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Abstract The lexical-decision task is among the most
commonly used paradigms in psycholinguistics. In both
the signal-detection theory and Diffusion Decision Model
(DDM; Ratcliff, Gomez, &McKoon, Psychological Review,
111, 159–182, 2004) frameworks, lexical-decisions are
based on a continuous source of word-likeness evidence
for both words and non-words. The Retrieving Effec-
tively from Memory model of Lexical-Decision (REM–LD;
Wagenmakers et al., Cognitive Psychology, 48(3), 332–367,
2004) provides a comprehensive explanation of lexical-
decision data and makes the prediction that word-likeness
evidence is more variable for words than non-words and that
higher frequency words are more variable than lower fre-
quency words. To test these predictions, we analyzed five
lexical-decision data sets with the DDM. For all data sets,
drift-rate variability changed across word frequency and
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non-word conditions. For the most part, REM–LD’s pre-
dictions about the ordering of evidence variability across
stimuli in the lexical-decision task were confirmed.

Keywords Lexical-decision task · Diffusion decision
model · REM-LD

The lexical-decision task involves identifying letter strings
as words or non-words. It has been used extensively in
psycholinguistic research to develop cognitive models of
reading (e.g., Grainger & Jacobs, 1996; Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001; Norris, 2006). Decisions
in the lexical-decision task are typically understood using
signal-detection theory (SDT, e.g., Norris, 1986; Balota &
Chumbley 1984). In SDT, both words and non-words are
assumed to have normally distributed evidence of word-
likeness, with observers using a criterion on the evidence
axis as a basis for their decision. For example, in the
familiarity-recheck model (Balota & Chumbley, 1984),
word and non-word stimuli have word-likeness values that
represent the familiarity and meaning of letter strings. To
make a decision, the observer sets decision criteria along
the evidence axis, where word-likeness values lower than
the lower criterion result in a non-word response and values
higher than the upper criterion result in a word response.

Words of higher natural language frequency are more
accurately discriminated and are responded to faster than
words of lower frequency. In SDT, this effect occurs because
high-frequency (HF) words have a higher mean on the
evidence axis than low-frequency (LF) words and non-
words. SDT modeling of choice proportions support the
assumption that all evidence distributions have equal vari-
ance (Jacobs, Graf, & Kinder, 2003; Brown & Steyvers,
2005). However, consideration of response times (RTs) in
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addition to choice often yields different conclusions than
choice alone (Ratcliff & Starns, 2009), and some work
using the Diffusion Decision Model (DDM; Ratcliff, 1978)
— a process model that can account for both RTs and
accuracy — has suggested higher variability for words
than non-words (Dutilh, Vandekerckhove, Tuerlinckx, &
Wagenmakers, 2009; Dutilh, Krypotos, & Wagenmakers,
2011; Dutilh et al., 2012).

In this article, we test the equal evidence variabil-
ity assumption and demonstrate that our results can be
explained by a computational model of lexical retrieval,
the Retrieving Effectively from Memory model of Lexical-
Decision (REM–LD; Wagenmakers et al., 2004). REM–LD
is based on the REM architecture (Shiffrin & Steyvers,
1997), which provides a comprehensive explanation of
human memory, accounting for episodic recognition, cued
and free recall, perceptual identification, and long-term and
short-term priming (Shiffrin, 2003). It provides a detailed
account of lexical decision data in “time-controlled” tasks,
where participants must respond at a deadline specified
by the experimenter. Specifically, the model accounts for
word frequency, non-word lexicality, repetition priming,
the interaction between these effects, and many other typi-
cal findings in the lexical-decision task (see Wagenmakers
et al., 2004).

We show that REM–LD predicts that evidence-strength
variability differs across stimulus classes, and in particular
that variability is highest in HF words, then LF words, then
non-words. We use fits of the DDM model to data from
“information-controlled” tasks, where responding is under
the participant’s control, to test these predictions. In what
follows, we describe the REM–LDmodel and obtain predic-
tions about evidence variability. We then describe the DDM
model of lexical decision and discuss how it can be used
to perform a strong inferential test (Platt, 1964) of REM–
LD’s predictions about the ordering of variability across
item types.

Retrieving effectively from memory – lexical
decision

In REM–LD, lexical representations for words are vectors
of features, which encode semantic, phonemic, and ortho-
graphic information about the words that are experienced.
During a lexical-decision task the features of the probe are
matched in parallel to features of lexical traces in mem-
ory. As the probe is perceived for longer, more features are
sampled in the probe vector to cue lexical memory. Not hav-
ing all features available for the matching process results
in the existence of mismatching features as well as match-
ing features, even when the probe is the same as the trace.

