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Abstract Intense training results in numerous physio-
logical perturbations such as muscle damage, hyperther-
mia, dehydration and glycogen depletion. Insufficient/
untimely restoration of these physiological alterations
might result in sub-optimal performance during subsequent
training sessions, while chronic imbalance between train-
ing stress and recovery might lead to overreaching or
overtraining syndrome. The use of post-exercise cold water
immersion (CWI) is gaining considerable popularity
among athletes to minimize fatigue and accelerate post-
exercise recovery. CWI, through its primary ability to
decrease tissue temperature and blood flow, is purported to
facilitate recovery by ameliorating hyperthermia and sub-
sequent alterations to the central nervous system (CNS),
reducing cardiovascular strain, removing accumulated
muscle metabolic by-products, attenuating exercise-in-
duced muscle damage (EIMD) and improving autonomic
nervous system function. The current review aims to pro-
vide a comprehensive and detailed examination of the
mechanisms underpinning acute and longer term recovery
of exercise performance following pest-exercise CWL
Understanding the mechanisms will aid practitioners in the
application and optimisation of CWTI strategies to suit
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specific recovery needs and consequently improve athletic
performance. Much of the literature indicates that the
dominant mechanism by which CWI facilitates short term
recovery is via ameliorating hyperthermia and conse-
quently CNS mediated fatigue and by reducing cardio-
vascular strain. In contrast, there is limited evidence to
support that CWT might improve acute recovery by facili-
tating the removal of muscle metabolites. CWI has been
shown to augment parasympathetic reactivation following
exercise. While CWI-mediated parasympathetic reactiva-
tion seems detrimental to high-intensity exercise perfor-
mance when performed shortly after, it has been shown to
be associated with improved longer term physiological
recovery and day to day training performances. The effi-
cacy of CWI for attenuating the secondary effects of EIMD
seems dependent on the mode of exercise utilised. For
mmstance, CWT application seems to demonstrate limited
recovery benefits when EIMD was induced by single-joint
eccentrically biased contractions. In contrast, CWI seems
more effective in ameliorating effects of EIMD induced by
whole body prolonged endurance/intermittent based exer-
cise modalities.
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The current review provides a comprehensive
examination of the mechanisms underpinning acute
and longer term recovery of exercise performance
following post-exercise cold water immersion
(CWD).

Acute recovery mechanisms include the amelioration
of hyperthermia mediated fatigue, reductions in
cardiovascular strain, removal of accumulated
muscle metabolic by-products. Longer term
mechanisms include improvements in the autonomic
nervous system function and decreases in exercise-
induced muscle damage.

Understanding the mechanisms will aid practitioners
in the application and optimisation of CWI strategies
to suit specific recovery needs and consequently
improve athletic outcomes.

1 Introduction

Endurance training results in profound cardiovascular and
skeletal muscle adaptations that co-ordinately improve
fatigue resistance and enhance exercise capacity. Some of
the centrally occurring adaptations following endurance
training include an increase in stroke volume/cardiac out-
put [1, 2], ventricular hypertrophy [3], enhanced cardiac
contractile properties [4], blood volume expansion [5] and
haematological changes [6, 7]. In the skeletal muscles, an
increase in mitochondrial content [8], metabolic enzymes
[9], capillary density [10], transformations from fast to
slow fibre-types [11] as well as improved conduit vessel
and microvascular function [12, 13] are typically evident
following endurance training. Taken together, human tis-
sues demonstrate remarkable ability to alter morphological,
metabolic and functional characteristics to improve aerobic
function and better accommodate changes imposed by
physical activity.

In order to drive such adaptations, progressive and
continuous increases in training stimuli are needed, at least
until genetically pre-disposed upper limits are reached [14].
This increase in training load and associated physiological
stress induced by exercise has been termed progressive
overload and has had an important role in the high training
loads currently performed by athletes. For instance, elite
long distance runners are reported to train 10-16 ses-
sionseweek ™!, with weekly running mileage amounting to

between 150 and 200 km {15, 16]. Numerous physiological
perturbations such as muscle damage, hyperthermia,
dehydration and glycogen depletion can be expected as a
consequence of such immense training stress [17, 18].
Insufficient restoration of these physiological alterations
might result in sub-optimal performance in subsequent
training sessions, with chronic imbalance between training
stress and recovery resulting in overreaching or overtrain-
ing syndrome {19].

