how-
ever, we lack replicates and samples that were not
containerised to test these effects.

HNF

We are uncertain why higher CO2 levels may have
inhibited HNF. Invertebrate sperm can have reduced
motility at approximately 1000 ppm CO2, possibly
resulting from the acidification of internal fluids and
changes in ion balances, a decreased trans-mem-
brane pH gradient and/or a reversal of motility acti-
vation signals in acidified water (Havenhand &
Schlegel 2009, Morita et al. 2010). Modelling of near-
organism H+ concentrations over a range of CO2 con-
centrations shows that small cells (<5 µm), such as
HNF, will experience higher concentrations of H+ in
their thin boundary layers than larger cells in the
same medium (Flynn et al. 2012). Thus, small HNF
could be affected in similar ways to invertebrate
sperm by increased acidity levels and perhaps are
more vulnerable than the larger protozooplankton.
However, the mechanism(s) leading to the inhibition
of HNF abundance remain unknown, and future
work is required to understand these effects on the
physiology of small heterotrophic cells.

The inhibition of HNF abundance at CO2 concen-
trations exceeding 750 ppm coincided with elevated
abundances of picophytoplankton and prokaryotes.
The HNF size spectrum overlaps that of their prey,
and they can ingest up to 48% of daily phytoplankton
production in the marginal ice zone (Becquevort
1997, Froneman 2004, Garzio et al. 2013). Nanopro-
tozoa are also well known bacterivores and can con-
sume between 27 and 100% of bacterial production
(Christaki et al. 2008, Pearce et al. 2010, Garzio et

al. 2013). Thus, we suggest that the CO2-induced
inhibition of HNF at CO2 concentrations ≥750 ppm
released their prey from top-down control, resulting
in the increased abundance of picophytoplankton
and prokaryotes.

We are aware of no other studies showing in -
hibitory effects of increasing CO2 on HNF abun-
dance. All tanks were filled simultaneously and
received the same physical and chemical conditions
(other than CO2), excluding such variations as an
explanation for the lower HNF abundance. Nutrient
concentrations were initially variable in Expts 1 and
3 but were not limiting to phytoplankton growth. Fur-
thermore, SIMPROF results confirmed that there was
no significance difference in community composition
between the treatments on Day 0 in each experi-
ment. Thus, differences in HNF abundance were not
due to differences in initial microbial communities
among minicosms at the start of the experiment. The
greater variability of CO2 concentrations in the
higher treatments due to the lower buffering capac-
ity of seawater at these levels may have somehow
contributed to HNF inhibition. It is unknown, how-
ever, whether or how these fluctuations may affect
HNF.

It is possible that our results were influenced by
indirect effects of increasing CO2 on other microbes
and zooplankton that we did not measure. Viruses
can control both bacterial and phytoplankton abun-
dance through infection and cell lysis (Brussaard et
al. 2013), and different viral classes may either be
reduced in abundance or unaffected by increasing
CO2 (Larsen et al. 2001). Thus it is possible that
the increased abundance of picophytoplankton and
prokaryotes was due to a reduction in viral infection
of these groups rather than a release from grazing
pressure. Viral lysis may also have inhibited HNF
abundance, although we are aware of no studies on
viral infection of HNF.

We also have not accounted for the possible graz-
ing by micro- and metazooplankton (20−200 and
>200 µm, respectively) on HNF, picophytoplankton
and prokaryotes. Microzooplankton (mainly dinofla-
gellates and ciliates) were observed in our experi-
ments but did not differ significantly in concentration
among treatments at ≤6 d incubation, and at no stage
did they differ systematically in abundance with CO2

(Davidson et al. 2016). Thus the microzooplankton
are unlikely to be responsible for higher grazing mor-
tality of HNF at high CO2. The 200 µm mesh used to
filter our seawater possibly allowed ingress of meta-
zooplankton including small copepods and/or their
nauplii that may also have affected abundances
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through grazing. However, no metazooplankton
were observed despite extensive micro scopy of the
minicosm samples. In addition, the consistency of our
results over 3 experiments supports our conclusion
that increasing CO2 appeared to directly affect HNF
abundance.