The probe is matched against each trace in lexical mem-
ory and a ratio is calculated reflecting the relative likelihood
that the trace is the probe or not. These likelihood ratios
are then averaged over all lexical traces, yielding a posterior
odds ratio that the probe is present in lexical memory. For
non-words, none of the traces yield a strong match to the
probe vector, resulting in a low posterior odds of respond-
ing word. The trace corresponding to the probe vector yields
a strong match, which increases the posterior odds of a
word response. Each time a word is encountered in natu-
ral language more features of the probe are encoded to the
corresponding lexical trace. A discrimination advantage for
higher over lower frequency words occurs because higher
frequency lexical traces have more features that can match
the probe.

Over many trials, the model computes a posterior odds
ratio distribution of responding word. The logarithm of
these distributions (the log-odds distribution) are normally
distributed and are analogous to SDT evidence distributions.
For non-words, the variance of the log-odds distribution
decreases as the evidence mean increases, so random-letter
(RL) strings, which have a lower mean, will have higher
evidence variability than pseudo-words (PW), which have
a higher mean. For words, on the other hand, the strong
match between the probe and one of the lexical traces
skews the log-odds distribution, increasing the variability
of the distribution relative to the non-word distribution.
Because HF words produce a stronger match, this results
in a greater skew and hence larger variability relative to
LF words. Overall, REM–LD generally predicts lower vari-
ability with a larger evidence mean for non-word stimuli
and higher variability with a larger evidence mean for word
stimuli.

We used the equations fromWagenmakers et al. (2004) to
derive deadline predictions of REM–LD about the log-odds
distributions of the stimulus classes used in Ratcliff et al.
(2004) and Wagenmakers, Ratcliff, Gomez, and McKoon
(2008). These classes include words of HF, LF, and very-
low-frequency (VLF), along with two types of non-words,
PW and RL strings. The parameter settings of the model
were based on Wagenmakers et al. (2008) (for details see
Supplementary Materials: https://osf.io/9ngaw).

The mean (top left panel) and standard deviation (SD;
top right panel) of the log-odds distributions are plotted in
Fig. 1. We allowed the REM–LD model to respond at 4 dif-
ferent times (i.e., deadlines), which represent how long the
system has been processing the stimulus before it responds.
For all deadlines greater than 250ms, which was the start-
ing point for the decision process, the SD is largest for
HF, followed by LF, RL, VLF, and finally PW stimuli.
To empirically test REM–LD’s predictions we turn to the
DDM.

https://osf.io/9ngaw
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Fig. 1 The top row plots the mean (top left panel) and SD (top right
panel) of the log-posterior-odds-ratio distributions from the REM–
LD model at four different deadlines (250 ms, 500 ms, 750 ms,
100 0ms). HF = high-frequency, LF = low-frequency, VLF = very-
low-frequency, and PW = pseudo-word, and RL = random letter
strings. The minimum processing time was 250 ms, and the rate
of increase in probability of activation was .0025. The probability
of a feature match when encoding the same item was HF = .85,
LF = .75, and VLF = .65. The probability of a feature match when
encoding a different item was PW = .5, and RL = .35. The bottom
row plots the drift-rate mean (v, bottom left panel) and SD (η, bottom

right panel) group-level mean posterior distributions from DDM fits to
the five lexical-decision experiments. For visualization purposes, the
distributions for each stimulus class are the concatenation of the poste-
rior distributions across all 5 experiments. The posterior distributions
are displayed as violin plots, which show the median of the posterior
(black dot) and a rotated kernel density mirrored on either side. The
violin plots are truncated to contain the 95% highest density interval.
The stimulus class labels along the x-axis are ordered from left-right
in the same order as REM–LD’s predicted ordering from highest to
lowest

The diffusion decision model

Simple elaborations of SDT (e.g., Balota & Spieler 1999)
do not correctly predict the shapes of RT distributions (Yap,
Balota, Cortese, & Watson, 2006) in an information con-
trolled lexical-decision task. For this reason, researchers
have used the DDM (Ratcliff et al., 2004) an evidence accu-
mulation model that can account for both choice proportion
and RTs in information-controlled responding.