The use of recovery interventions between training
sessions has emerged as a potential mechanism to enhance
post-exercise recovery [17, 18]. One such modality is the
use of post-exercise cold water immersion (CWI), This
recovery strategy is widely utilised among athletes of all
levels in both hot and normal environments in an attempt to
ameliorate hyperthermia-induced fatigue and reduce exer-
cise-induced muscle damage [20-25]. Indeed, post-exer-
cise CWI has been shown to maintain subsequent exercise
performance [20], preserve day-to-day performance [26,
27] and in some [22] but not all cases [28] attenuate the
increase in indirect markers of muscle damage. A number
of excellent reviews have recently examined the influence
of CWI, and other hydrotherapy modalities, on acute
exercise performance and recovery [29-33]. While there is
strong evidence to indicate that post-exercise CWI may
enhance both short and longer term recovery, the precise
factors responsible for such improvements are unclear,
with numerous mechanisms proposed. These putative
mechanisms include the amelioration of hyperthermia and
subsequent alterations to the central nervous system (CNS),
reductions in cardiovascular strain, removal of accumu-
lated muscle metabolic by-products., improvements in
autonomic nervous system function, decreases in exercise-
induced muscle damage (EIMD) and delayed onset muscle
soreness. To date, a review specifically examining these
potential mechanisms is currently lacking. Elucidating the
mechanisms by which CWI enhances recovery likely pro-
vides practitioners with an evidence-based platform, from
which this modality can be utilised to target specific
recovery objectives (e.g. ameliorate hyperthermia vs.
EIMD). Moreover, clearly defining the recovery mecha-
nisms enables a more guided practice with regards to
periodization of recovery alongside longer term goals for
training-induced adaptation. This is especially important
because adaptations in recovery are complex, with evi-
dence indicating that CWI may enhance muscle oxidative
adaptations to endurance training [34-36] while impeding
hypertrophic/strength adaptations derived from resistance
training [37, 38]. As such, the purpose of this review is to
provide a comprehensive and detailed examination of the
mechanisms that may be responsible for acute and longer
term recovery of exercise performance following post-ex-
ercise CWI. Within this review, acute recovery is defined
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Mechanisms of Recovery Following Cold Water Immersion

as the post-exercise period of <60 min, while longer term
recovery stipulates a post-exercise time frame between 2 h
and 1 week.

2 Acute Recovery Mechanisms Associated
with Cold Water Immersion

2.1 Central Nervous System Fatigue

CNS fatigue refers to the decrement in force production
due to the reduction in voluntary activation (VA) and
neural drive to the muscle [39]. The progressive rise in
body temperature and subsequent hyperthermia is strongly
implicated in the development of central fatigue during
exercise [40-43]. A primary mechanism by which CWI is
suggested to enhance performance is by rapidly reducing
body temperature, given that the thermal conductivity of
water is 25 times greater compared with that of air [44].
This enhances the capacity for heat storage, allowing
greater energy expenditure before physiological limitations

Improved recovery

> JCNS fatigue
IRPE

T |Serotonin-
dopax.nine THeat storage
Jo:p Index w capacity
T,

]

CwI

Fig. 1 Suggested mechanisms by which CWI enhances recovery
from CNS fatigue. The decrease in core body temperature (7T.)
following CWI results in a reduced «:f index and serotonin-dopamine
ratio. This is reflected in a reduced sense of perceived exertion (RPE)
which closely mirrors the extent of central fatigue during exercise.
The decrease in T, also increases the heat storage capacity, allowing
higher energy expenditure before the physiological T, (>40 °C)
associated with voluntary exhaustion is reached. CWI cold water
immersion, CNS central nervous system, | increase, | decrease