To our knowledge, no other study has found dele-
terious effects of increasing CO2 concentration on
HNF. The only research on protozoans we are aware
of shows similar results to ours; proto- and microzoo-
plankton are unaffected by increasing CO2 concen-
trations up to 750–1000 ppm in Norwegian and
North Atlantic waters (Suffrian et al. 2008, Rose et al.
2009, Aberle et al. 2013). Clearly, further studies are
required to understand the effects of increasing CO2

concentrations on protozoans.

Picophytoplankton

Other studies have also reported increased pico-
phytoplankton abundance at CO2 concentrations
≥700 ppm (Engel et al. 2008, Paulino et al. 2008,
Meakin & Wyman 2011, Brussaard et al. 2013).
Although they did not count HNF or measure grazing
mortality, reduced grazing pressure was considered
a possible explanation. Similarly to these studies,
however, we cannot discount alternate hypotheses
that include a complex interaction at the community
level, including not only grazing and viral lysis (see
above) but also size-dependent effects on nutrient
and CO2 uptake (Engel et al. 2008, Paulino et al.
2008, Meakin & Wyman 2011).

Nutrient concentrations appeared to have little
effect on picophytoplankton growth and abundance.
The large surface area to volume ratio of the pico-
phytoplankton may have allowed them to effectively
scavenge for macronutrients (Calder 2001) and con-
tinue multiplying. Furthermore, the picophytoplank-
ton may also have effectively scavenged for Fe, the
bioavailability of which can reportedly be reduced
under increasing CO2 (Shi et al. 2010). Finally, their
small size and thin boundary layer (see above) may
have been valuable in the higher CO2 treatments in
allowing concentrated CO2 to accumulate close to
the cell wall, benefiting the picophytoplankton via a
ready supply of CO2 and reduced metabolic energy
in the production of carbon concentrating mecha-
nisms (Raven et al. 2012). Overall, it is possible that
reduced grazing pressure, the ability of smaller cells
to compete for limited nutrients and access to plenti-
ful CO2 all contributed to their increased abundance
at higher CO2.

Nanophytoplankton

Like other studies, we found that the effects of
increasing CO2 on nanophytoplankton were less
clear (Engel et al. 2008, Brussaard et al. 2013);
nanophytoplankton were either unaffected by in -
creasing CO2 or showed inconclusive results (Expts 1
and 2). Only in Expt 3 did there appear to be an
adverse effect of increasing CO2, where nanophyto-
plankton were most abundant at lower CO2 concen-
trations.

Prokaryotes

Our results indicate that prokaryotic abundances
in Antarctic coastal waters may be enhanced at CO2

concentrations ≥750 ppm, possibly reflecting re -
duced top-down control by CO2-inhibited HNF.
Alternatively, like the picophytoplankton, we cannot
discount that the increased abundance of prokary-
otes did not result from reduced viral lysis as a result
of inhibited viral abundance at higher CO2 (see
above). Additionally, the increase in their abundance
may result from a CO2-related increased availability
of dissolved organic carbon, a prokaryotic growth
substrate. How ever, it is currently unclear how con-
centrations of dissolved organic carbon are affected
by increasing CO2 (Ray et al. 2012, MacGilchrist et
al. 2014).

Our findings contrast with large-scale mesocosm
studies that found no significant effect of increasing
CO2 on bacterial concentrations (Grossart et al. 2006,
Allgaier et al. 2008, Newbold et al. 2012, Roy et al.
2013), despite findings that bacterial production
and enzymatic rates are elevated at higher CO2 con-
centrations (Grossart et al. 2006, Piontek et al. 2010).
Differences in methodology may partially explain the
contrasting results, where the mesocosm studies
attained the CO2 targets by bubbling seawater with
CO2 gas prior to the experiment. Seawater bubbling
can strip communities of small fragile cells such as
HNF and cause surface coagulation of organic matter
(Engel et al. 2008). To our knowledge, only one other
study has found higher prokaryotic abundances
under en hanced CO2. In that experiment, CO2-satu-
rated seawater was added gently using a ‘spider’ that
injected and distributed the saturated water over
depth during a Norwegian Fjord experiment (Riebe-
sell et al. 2013, Endres et al. 2014). Thus, bubbling
may adversely affect fragile HNF cells and growth
substances across all treatments, resulting in a lack
of discernible CO2 effect on prokaryotic abundance.
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Additionally, the mesocosm studies added macro -
nutrients to stimulate phytoplankton blooms which
can alter natural community composition and be -
come the primary driver of community change in the
mesocosms (Roy et al. 2013), masking the effects of
increasing CO2 on microbial communities (Riebesell
et al. 2008). The Norwegian Fjord experiment show-
ing enhanced bacterial abundance under higher
pCO2 further illustrates this effect over a 30 d incuba-
tion (Endres et al. 2014). In that experiment, nutrients
were added after 13 d. Until this point, bacterial
abundances had been increasing in all CO2 treat-
ments but at the greatest rate in the highest treat-
ments. Following nutrient addition, bacterial abun-
dance fell in the highest treatment as chl a con -
centrations increased dramatically. Bacterial abun-
dances increased later to again show a CO2 effect,
but clearly, nutrient addition changed the dynamics
of the microbes. Thus, nutrient addition appears to
change the dynamics of the communities and may
account for the contrast between our findings and
those of previous studies.