In the DDM, decisions between two alternatives are
based on the accumulation of evidence from a stimulus until
one of two decision boundaries is reached. Evidence begins
to accumulate at the starting point z, which is sampled from
a uniform distribution with width sz. Evidence accumulation
is noisy within a trial, and has a mean rate, the “drift-
rate”, that is sampled from a normal distribution with mean
v and standard deviation η on each trial. Ratcliff (1978)

introduced inter-trial drift-rate variability to model item dif-
ferences in a recognition-memory task and this variability
is analogous to the continuously distributed variability of
evidence in SDT (Ratcliff, 1978, 1985).

Evidence accumulates until it hits either an upper bound-
ary (a, corresponding to a ‘word’ response) or a lower
boundary (0, corresponding to a ‘nonword’ response). The
boundary that is reached first determines the decision, and
the time taken to reach the boundary is the decision time.
Non-decision time, Ter , which quantifies the time taken to
encode stimuli and execute a motor response, is estimated as
the remainder of each RT. Non-decision time is assumed to
have a uniform distribution with range st . Figure 2 illustrates
the DDM account of lexical-decision.

Using the DDM, Ratcliff et al. (2004) modeled the
effects of different stimulus classes in the lexical-decision
task using differences in mean drift-rate alone. Higher
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Fig. 2 DDM conceptualization of a two choice decision between ‘word’ and ‘non-word’ in the lexical-decision task. The top panel shows
distributions of drift-rates across trials for both words and non-words. The bottom panel shows an example accumulation path for a trial with the
displayed drift rate

frequency words had larger drift-rates, which accounted for
their greater accuracy and faster RT. However, all item types
were assumed to have the same drift-rate variability.

Testing the predictions of REM–LD with DDM

The log-posterior odds ratio distributions of REM–LD and
the inter-trial drift rate distributions are both analogous to
the evidence distributions of SDT. Under this assumption,
we will test the predictions made by REM–LD about the SD
of evidence distributions in a qualitative way. Using model
selection methods, we test whether a DDM model with sep-
arate evidence variability (η) parameters for each stimulus
class accounts for data better than a model with only one η

for all stimulus classes. Then we will extract the estimates
of rate means (v) and η from the former model, and compare
them to REM–LD’s predicted ordering.

DDM analysis

We used hierarchical Bayesian methods to estimate the
parameters of the DDM; the fitting routine, the specific
model parameterization for each data set, and the results
of a parameter-recovery study validating our estimates are
provided in Supplementary Materials.

Data sets

Table 1 provides data set details. All data sets contained
a word frequency manipulation. In data set 1 (Exper-
iment 1; Wagenmakers et al., 2008), participants were
instructed to respond either quickly or accurately. Data
set 2 (Experiment 2; Wagenmakers et al., 2008) con-
tained 25% and 75% proportions of word stimuli. Data
sets 3–5 (Experiments 1, 2, and 4, respectively, from
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Table 1 Data sets

Data Set Source N Obs. Variables

1 Wagenmakers et al. (2008) Exp1. 17 1844 Emphasis (Speed or Accuracy)

Word Frequency (high, low, very low, pseudo-words)

2 Wagenmakers et al. (2008) Exp.2 19 1915 Proportion (25% Word or 75% Word)

Word Frequency (high, low, very low, pseudo-words)

3 Ratcliff et al. (2004) Exp.1 16 2057 Word Frequency (high, low, very low, pseudo-words)

4 Ratcliff et al. (2004) Exp.2 14 2070 Word Frequency (high, low, very low, random letter strings)

5 Ratcliff et al. (2004) Exp.4 17 1477 Word Frequency (high, low, random letter strings)

N = number of participants; Obs. = the mean observations for each participant

Ratcliff et al., 2004) all contained a word frequency manip-
ulation, but changed the characteristics of the non-word
stimuli, using either pseudo-words (pronounceable letter
strings in data-set 3, and created by randomly replacing
all vowels in words by other vowels, in data sets 1 and
2), or unpronounceable random-letter strings (data-sets 4
and 5).