in core body temperature (>40 °C) are attained (Fig. 1).
While a number of studies have demonstrated the effec-
tiveness of CWI in reducing post-exercise body tempera-
ture and improving subsequent exercise performance [20,
21, 25, 45, 46], evidence of CNS involvement has only
recently been demonstrated [24, 47]. For instance, when
compared with a control trial, Pointon et al. [47] observed
immediate improvements in maximal voluntary contraction
MVC) force and VA following CWI (2 x 9 min at
~9 °C), which was performed following 60 min of intense
intermittent running in the heat. Similarly, Minett et al.
[24] reported improved recovery of MVC force and VA at
1 h post-exercise when CWI (20 min at 10 °C) was applied
following a 70-min intermittent running protocol per-
formed in the heat. However, it must be noted that con-
tradictory results were evident at 24 h post-exercise with
Minett et al. [24] reporting improved and Pointon et al. [47]
reporting attenuated MVC force following CWI treatments.
These results indicate that while CWI is effective in
improving acute recovery via ameliorating hyperthermic-
induced CNS fatigue, the efficacy of CWT in aiding longer
term recovery likely involves other mechanisms. )
The effects of hyperthermia on brain function are highly
complex and involve changes in electroencephalographic
activity [48, 49], cerebral neurotransmitters [50, 51],
cerebral blood flow/oxygenation [52] and cerebral meta-
bolism [53]. A detailed commentary on the aetiology of
these factors is beyond the scope of this review. Never-
theless, there is evidence to suggest that CWI may alleviate
some of these exercise-induced cerebral perturbations
either directly or via its effect on core temperature (7,)
(Fig. 1). For instance, CWI performed in between succes-
sive bouts of exercise might ameliorate CNS fatigue by
modifying the a:f index; an -electroencephalographic
parameter that progressively increases during exercise-in-
duced hyperthermia and is suggested to reflect a decreased
state of arousal and alertness [42, 48]. The basis for this
speculation is gathered from studies that have demon-
strated reduced ratings of perceived exertion (RPE) during
exercise following CWI [54], which has been shown to be
well correlated with changes in «:f ratio during hyper-
thermic exercise [49]. Further evidence is gathered from a
recent study by De Pauw et al. [55], where post-exercise
CWI has been shown to increase global electroencephalo-
graphic f activity (and presumably overall a:f8 ratio),
which was otherwise depressed following prolonged
cycling in the heat. Although performances during a sub-
sequent 12-min simulated time trial were similar between
CWI and control conditions, CWI resulted in more even
pacing strategy, such that higher power outputs were better
maintained at the onset of exercise [55]. As such, it seems
that CWT is able to alter the «:f index and the resulting
functional outcome is potentially a change in overall
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pacing profile. Further studies are clearly warranted to
better understand the mechanisms underpinning CWI,
electroencephalographic activity and pacing.

It is also suggested that CWI might ameliorate CNS.

fatigue by enhancing cerebral perfusion and oxygenation
[24], which has been shown to be depressed during exer-
cise-induced hyperthermia and implicated in the develop-
ment in CNS fatigue [52, 53]. The restoration of cerebral
perfusion and presumably oxygenation is purportedly
achieved through increases in mean arterial pressure and
cardiac output, as a consequence of increased central blood
volume following CWI [24, 56] (see Sect. 2.3). However,
contrary to this hypothesis, Minett et al. [24] showed that
post-exercise CWI further exacerbated the exercise-in-
duced reductions in prefrontal cortex blood perfusion and
oxygenation, despite an enhanced recovery in quadriceps
MVC force and VA. These findings therefore indicate that
the mechanisms by which CWI might ameliorate central
fatigue are dissociated from changes in cerebral perfusion/
oxygenation. 5

The alteration of cerebral neurotransmitters, namely the
dopaminergic and serotonergic systems is an alternate
mechanism by which cold exposure may attenuate the
development of CNS fatigue (Fig. 1). These systems
influence mood state, sleep, emotion, motivation, attention,
reward and thus have been implicated in the development
of CNS fatigue [50, 51, 57]. For instance, treatment with a
dopamine re-uptake inhibitor or serotonin antagonists has
been shown to improve endurance performance in humans
and rodents, respectively [58, 59]. However, the role of
serotonin in central fatigue mechanisms is less clear in
humans, as serotonin re-uptake inhibition has been shown
to have no influence on endurance performance [60].
Nevertheless, Mundel et al. [61, 62] found that facial
cooling significantly reduced blood prolactin concentra-
tion, which is stimulated by serotonin and inhibited by
dopamine. In this regard, it is highly plausible that CWI
might facilitate acute recovery via a similar mechanism.
However, studies specifically investigating effect of post-
exercise CWI treatment on the activity of these neuro-
transmitters are currently lacking and this warrants further
investigation.

2.2 Cardiovascular Strain

CWI application may facilitate short-term recovery from
exercise through alleviating cardiovascular strain. Indeed,
cardiovascular strain is elevated during exercise in the heat
as blood flow is redirected from the active musculature to
the cutaneous circulation for heat dissipation and temper-
ature regulation [63]. The redirection of blood to the

peripheries results in reduced central blood volume, caus-
ing a decline in muscle blood flow and, as a consequence,
may impair oxygen (O;) delivery and performance [64,
65]. CWI results in rapid cutaneous vasoconstriction,
redirecting blood back into the central circulation. More-
over, the decrease in T, resulting from CWI reduces the
thermoregulatory demand for heat dissipation and therefore
limits the need to redirect blood to the skin (Fig. 2).