Effects of increasing CO2 on marine microbial
communities

The community-level responses we observed were
only evident from concentrations exceeding 750 ppm.
Coastal environments undergo large pH fluctuations
due to the input of snow and ice melt, and biological
production and respiration (McNeil et al. 2011, Shad-
wick et al. 2013). At Davis Station, CO2 can range
between 100 and 420 ppm from mid-winter to late
summer (Roden et al. 2013). Thus, coastal marine
microbial populations appear to be already adapted
to large variations in CO2 and pH, which may par-
tially explain the tolerance of the coastal microbes
we measured to 750 ppm CO2.

Our results indicate that increasing CO2 concentra-
tions may result in a change in the community compo-
sition and size structure of Antarctic coastal marine
microbes. While we found that picophytoplankton
abundance increased with CO2, Davidson et al. (2016)
found that in Expt 1, the abundance of larger phyto-
plankton decreased with CO2 concentrations, particu-
larly from 750 ppm. This change in size structure and
species composition during a summer bloom commu-
nity could have dire consequences for the Antarctic
marine food web. For instance, blooms of large di-
atoms that drive Antarctic summer biological produc-
tion may be susceptible under future CO2 conditions
predicted for the year 2100. Subsequently, higher

trophic level animals may suffer from reduced food
quality, quantity and size and key species in the food
chain such as krill may have difficulty in harvesting
cells <10 µm diameter (McClatchie & Boyd 1983). Fur-
thermore, an increasing abundance of small, slow-
sinking phytoplankton, together with in creased bac-
terial abundance, would favour respiration of
sequestered carbon in near-surface waters rather than
sinking to depth, thereby reducing export efficiency.

Our study would have benefited from a range of
rate measurements, particularly on the assessment
of grazing rates. Microbial abundance reflects the
dynamic equilibrium between growth and mortality.
Inclusion of measurements of the size preference and
rates of mortality due to grazing may have yielded
further insights into the community responses we
observed. In our experiments, the critical time points
that influenced community composition occurred
early in the incubations (≤6 d incubation). Thus, for
future studies we recommend the incorporation of
grazing dilution experiments timed to occur in the
early stages of incubation.

Overall, results from our study suggest that in -
creasing CO2 may potentially result in changes in
community composition of coastal Antarctic marine
microbes. However, fully appreciating the impact of
such changes will also require understanding other
factors. For example, understanding the evolutionary
potential of marine microbes to adapt to change will
be critical to predicting the future effects of ocean
acidification (Sunday et al. 2011), particularly as
some species of microbes appear to be able to adapt
to gradual changes in CO2 concentrations over hun-
dreds of generations (Langer et al. 2006, Lohbeck et
al. 2012). Furthermore, understanding how ocean
acidification affects metazooplankton will be crucial
in determining overall effects on the Antarctic food
chain. Other simultaneous stressors such as increas-
ing seawater temperatures will act in synergy to
affect marine microbes (Harvey et al. 2013). Future
Antarctic studies should attempt to determine time
scales of adaptability of species and to assess the
combined effects of increasing CO2 (ocean acidifica-
tion), seawater temperature and other co-stressors
(Boyd et al. 2008, Riebesell & Gattuso 2015).
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