Model selection

We selected among models using WAIC, a measure of
out-of-sample prediction error (Watanabe, 2010; Gelman,
Hwang, & Vehtari, 2014), where lower values indicate bet-
ter out-of-sample prediction. We compared two versions of
the DDM: the “equal model”, which had one η parameter for
all different stimulus conditions, and the “unequal model”,
which had a separate η parameter for each stimulus condi-
tion. Table 2 shows that the unequal model is preferred for
data sets 4–5 (unequal model having WAIC values 6.9 and
7.5 less than the equal model, respectively) and strongly pre-
ferred for data sets 1–3 (unequal model havingWAIC values
297, 125, and 176 less than the equal model, respectively).
Note that a difference in WAIC of greater than 3 provides
positive evidence and a difference of 10 or more strong evi-
dence, and so, every data set provided either positive or
strong evidence for the unequal model. We now examine
whether the preferred models provide a good account of the
data.

Model fit

We checked fit by generating posterior-predictive data from
the unequal models, simulating 100 data sets of the same
size as the empirical data from 100 parameter-vector sam-
ples from joint-posterior distributions for each participant in
each experiment. Figure 3 plots summaries of the observed
and predicted data. To summarize the RT distributions, we
present five quantile estimates (10%, 30%, 50%, 70% and
90%). The 10%, 50%, and 90% quantiles represent the lead-
ing edge, median, and tail of the distribution, respectively.
These plots also indicate the proportion of correct (green)
and incorrect (red) responses along the y-axis.

The top two panels in Fig. 3 show empirical and predicted
values for data sets 1 and 2 fromWagenmakers et al. (2008);
the unequal model fits both well. The middle two panels
and the bottom panel of Fig. 3 displays the same for data
sets 3–5 (Ratcliff et al., 2004). The fits are good except for
consistent misses of the tail of the error RT distribution. This
misfit is likely due to the low rate of errors and relatively
high variability in the 90% quantile for error RTs. However,
the key finding that error RTs are on average slower than
correct RTs is captured well.

Drift rate parameters

The bottom panel of Fig. 1 shows the mean of the poste-
rior distributions of the group-level mean drift-rate and η

Table 2 WAIC results for the equal and word frequency DDMs

Data set Source Equal model Unequal model Equal - unequal

1 Wagenmakers et al. (2008) Exp1. −16549 −16846 297

2 Wagenmakers et al. (2008) Exp.2 −21897 −22022 125

3 Ratcliff et al. (2004) Exp.1 −20441 −20617 176

4 Ratcliff et al. (2004) Exp.2 −33395 −33402 6.9

5 Ratcliff et al. (2004) Exp.4 −29059 −29067 7.5

Bold WAIC values indicate the preferred model for the corresponding data set
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Fig. 3 Defective cumulative distribution plots of the predicted RTs from the unequal model and empirical RTs for each stimulus condition. HF =
high-frequency, LF = low-frequency, VLF = very-low-frequency, and PW = pseudo-word, and RL = random letter strings. The circles represent
the empirical data and the crosses represent the predicted data. Note the predicted data consists of 100 separate data sets superimposed on the
empirical data. The green points are correct responses and the red points are incorrect responses

estimates from the unequal DDM. For visualization pur-
poses, the distributions for each stimulus class are the
concatenation of the posterior distributions across all 5
experiments. The ordering of mean drift-rates are in agree-
ment with REM–LD’s evidence means within words and
within non-words. The ordering of η for the DDM is mostly
in agreement with the evidence variability predictions of

REM–LD, with the exception of LF words. Drift variabil-
ity was highest for HF words, followed by RL, VLF, LF,
then PW. REM–LD predicted that evidence variability was
highest for HF words, followed by LF, RL, VLF then PW.

We used Bayesian predictive p-values to assess the prob-
ability that the difference between two posteriors is equal
to or less than 0 (Meng, 1994). Small p-values in Table 3
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Table 3 Bayesian predictive p-values for drift variance ordering

Data Set HF ≤ LF HF ≤ RL HF ≤ VLF HF ≤ PW LF ≤ RL LF ≤ VLF LF ≤ PW RL ≤ VLF VLF ≤ PW

1 < .001 – < .001 < .001 – .985 < .001 – < .001

2 < .001 – .01 < .001 – .972 .008 – < .001

3 .012 – .040 < .001 – .679 < .001 – .001

4 .011 .1 .015 – .875 .556 – .556 –

5 < .001 .074 – – .978 – – – –

Low p-values suggest that the DDM and REM–LD are in agreement

suggest that the DDM and REM-LD are in agreement and
larger p-values suggest that the two models are in disagree-
ment. They mostly agree, except in regards to LF, RL, and
VLF stimuli. The predicted order is reversed between LF
and RL, and either reversed or equivocal between VLF and
LF or RL.