The results of early studies demonstrating reduced car-
diovascular strain and circulatory conflict following CWI
were largely inferred from changes in heart rate responses.
For instance, Hayashi et al. [66] fitst reported a reduction in
heart rate during submaximal exercise in the heat as a
result of 5 min of CWI, which was performed after an
initial 40 min cycling bout. Utilising similar experimental
designs (i.e. CWI in between two exercise bouts), numer-
ous studies have since demonstrated decreased heart rate
during rest [24, 47, 54] or during subsequent exercise bouts
undertaken in both neutral [25] and hot ambient conditions
[46, 67]. Further support for CWI in ameliorating cardio-
vascular strain is gathered from recent studies directly
investigating haemodynamic changes resulting from post-

—

Improved recovery

| Cardiovascular strain

|

1CBV

| Thermal T .
demand —> !Skin BF

L

o ] Vasoconstriction

R AR

CWI

Fig. 2 Suggested mechanisms by which CWI attenuates cardiovas-
cular strain and improves recovery. CWI reduces blood flow to the
skin (skin BF) through cutaneous vasoconstriction and reduced
thermoregulatory demand to dissipate heat. The reduction in skin BF
results in an increased central blood volume (CBV), leading to the
improved availability of oxygen and substrate for the exercising
muscle. CWI cold water immersion, T, core temperature, T increase, |
decrease
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exercise CWI [67-69]. These studies collectively demon-
strate reduced limb blood flow to, or reduced blood volume
across the exercised muscle following CWI, and hence
support the notion that CWI might ameliorate cardiovas-
cular strain by redistributing blood flow from the periphery
to the core [67-69]. However, it must be mentioned that
limitations in the techniques utilised within these studies
preclude definitive evidence of reduced muscle perfusion
per se following post-exercise CWI [67—69]. Interestingly,
in terms of increasing central circulation, Mawhinney et al.
[68] recently demonstrated that lower limb immersion at
22 °C decreased femoral artery blood flow and conduc-
tance as well as thigh and calf vascular conductance to a
similar extent compared to immersion at 8 °C, despite skin
and muscle temperatures being lower following the 8 °C
immersion. This indicates that additional treatment benefits
in ameliorating other aspects of recovery [i.e. CNS fatigue
(Sect. 2.1), exercise-induced muscle damage (Sect. 3.2)]
are likely to be mediated through the effects of reduced
tissue temperature rather than further reductions in muscle
blood flow.

2.3 Muscle Metabolite Removal

High-intensity exercise elicits the formation and accumu-
lation of metabolites that are implicated in the development
of muscle fatigue [70, 71]. Post-exercise CWTI is suggested
to accelerate the removal of these muscle metabolites,
consequently improving metabolic recovery from intense
exercise bouts [47, 72, 73]. The transportation of metabo-
lites from the muscle into the central circulation is facili-
tated by the combined effects of hydrostatic pressure, as
well as limb arterial and cutaneous vasoconstriction. This
in turn facilitates haemodilution and blood displacement
from the peripheral regions (Fig. 3) [56, 74, 75]. Hae-
modilution refers to fluid shifts from the interstitial to the
intravascular spaces. Fluids leaving the interstitial space
are then rapidly replaced by intracellular fluid, resulting in
a higher extracellular (intravascular) to intracellular fluid
content [56]. This consequently results in an intracellular-
intravascular osmotic gradient, facilitating the efflux of
intracellular constituents and metabolic by-products from
the intracellular and interstitial space into the peripheral
circulation. This osmotic gradient is further accentuated by
cold exposure, possibly due to increased pressure gradient
as a result of cutaneous vasoconstriction [56, 76]. Blood
displacement through hydrostatic pressures, as well as limb
arterial and cutaneous vasoconstriction further facilitates
the removal of metabolites from the peripheries into the
central (i.e. intra-thoracic) circulation [75, 77]. For instance
increased hydrostatic pressure has been shown to displace
blood from the splanchnic, abdominal regions and to a
lesser extent the leg regions by increasing central venous

| Improved recovery
h

y—b TMetabolite efflux
A

1 Osmotic gradient

[CBV

. | i

JLimb BF  |Skin BF
THaemodilution
T—) TCve
[Hydrostatic
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Fig. 3 Mechanisms by which CWTI is suggested to improve clearance
of post-exercise muscle metabolites and improve recovery. The
increase in osmotic gradient resulting from haemodilution drives the
efflux of intracellular constituents and metabolic waste from the
extravascular space into the peripheral circulation. These metabolites
are subsequently displaced from the peripheries into the central
circulation through the effects of vasoconstriction and hydrostatic
pressures. CWI cold water immersion, CVP central venous pressure,
CBYV central blood volume, BF blood flow, 1 increase, | decrease

pressures [75, 77]. Moreover, central circulation may be
further augmented by decreases in arterial limb and cuta-
neous blood flow due to vasoconstriction in the limb artery
and subcutaneous network [68]. However, it should also be
noted that while acutely facilitating blood flow from the
periphery to central circulation, CWT induced peripheral
vasoconstriction may also reduce muscle blood flow. Such
a reduction in blood flow may compromise oxygen and
nutrient delivery, enhance reliance on anaerobic metabo-
lism and be detrimental rather than beneficial to recovery.

This conflicting response to CWI may be responsible for
the limited evidence demonstrating enhanced metabolite
removal following CWI. Indeed, a plethora of studies have
observed no change in blood pH [47, 72, 73] or on the
clearance of metabolites such as potassium, choride [72] or
blood lactate [46, 47, 66, 72, 73, 78] following CWI. In
actual fact, some studies have reported a tendency for
attenuated clearance of blood lactate when compared with
passive resting [25] or light active recovery at 30 to 40 %
of peak cycling power output {54, 67]. Yet, the attenuation
of lactate clearance in the aforementioned studies was not
found to impair performance during subsequent exercise
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performance in all of these studies, indicating that the
benefits of CWI were associated with mechanisms other
than alterations in local metabolic products, such as alter-
ing thermal and cardiovascular strain [25, 54, 67].

While CWI does not seem to enhance post-exercise
blood lactate clearance, evidence suggests it may alter
blood lactate kinetics during subsequent high-intensity
(30-60 s) exercise bouts. For instance, while Parouty et al.
[78] found no effect of CWI (5 min at 14-15 °C) on blood
lactate clearance following 100 m (~60 s) swimming
performance, they found increased blood lactate accumu-
lation during a subsequent 100 m swimming bout. In
contrast, Crowe et al. [79] found reduced blood lactate
accumulation during the second bout of 30-s cycle sprint
following CWI (15 min at 13-14 °C) treatment. While the
disparity in lactate kinetics data between the two studies
may be due to differences in immersion duration, it must be
noted that exercise performance was impaired following
CWI treatment in both studies [78, 79]. Indeed, it is gen-
erally accepted that CWI is detrimental to short duration
(>30 s) high-intensity sprint performance, possibly due to
lowered muscle temperature and subsequent impairments
in muscle contractile function [80].

2.4 Autonomic Nervous System Function

Cardiac autonomic nervous system function is considered
an important global marker of athlete recovery status and
ability to train/perform [81, 82]. Specifically, indices of
parasympathetic activity have been shown to be signifi-
cantly correlated with numerous exercise-induced physio-
logical perturbations during the recovery period, including
changes in plasma epinephrine levels [83], blood lactate
[84], blood pH [85] and arterial oxygenmation [86].
Accordingly, monitoring the time course in the restoration
of cardiac parasympathetic activity seems a logical indi-
cator of global body recovery and may be a useful tool to
easily and non-invasively assess the recovery status of
athletes or the effectiveness of recovery interventions. CWI
is an ideal method to accelerate parasympathetic reactiva-

Improved recovery

f

tParasympathetic activity

TBaroreceptor loading
1SV/CO
THaemodilution > TCBV < I |
A \ |Limb BF | Skin BF
1 Hydrostatic
pressure
h L] TVasoconstriction

CWI

Fig. 4 Mechanisms of parasympathetic reactivation following CWI.
The increase in hydrostatic pressures and vasoconstriction following
CWI increases central blood volume (CBV) and consequently stroke
volume (SV) and cardiac output (CO). Higher SV and CO activate the
arterial and cardiopulmonary baroreflexes, inhibiting sympathetic
activity and augmenting parasympathetic activation. CWI cold water
immersion, BF blood flow, CVP central venous pressure, | increase, |
decrease

shown that while post-exercise CWI enhanced parasym-
pathetic activation and improved sense of perceptual
recovery, subsequent exercise performance was either not
enhanced [89, 90] or impaired [78]. This might be due to
the fact that sympathetic activation increases skeletal
muscle O, consumption and glucose metabolism, and has a
positive inotropic effect on contracting skeletal muscles
[93]. In this regard, parasympathetic reactivation via CWI
between high-intensity bouts might counteract subsequent
performance. Alternatively, the lack of performance gain

tion (Fig. 4) due to its ability to increase central blood " —observed in these studies may be due to the cooling dura-

volume (see Sects. 2.3 and 3=3) [75-77, 87], which con-%

sequently results in increased stroke volume and cardiac
output [76, 77]. These changes consequently activate the
arterial and cardiopulmonary baroreflexes [88], inhibiting
sympathetic activity and augmenting parasympathetic
activation, leading to bradycardia [77, 88].