General discussion

The lexical-decision task has often been conceptualized as a
specific case of signal detection theory (SDT; Norris, 1986;
Balota and Chumbley, 1984), with decisions based on a con-
tinuously distributed evidence variable (i.e., word-likeness).
The outcomes of decisions depend on both the mean and
variance of evidence, but previous studies have assumed that
these evidence distributions are equally variable for words
and non-words (Ratcliff et al., 2004; Wagenmakers et al.,
2008) with some supporting evidence from choice data
(Jacobs et al., 2003; Brown & Steyvers, 2005). This implies
that performance depends purely on evidence-distribution
means. However, the latter investigations did not consider
response times (RTs), which could potentially support dif-
ferent conclusions (Ratcliff & Starns, 2009). This turned out
to be the case, with our analysis based on both RTs and accu-
racy clearly rejecting the equal variance assumption (see
also Dutilh et al., 2009, 2011, 2012). These results imply
that researchers should take account of factors that affect
the variability in evidence as well as its mean. For example,
number of letters, orthographic neighborhood size, aver-
age base-word frequency, and average base-word number
of syllables are factors known to affect between-item vari-
ability in response times and accuracy (Yap, Sibley, Balota,
Ratcliff, & Rueckl, 2015). Estimation of inter-trial drift vari-
ability is sensitive to variability in RT and accuracy, and
so, it seems likely that these item level differences will be
influential on the magnitude of inter-trial evidence (i.e., drift
rate) variability.

We also investigated the Retrieving Effectively from
Memory model of Lexical-Decision (REM–LD), which has
previously been used to account for data from a deadline

lexical-decision task. REM–LD is based on a general model
architecture that provides a comprehensive explanation of
human memory. In REM–LD, stronger matches between
the probe and trace skew the evidence distribution, which
produces greater evidence variability for words than non-
words, particularly for higher frequency words. Using typ-
ical parameter settings, we showed that REM–LD makes
the prediction that the evidence variability will be largest
for high-frequency words, followed by low-frequency, ran-
dom letter strings, very-low-frequency, and finally pseudo-
words.

We fit the Diffusion Decision Model (DDM; Ratcliff,
1978) to free-response lexical-decision data and examined
the parameter estimates of inter-trial drift rate variabil-
ity, which is analogous to evidence variability in SDT
and REM–LD (Ratcliff, 1978, 1985). We found that the
predictions of REM–LD were comparable to the DDM’s
evidence variability estimates for all word frequency
conditions except low-frequency words. Specifically, the
DDM predicted drift variability was highest for high-
frequency words, followed by random letter strings, very-
low-frequency, low-frequency, then pseudo-words. Overall,
our results are encouraging because two prominent models
of lexical-decision mostly agreed about predictions of word
and non-word evidence variability.

Evidence variability occurs because items in the same
category do not have the same word-likeness value, or in
terms of the DDM, the same drift rate. Intuitively, one might
assume that higher frequency words are less variable than
lower frequency words; perhaps because people might not
know the definitions to some lower frequency words, mak-
ing them more like non-words and inflating the variability.
Despite this intuition, we observed that higher frequency
words are more variable. Under REM–LD, the reason that
higher frequency words are more variable is because of the
way lexical retrieval operates by comparing a probe cue to
all of the traces in the participant’s lexical memory. When
the probe cue is a word, it produces a strong match to its
own trace and a weak match to all of the other traces in lexi-
cal memory. When these matches are averaged together, the
contribution from the strong match skews the posterior odds
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ratio distribution, producing greater variability for words
than non-words and greater variability for higher frequency
words relative to lower frequency words.

Our results parallel findings from the recognition mem-
ory literature, where inter-trial drift rate variability is higher
for studied (i.e., stronger) items (Ratcliff & Starns, 2009;
Starns & Ratcliff, 2014; Starns, Ratcliff, & McKoon, 2012;
Osth, Dennis, & Heathcote, 2017). Models of recognition
memory employ the same retrieval structure as REM–LD
and predict higher variability for studied items for a similar
reason: recognition is carried out by matching a cue vector
against each memory, calculating the similarity, and making
a decision based on either the summed or averaged similar-
ity. Findings about evidence variability have played a crucial
role in developing a theoretical understanding of recognition
memory (Wixted, 2007; Osth & Dennis, 2015; Shiffrin &
Steyvers, 1997), and our results suggest that they may play
a similar role for theories of lexical memory.
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