Given the sound rationale indicating that CWI could
enhance overall physiological recovery through augment-
ing parasympathetic activation, it is somewhat surprising
that only a few studies have investigated the effects of post-
exercise CWI on indices of parasympathetic reactivation
[27, 78, 89-92]. In these studies, it has generally been

tion employed (i.e. 5 min at 14 °C) and the performance
task involved. Specifically, the CWI protocol (5 min at
14 °C) utilised by Stanley et al. [90] would have minimal
influence on post-exercise 7. This, coupled with the pro-
longed recovery (160 min) separating exercise bouts, is
likely to be responsible for the limited effect of CWI,
compared with control. Conversely, the performance pro-
tocols utilised by Buchheit et al. [89] and Parouty et al. [78]
were sprint based lasting ~ 60 to 80 s (i.e. 1-km cycle and
100-m swim, respectively), and thus not likely to have
resulted in significant thermoregulatory strain necessary for
CWI to be effective in the short term. Moreover as
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mentioned (see Sect. 2.3), decrements in muscle tempera-
ture following CWI are detrimental to sprint performance
[79, 80] although it is contentious if the CWI protocol
utilised (5 min at 14-15 °C) in these studies [78, 89] could
have considerably reduced muscle temperatures.

3 Longer Term Recovery Mechanisms Associated
with Cold Water Immersion

3.1 Autonomic Nervous System Function

While the effects of parasympathetic re-activation on
subsequent performance seem counteractive, regular use of
this recovery modality (5 min at 10-14 °C) seems benefi-
cial with regards to longer term vagal modulation and
training performance [27, 91]. For instance, regular CWI
following swim training sessions increased vagal related
heart rate variability indices at rest and during a 1-week
training period, indicating improved overall physiological
recovery [91]. Stanley et al. [27] indicated that despite no
differences in vagal related heart rate variability indices,
regular post-exercise CWI recovery during an intensified
training block (3 days intense, 2 days recovery) resulted in
greater self-selected power outputs. Given that the indices
investigated by Stanley et al. [27] were inversely related to
training intensity, the data indicate that the superior train-
ing performances by the athletes were due to an enhanced
CWI mediated recovery. Taken together, these studies
indicate that parasympathetic reactivation via post-exercise
CWI may be detrimental to subsequent high-intensity
performance. However, the limited data currently available
also show that regular CWI application improves day to
day training performance and physiological status, as
assessed by indices of heart rate variability.

3.2 Glycogen Re-synthesis

Fatigue during endurance exercise appears to coincide with
significant reductions in muscle glycogen availability [71,
94]. Indeed, it is well established that pre-exercise muscle
glycogen content is well correlated with performance [95],
with carbohydrate loading often resulting in significant
improvements in endurance performance [96]. The
restoration of muscle glycogen is therefore considered to
be one of most crucial physiological components of
recovery from prolonged moderate-intensity or intermittent
high-intensity exercise [18, 97]. Glycogen replenishment is
especially important for athletes training or competing
multiple times per day or on successive days.

To date, research examining the influence of CWI and
body cooling on post-exercise muscle glycogen synthesis is
equivocal, with studies reporting either no effect [98—100],

or attenuated glycogen synthesis [101] following cooling
interventions. Specifically, Gregson et al. [98] and Slivka
et al. [99, 100] demonstrated no differences in post-exer-
cise glycogen synthesis following CWI (10 min at 8 °C) or
cold air exposure (3—4 h at 7 °C) when compared with a
control condition. In contrast, Tucker et al. [101] reported
attenuated muscle glycogen repletion when localised
quadriceps cooling via ice pack application was undertaken
at 30 min intervals throughout a 4-h recovery period.
Differences in cooling modality and duratton which would
alter muscle temperature, shivering thermogenesis and
blood flow responses could account for the disparity in
findings between these studies. For instance, Gregson et al.
[98] reported intramuscular temperatures of 30-35 °C at 1-
to 3-cm depth immediately post-CWI, while Tucker et al.
[101] attained muscle temperatures of ~ 25 °C at a 4.3-cm
depth, which was maintained for 4-h following cooling.
This indicates that cooling resulting in prolonged decre-
ments in muscle temperature could potentially attenuate
post-exercise glycogen synthesis. However, recent studies
have also shown no effect in muscle glycogen re-synthesis
despite utilising an aggressive post-exercise cooling strat-
egy (34 h at 7 °C air) [99, 100]. One possibility is that
muscle contractions during shivering thermogenesis evi-
dent in these studies might have attenuated cold-induced
decrements in muscle temperature and blood flow. Alter-
natively, shivering could have resulted in contraction
dependent glucose transporter 4 (GLUT4) translocation to
the cell membrane, facilitating glycogen repletion [102].
Unfortunately, neither muscle temperature nor GLUT4
trafficking were reported in these studies [99, 100]. Irre-
spectively, it is plausible that the presence of shivering
thermogenesis during whole body cooling may counteract
the negative effects on muscle glycogen synthesis.

3.3 Exercise-Induced Muscle Damage

Cryotherapy is a well-recognised treatment modality for
acute traumatic injuries [103]. As such, it is somewhat
befitting that CWTI is often used as a recovery strategy to
treat EIMD following training sessions. CWT is suggested
to ameliorate EIMD via several mechanisms associated
with localised cooling, hydrostatic pressures and redistri-
bution of blood flow (Fig. 5) [31, 103, 104]. For instance,
CWI is suggested to promote recovery by reducing muscle
oedema [104, 105]. Presence of oedema impedes O,
delivery to the muscles, as mechanical compression of the
local capillaries is increased [105], resulting in an
increased transit distance between capillaries and muscle
fibres for O, exchange [106]. CWI reduces oedema by
decreasing incoming blood flow and facilitating the clear-
ance of peripheral fluid. These effects are collectively
mediated through cold-induced vasoconstriction [68, 69,
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Fig. 5 Suggested mechanisms by which CWI improves recovery
from EIMD. The increase in osmotic gradient resulting from
haemodilution drives the efflux of debris from the extravascular
space into the peripheral circulation, whence it is subsequently
facilitated into the central circulation through the effects of vasocon-
striction and hydrostatic pressures. Vasoconstriction also reduces
muscle blood flow (muscle BF), leading to athe decrease in oedema
and a resultant improvement in muscle O, delivery. The decrease in
intramuscular metabolism following CWI reduces inflammatory
events. Collectively, the enhanced debris clearance, improved musgle

107] and hydrostatic pressures [56, 75-77], leading to an
increase in central blood volume. As detailed in Sect. 2.3,
vasoconstriction and hydrostatic effects increase central
blood volume by increasing the central venous pressure
and facilitating the movement of fluids from the intracel-
lular and interstitial (extravascular} spaces to the
intravascular compartments, respectively [56, 74-77].
Extravascular to intravascular fluid movemeénts are also
suggested to promote recovery from EIMD by facilitating
the clearance of dead tissue cells and debris [104]. Indecd,
movement of fluids from the extravascular to the
intravascular compartments {74] results in an intracellular-
extracellular osmotic gradient, hence encouraging the
translocation of cellular debris and necrotic tissue from the
local muscle into the central circulation [104]. Finally,
cold-induced decrements in muscle temperature [35] fur-
ther reduce intramuscular metabolism [69], which may
minimise extraneous damage due to hypoxic cell death and
inflammatory events [108, 109].

While the decrease in inflammation and oedema will
likely reduce delayed omset muscle soreness (DOMS)
[110], it is noteworthy that CWI through its analgesic

| ‘
CWI

O, delivery and reduced inflammation reduce secondary EIMD, thus
improving recovery. The decrease in inflammation and oedema may
aid perceived perceptual recovery by through alleviating DOMS.
Moreover, the analgesic effects of CWI may directly reduce the
sensation of DOMS through TRPMS8-mediated mechanisms. EIMD
exercise-induced muscle damage, CWI cold water immersion, CVP
centrdl venous pressure, CBV central blood volume, DOMS delayed
onset muscle soreness, TRPM& transient receptor potential cation
channel M8, { increase, | decrease

effects may directly modulate the sensation of DOMS,
consequently improving perceptual recovery (Fig. 5).
The sensation of DOMS is likely due to the activation of
group II and group IV muscle nociceptive afferent
neurons [111]. Cold exposure in turn, has been shown to
activate the transient receptor potential cation channel
M8 (TRPMS8) receptors located in the Ad and C fibers;
the cutaneous equivalents of muscle group III and group
IV afferents, respectively [112, 113]. Once activated,
TRPMS8 mediates analgesia through inhibitory inputs
either through spinal inhibitory interneurons or directly
to nociceptors [113]. Improved perception of DOMS is
indeed critical for the recovery of exercise performance,
as MVC force has been shown to be impaired in the
presence of muscle pain (independent of EIMD),
induced by infusion of hypertonic saline [114]. Such
reasoning is in line with the growing body of evidence
implicating CNS-mediated mechanisms in facilitating
longer term athletic recovery [115].

Despite the sound mechanistic evidence, applied
research on the efficacy of CWI in facilitating the recovery
of EIMD has been shown to be rather controversial, with
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studies showing improved [22, 116], unchanged {117, 118]
or impaired [45, 47] recovery of muscle function and/or
indirect muscle damage markers (i.e. DOMS and creatine
kinase) following CWL Accordingly, the exercise modality
used to induce EIMD seems to influence effectiveness of
CWI in facilitating recovery. Specifically, the effects of
CWI on EIMD have been mainly investigated using: (1)
single joint eccentrically biased exercises (Table 1), or (2)
whole body exercise modalities that include intermittent
(typifying team sport movement patterns) or continuous
exercises (representing cyclic endurance sports) (Table 2).
As presented in Table 1, CWI does not generally amelio-
rate the key indices of EIMD such as the leakage of muscle
proteins in the bloodstream [28, 117—119], restorations in
MVC force [28, 117-122] or decrements in DOMS [22, 28,
117, 118, 120] and swelling [117, 119, 120, 122]. These
data indicate that CWI is ineffective in reducing post-ex-
ercise muscle damage, at least when EIMD is sustained via
single-joint eccentrically biased exercise modalities. On
the other hand, CWI seems more effective in treating
EIMD incurred with intermittent, endurance based team
sport exercises (Table 2). Indeed, the majority of studies to
date have shown CWI to be effective in enhancing the
recovery of exercise performance [23, 123, 124], MVC
force [24, 47, 116, 125, 126], clearance of blood myopro-
teins such as creatine kinase or myoglobin [24, 116, 124—
126], attenuating inflammation [116, 124, 126] or reducing
the sensation of DOMS [24, 47, 116, 123, 125, 127]. The

only study not to report a benefit of CWI treatment in any
of the markers of EIMD including blood creatine kinase
content, MVC and DOMS was that of Corbett et al. [128].
Nevertheless, it is important to note that MVC, which
closely reflects the extent of myofibre damage and is
regarded the gold standard in the assessment of EIMD
[129], was improved in the majority of the studies fol-
lowing CWI (Table 2). However, it is also worthwhile to
note that although MVC may be the gold standard in
assessing myofibre damage and recovery from EIMD, it
may not be reflective of power production and athletic
performance. Indeed, Ingram et al. [23] showed an
improvement in repeated sprint performance following
CWI treatment, despite no recovery in MVC.

Recently, it has been suggested that CWI mediated
MVC recovery following whole body muscle damaging
exercise may not exclusively reflect recovery from EIMD,
but might also include recovery from central fatigue [24,
47]. Indeed, Pointon et al. [47] and Minett et al. [24]
demonstrated improved MVC recovery from exhaustive
intermittent running in the heat when CWI was adminis-
tered. However the improvements in MVC were con-
comitant with the amelioration of indices relating to both
CNS fatigue (i.e. reduced T, and improved VA) and EIMD
(i.e. reduced DOMS sensation and enhanced clearance of
circulating myoproteins) [24, 47]. While these data high-
light the difficulties in isolating the mechanisms by which
CWI facilitates recovery, it is evident that multiple
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Fig. 6 Integrated mechanisms by which CWI enhances recovery.
CWI enhances recovery and improves athlete preparedness through
multiple mechanisms namely; decreasing secondary EIMD, decreas-
ing the sensation of DOMS, improving the clearance of muscle
metabolites, increasing post-exercise parasympathetic activity,
decreasing cardiovascular strain and decreasing CNS fatigue. EIMD
exercise-induced muscle damage, DOMS delayed onset muscle

soreness, TRPMS transient receptor potential cation channel MS,
CWI cold water immersion, T.. core temperature, BF blood flow, CVP
central venous pressure, CBV central blood volume, SV/CO stroke
volume/cardiac output, CNS central nervous system, RPE ratings of
perceived exertion, T increase, | decrease
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mechanisms are involved in CWI mediated recovery from
whole body exhaustive exercise.

4 Conclusions

In summary, a number of mechanisms have been suggested
to be responsible for the enhanced acute and longer term
recovery associated with post-exercise CWI (Fig. 6).
Under heat stress, CWI facilitates short term recovery by
rapidly reducing body temperatures, consequently amelio-
rating CNS mediated fatigue, and by reducing cardiovas-
cular strain. To date, there is only marginal evidence
supporting the notion that CWI might improve acute
recovery by facilitating the removal of muscle metabolites.
Moreover, parasympathetic reactivation following CWI
seems detrimental to high-intensity performances per-
formed shortly after, but seems beneficial with regards to
longer term physiological recovery and day to day training
performances. The efficacy of CWI for attenuating the
secondary effects of EIMD seems dependent on the mode
of exercise utilised with CWI having limited influence on
EIMD induced by single joint eccentrically biased con-
tractions. In contrast, CWI seems more effective in ame-
liorating effects of EIMD induced by whole body
prolonged endurance/intermittent based exercise modali-
ties. Understanding these mechanisms will aid practitioners
in the application and optimisation of CWI strategies to suit
specific recovery needs, improve athletic performance and
enhance adaptations to exercise.
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